There are two groups working in the above mentioned fields.

The first group is dealing mainly with nonlinear differential
equations influenced by control functions and their activity is
concentrated on:

algebraic and geometric methods for dynamical systems

stabilizability and perturbation attenuation via Riccati equation

optimality conditions for evolution equations and differential
inclusions

The second group covers the following directions:

Spectral and asymptotic for Hamiltonians

Exponential decreasing of the solution for Schrodinger equation

Schrodinger operator with random potential

There are three scientific seminars in which the two groups are
joining their activity including people from Bucharest-University and
Polytechnical University.