
WEYL LAWS ON OPEN MANIFOLDS

SERGIU MOROIANU

Abstract. Under suitable invertibility hypothesis, the spectrum
of the Dirac operator on certain open spin Riemannian manifolds
is discrete, and obeys a growth law depending qualitatively on the
(in)finiteness of the volume.

1. Introduction

Let M be a closed Riemannian manifold, E → M a Hermitian vector
bundle and D : C∞(M, E)→ C∞(M, E) an elliptic, symmetric, positive
differential operator of order k > 0. Then the spectrum of D is discrete
and the eigenvalues accumulate towards infinity obeying the Weyl law:

(1) lim
λ→∞

N(λ)

λdim(M)/k
= C

where N(λ) := #{s ∈ Spec(D); |s| < λ} is the counting function and
C is an explicit constant depending on dim(M) and on the principal
symbol of D. This fact is classically proved using the heat trace ex-
pansion [26] when D is a Laplacian. Note that one can obtain better
estimates of the remainder in (1), see [13].

In this paper we derive similar laws for Dirac operators on certain open
spin Riemannian manifolds.

If the manifoldM is not compact, not much can be said in general about
the spectrum of D. However, if M is complete then the Laplacian on
forms and the Dirac operator are essentially self-adjoint, and their es-
sential spectra may be non-empty. Several results are also known for
compact, incomplete manifolds with boundary. The original result of
Weyl states that (1) holds for the Dirichlet Laplacian on a compact
domain with smooth boundary in Rn. Let now X be a compact man-
ifold with boundary M , and X its interior. Then (1) holds [3] for the
Dirac operator on X endowed with a product-type metric near M and
a suitable non-local boundary condition. The results of [3] follow from
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an explicit computation on the cylinder, which breaks down for per-
turbations of the product metric. A significant progress in this context
was brought by Melrose [23], who computed the index of the Atiyah-
Patodi-Singer non-local boundary value problem as an L2 index, using
his b-calculus on the complete manifold obtained from X by gluing
infinite cylinders. Unlike the APS operator, the associated b-operator
has non-empty essential spectrum.

The present work is motivated by a result of Bär [4], who showed
that the essential spectrum of the Dirac operator on complete spin
hyperbolic manifolds of finite volume is either empty or the whole real
line. Thus, let X be a smooth n-dimensional compact manifold with
closed boundary M , and x a boundary-defining function. This means

• x ∈ C∞(X, [0,∞));
• M = {x = 0};
• dx never vanishes at x = 0.

Let g0 be a cusp metric on X, i.e., a (complete) Riemannian metric on
X := X \M which in local coordinates near the boundary takes the
form

(2) g0 = a00(x, y)
dx2

x4
+

n−1∑
j=1

a0j(x, y)
dx

x2
dyj +

n−1∑
i,j=1

aij(x, y)dyidyj

such that the matrix A = (aαβ) is smooth and non-degenerate down to

x = 0. Let h :=
∑n−1

i,j=1 aij(0, y)dyidyj denote the induced Riemannian
metric on M . For simplicity, in this introduction we present our results
under the additional assumption

(3) a00|M ≡ 1, a0j |M ≡ 0.

Following Melrose [23], we call g0 satisfying (3) an exact cusp metric.
We are interested in the Riemannian metrics

(4) gp := x2pg0

for p ∈ R. Important particular cases are obtained when g0 is a cylin-
drical metric on (0, ε) ×M ⊂ X, g0 = x−4dx2 + h. By the change of
variable yq = x, q > 0 (which changes the smooth structure of X but
not that of X) and for varying p ∈ R we can get any metric of the type

xadx2 + xbh

with a, b ∈ R provided b − a > 2, in particular gp cannot be confor-
mally conical. Such metrics include all metric horns [18], and complete
hyperbolic manifolds of finite volume. The above change of variable
is rather artificial since it destroys smoothness of coefficients in the
general case (2).
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We first study the self-adjointness of the Dirac operator of the metric
gp acting on spinors.

Theorem 1. Let X have a spin structure such that the Dirac operator
Dh for the induced spin structure on (M,h) is invertible. Assume that
g0 satisfies (3). Then the Dirac operator Dp with domain C∞c (X,Σ) is
essentially self-adjoint in L2(X,Σ, gp).

This result is standard for p ≤ 1 even without the invertibility hypoth-
esis, since then gp is complete. For p > 1 and g0 = x−4dx2 + h we
recover a result from [18] through the change of variable y = xp−1. For
us the most interesting phenomena will occur for 0 < p ≤ 1/n.

It is important to understand how restrictive the invertibility hypoth-
esis really is. On one hand, it is conjectured that any spin manifold M
admits metrics with harmonic spinors, provided dim(M) ≥ 3. On the
other hand, it is also conjectured that (for M connected) for generic
metrics the dimension of the space of harmonic spinors is the minimal
dimension prescribed by index theory. Parts of this conjecture were
proved by Maier [20] and Bär and Dahl [5]. In our case, by the cobor-
dism invariance of the index, the minimal dimension is 0. Thus, for
M connected, the invertibility hypothesis is automatically satisfied for
generic metrics if dim(M) ≤ 4, or if π1(M) vanishes or is cyclic of
odd order. An indirect way of ensuring invertibility of Dh is (following
Lichnerowicz) asking that scalh ≥ 0, with strict inequality at least at
one point.

Incidentally, under the hypothesis of Theorem 1, D+
p is in fact Fred-

holm, and for dimX even,

index(D+
p ) =

∫
X

Â(gp)− η(Dh)/2.

The Â form is a conformal invariant, hence, like index(D+
p ), it is inde-

pendent of p. We will not pursue this fact further.

Next, we look for conditions on p to ensure the vanishing of the essential
spectrum of Dp.

Theorem 2. Under the hypothesis of Theorem 1, the operator Dp has
pure point spectrum if and only if p > 0.

This greatly generalizes the above cited result of Bär [4].

Our main result describes the asymptotics of the counting function for
the eigenvalues of Dp.

Theorem 3. Let X be a compact n-dimensional spin manifold with
boundary M , gp the metric on X given by (4) and Dp the associated
Dirac operator on spinors. Assume that (3) holds and that the spin
structure on X induces an invertible Dirac operator on (M,h). For
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p > 0 let Np(λ) denote the counting function for the eigenvalues of Dp

(well-defined by Theorem 2). Then

Np(λ) ≈


λnVol(X,gp) Vol(Sn−1)2[n/2]

n(2π)n
for 1/n < p <∞,

λn log λVol(M,h) Vol(Sn−1)2[n/2]

(2π)n
for p = 1/n,

λ1/p
Γ

(
1−p
2p

)
ζ
(
Dh,

1
p
−1
)
εn

2
√
πΓ
(

1
2p

) for 0 < p < 1/n,

where εn equals 1 if n is odd, 2 if n is even.

Here Γ is the Gamma function and ζ(Dh, z) := Tr
(
(Dh)2

)−z/2
is the

zeta function of the absolute value of Dh, which is holomorphic for
<(z) > n− 1 = dim(M).

It is interesting to note that Vol(X, gp)) is finite exactly when it arises
as coefficient in the asymptotic law. In that case the formula bears
no difference from the case of closed manifolds. The critical conformal
factor p = 1/n marks the start of a remarkable change in the growth
rate. As p approaches 0, the metric becomes close to the asymptotically
cylindrical metric, for which the essential spectrum does not vanish.
This is reflected by the growth rate becoming infinite. Remarkably,
some sort of spectral asymptotics for the Laplacian survive for g0, as
shown by Christiansen and Zworski [8]. Let us note that a similar
(though analytically quite different) result was obtained by Maniccia
and Panarese [22] for ends isometric to the Euclidean space outside a
ball.

Weyl asymptotics may be deduced by two related approaches – heat
trace expansions, via the beautiful and elementary result of Karamata,
and from meromorphic extensions of zeta functions via the Ikehara
theorem. Complex powers are weaker but more conceptual than the
heat kernel, in particular they can be constructed in wide generality
[1] following the method of Guillemin [11] and Bucicovschi [7]. Thus
our strategy of proof will be to construct the complex powers of the
square of our Dirac operators inside a calculus of pseudodifferential
operators, and examine the leading pole of the associated zeta function.
Rather than constructing a different calculus for each p, which would be
highly problematic, we rely on Melrose’s cusp calculus, corresponding
to p = 0 (note that geometrically it does not correspond to cuspidal but
to cylindrical ends). For each p we find an isometry between L2(Σp) and
L2(Σ0) under which Dp transforms to a cusp operator of order (1, p).
The zeta function of this operator is a meromorphic function, with first
pole at max{n, 1/p}, double if n = 1/p and simple otherwise. We use
then the Ikehara theorem [14] and its generalization by Delange [9] to
deduce Theorem 3. The invertibility of Dh means that the operator Dp

is fully elliptic, hence determines the domain of its closure and yields
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Theorem 1. As for Theorem 2, the condition p > 0 is equivalent to the
parametrix of Dp inside the cusp calculus being compact.

It might be possible to retrieve our results by exhibiting small-time
asymptotics of the heat kernel of D2

p. Paul Loya (see e.g., [19]) has
constructed such heat kernels and studied their asymptotics in a variety
of non-standard situations. Such asymptotics would be stronger than
the meromorphy of the zeta function; in exchange, they would yield
immediately Theorem 3 via Karamata’s theorem.

Let us mention a third possible approach, i.e., the asymptotics of the
wave trace. Even the first step of identifying this trace with a tem-
pered distribution depends mildly on some a priori knowledge of Weyl
asymptotics. Nevertheless, this approach would likely give also an es-
timate of the error term in Theorem 3.

We finally mention without proof that our results seem to extend to
manifolds with corners of codimension d ≥ 2. For various conformal
factors, one gets as possible growth rates λn logk λ, k = 0, . . . , d, and
also λ1/p logk λ, 0 < p < 1/n, k = 0, . . . , d− 1.

Acknowledgments. I wish to thank Andrei Moroianu for several useful
discussions, and Victor Nistor for pointing out the paper [22].

2. The cusp structure

Consider a general cusp metric given by (2) without the condition
(3), and the closely related metrics on X obtained by the conformal
transformation of weight xp, p ∈ R. We call the metric gp = x2pg0 a
p-metric. Note that the volume of gp is finite if and only if p > 1/n.

Example 4. A complete hyperbolic manifold X of finite volume is iso-
metric (outside a compact set) to a warped product cylinder

((−∞, 0]×M,dt2 + e−2th)

where M may be disconnected. Moreover, h is flat and independent of
t. By the change of variables x = e−t near −∞, the hyperbolic metric
transforms to x2h+ dx2

x2 near x = 0. Thus a hyperbolic metric of finite

volume is a 1-metric on the compactification X := X ∪ {−∞} ×M .

Let
cV(X) := {V ∈ C∞(X,TX); dx(V ) ∈ x2C∞(X,TX)} ⊂ V(X)

be the Lie sub-algebra of cusp vector fields on X. In local coordinates
(x, yj) near x = 0, a vector field in cV(X) can be uniquely written as a
linear combination

a(x, y)x2∂x +
n−1∑
j=1

bj(x, y)∂yj
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with smooth coefficients a, bj. Thus cV(X) is a locally free C∞(X)-
module. By the Serre-Swan theorem there exists a vector bundle
cTX → X such that cV(X) = C∞(X, cTX). Moreover, the inclusion
cV(X) ↪→ C∞(X,TX) gives rise to a bundle map

c : cTX → TX

which is an isomorphism outside x = 0. A curious feature of the
cusp tangent bundle is that it has a canonical normal subbundle to
the boundary, rather than conormal as in the standard case. Namely,
the vector field x2∂x is well-defined (and non-vanishing) regardless of
changes in the other local coordinates y1, . . . , yn−1.

Lemma 5. A metric g0 on X extends to a Riemannian metric on the
bundle cTX → X if and only if it has the form (2).

Proof. Clearly, cusp metrics have been defined so that this lemma
holds. �

In particular, g0 takes the same form for different local coordinates yj,
which might not have been a priori clear. Notice that near M we can
write

(5) g0 = a00
dx2

x4
+
dx

x
⊗ θX + θX ⊗ dx

x
+ hX

where θX and hX are a smooth 1-form, respectively a symmetric 2-
tensor which restricts to be non-degenerate on the level sets {x =
constant}. There is an ambiguity in the definition of θX , hX which can
be removed by choosing a smooth extension Z0 of the canonical vector
field x2∂x to X such that dx(Z0) = x2, and asking that θX , hX vanish
on Z0. This vector field corresponds to a product decomposition of a
neighborhood of M .

Let now x′ = ax + Bx2, with a ∈ C∞(M,R∗+), B ∈ C∞(X,R), be
the Taylor limited development of another boundary-defining function
x′. Then x′ and x define the same Lie algebra of cusp vector fields if
and only if a is a constant. The set of such functions is called a cusp
structure, which is henceforth fixed. However, it proves useful not to
fix the function x inconsiderately inside the cusp structure since by
Lemma 5, the metric g0 is also a cusp metric with respect to x′. The
canonical vector fields x2∂x and x′2∂x′ are related by x2∂x = a−1x′2∂x′ ,
thus the cusp normal bundle is canonically trivialized up to a constant.

Let I be the Lie ideal x · cV(X) inside cV(X). We also denote by
I the space xC∞(X, cT ∗X), and more generally any ideal of the form
xC∞(X,E) where E is a smooth vector bundle over X.

Lemma 6. Let g0 be a cusp metric written in the form (5). Let h :=
hX|M , θ := θX|M and q := a00|M ∈ C∞(M). Define a 1-form α and a
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metric gM on M by

α :=
θ

q
, gM :=

h

q
− α⊗ α.

Then q, gM and the residue class α+dΛ0(M) are independent, up to a
multiplicative constant, of the boundary-defining function x inside the
fixed cusp structure.

Proof. There is an ambiguity in the choice of θX and hX but only up to
I2, so θ and h are well-defined. Clearly, 0 < ‖x2∂x − θ#‖2

g0
= q − ‖θ‖2

h

so gM is non-degenerate. We write

g0 = a00

((
dx

x2
+
θX

a00

)2

+
hX

a00

− θX

a00

⊗ θX

a00

)
.

Let x′ be another boundary-defining function in the cusp structure of
x, i.e., x = ax′ +Bx′2 with a > 0 constant, B ∈ C∞(X). Then

dx

x2
=

1

a

dx′

x′2
+
dB

a2
+ I

so q′ = q
a2 , α′ = aα + db

a
, where b = B|M , and the lemma follows. �

Melrose [23] calls cusp metrics with property (3) exact. In light of the
above lemma, a cusp metric with a00|M ≡ 1 and θ exact can be put in
the form (3). By the Hodge decomposition, we can always modify x
so that α is coexact with respect to gM . It makes sense therefore to
distinguish closed cusp metrics as being those with θ/q closed; in that
case, a change of boundary-defining function can make θ/q harmonic
with respect to gM .

The invariant α+dΛ0(M) has no equivalent in the case of finite-length
cylinders, see [6].

3. p- versus 0-Dirac operators

Assume that (X, g0) has a spin structure π : PSpin(X) → PSO(X, g0).
Let Tp : (TX, gp)→ (TX, g0) be the isometry defined by V 7→ xpV . It
induces a SO(n)-isomorphism

T : PSO(X, gp)→ PSO(X, g0)

between the orthonormal frame bundles of (X, gp) and (X, g0). We
define a spin structure on (X, gp) by T−1π : PSpin(X) → PSO(X, gp).
Thus the cusp- and p-spinors have the same underlying vector bundle
Σ, with the same metrics but different Clifford module structures. The
Clifford action cgp with respect to gp obeys the rule

cgp(V )φ = cg0(T (V ))φ.
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Proposition 7. The unbounded operator Dp in L2(X,Σ, gp) with do-
main C∞c (X,Σ) is isometric to

Ap = x−p
(
D0 − p

2
xc0

(
dx

x2

))
acting in L2(X,Σ, g0) with domain C∞c (X,Σ).

Proof. Note that dx/x2 is a smooth section in cT ∗X over X, thus
c0(dx/x2) is actually non-singular down to x = 0.

For every conformal transformation g̃ = f 2g, the Dirac operators Dg̃

and Dg are related by [12, Prop. 1.3]:

(6) Dg̃ = f−
n+1

2 Dgf
n−1

2 .

Note also the relationship between the two volume densities:

dgp = xnpdg0.

Together with the fact that the metric on Σ is the same for all p, we
see that the map

C∞c (X,Σ, g0)→ C∞c (X,Σ, gp), φ 7→ x−
np
2 φ

is an isometry with respect to the L2 inner product. Let Ap :=

x
np
2 Dpx

−np
2 be the conjugate of Dp under this isometry. By using (6)

with f = xp, we get Ap = x−
p
2Dpx

− p
2 . The commutation formula

[D0, µ] = c(dµ) for µ ∈ C∞(X) ends the proof. �

In particular, the spectra of the closure of Dp and Ap are the same. It
is therefore enough to study Ap, which is a cusp operator in the sense
of the next section.

4. Review of cusp operators

Definition 8. The algebra Dc(X) of cusp differential operators is the
universal enveloping algebra of the Lie algebra cV(X) of cusp vector
fields on X.

The definition extends easily to cusp operators acting on sections of
smooth vector bundles over X.

The spectral properties of cusp differential operators acting as un-
bounded operators in L2(X, g0) are well-understood, thanks to the
calculus of cusp pseudo-differential operators of Melrose, a cousin of
the celebrated b-algebra. We review below several results about cusp
operators, and then use them to derive the spectral properties of a
class of differential operators on L2(X, gp) which includes the p-Dirac
operator in the spin case. The cusp algebra is described e.g., in [25,
Appendix A]. It is a particular case of the fibered cusp algebra [21]
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when the boundary fibers over a point, and of the cusp algebra on
manifolds with corners [15] when the corners are of codimension 1.

4.1. The principal symbol. Let A be a cusp differential operator.
Then the principal symbol of A, which lives a priori on the cotangent
bundle to X, lifts in fact to cT ∗X through the (dual) canonical map
T ∗X → cT ∗X. We call this lifted symbol the cusp principal symbol, or
simply the principal symbol when no confusion can occur.

4.2. The normal operator. This is a ”boundary symbol” map, as-
sociating to any cusp operator A ∈ Dc(X, E ,F) a family of differential
operators on M with one real polynomial parameter ξ as follows:

N (A)(ξ) =

(
e
iξ
x Ae−

iξ
x

)
|M

where restriction to M is justified by the mapping properties

A : C∞(X, E)→ C∞(X,F)

A : xC∞(X, E)→ xC∞(X,F)

and by the isomorphism C∞(M) = C∞(X)/xC∞(X). For example,
N (ix2∂x)(ξ) = −ξ. The normal operator depends on x, nevertheless
if we change x inside its cusp structure, x′ = ax + Bx2 with a > 0
constant and B ∈ C∞(X,R), then the normal operator changes by a
conjugation:

N ′(A)(ξ) = e−ibξ/a
2N (A)(ξ/a)eibξ/a

2

where b := B|M . In particular, the invertibility of the normal operator
for all values of ξ ∈ R is independent on the particular boundary-
defining function x.

4.3. Cusp Sobolev spaces. For k ∈ N, the cusp Sobolev space
Hk
c (X,S) is defined as the space of those sections φ ∈ L2(X,S) such

that P (φ) ∈ L2(X,S) for all P ∈ Dkc (X,S). It is a Hilbertable space
in which C∞c (X,S) sits as a dense subspace; moreover, for all a ∈ R an
operator A ∈ Dkc (X, E ,F) has the mapping property

A : xaHk
c (X, E)→ xaL2

c(X,F)

which justifies the definition

Dk,ac := x−aDkc , Hk,a
c := xaHk.
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4.4. The cusp calculus. As part of his larger program of quantizing
singular structures, Melrose constructed a calculus Ψz,s

c (X) of pseudo-
differential operators, z, s ∈ C, in which Dc sits as the differential (i.e.,
local) operators. For the construction we refer the reader to [25]. Op-
erators in Ψz,s

c (X) extend by duality to distributions and map Hk,a
c (X)

into H
k−<(z),a−<(s)
c (X). The cusp-principal symbol and the normal op-

erator extend from Dc(X) to this larger calculus. The normal operator
takes as values certain families of pseudodifferential operators on M ,
called suspended operators [24].

Definition 9. An operator A ∈ Ψz,s
c (X) is called fully elliptic if the

cusp principal symbol σz(x
sA) is invertible outside the zero section

in cT ∗X, and if moreover N (xsA)(ξ) is invertible as an operator from
H<(z)(M) to L2(M) for all values of the parameter ξ.

Fully elliptic operators admit parametrices with respect to the two
symbol structures. By a standard argument we get

Lemma 10. Let A ∈ Ψz,s
c (X) be fully elliptic. Then the domain of the

closure of A inside L2
c(X) is H

max{<(z),0},max{<(s),0}
c (X). If moreover A

is symmetric then it is essentially self-adjoint.

The following lemma is the basic tool for the analysis of the spectrum
of cusp operators.

Lemma 11 (Cusp Rellich lemma). Let X be a compact manifold with
boundary, x a boundary-defining function and g0 a cusp metric on X.
Then for p, k ∈ R the inclusion xpHk

c (X) ↪→ L2
c(X) is compact if and

only if p > 0 and k > 0.

Proof. Easy, using a partition of unity and the classical Rellich lemma
on a compact exhaustion of a neighborhood of infinity in X. �

Corollary 12 (Melrose). Let z, s ∈ C, a, b ∈ R and A ∈ Ψz,s
c (X, E ,F).

Then A is continuous as an operator

A : Ha+<(z),b+<(s)
c (X, E)→ Ha,b

c (X,F),

and it is Fredholm if and only if it is fully elliptic.

Corollary 13. The spectrum of a symmetric, fully elliptic operator
A ∈ Ψz,s

c (X,S) is discrete and accumulates towards infinity if and only
if <(z) > 0 and <(s) > 0.

5. Complex powers and eigenvalue growth

Analytic families of cusp operators have been introduced in [25] to de-
fine trace functionals in the spirit of Wodzicki’s residue and to derive
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an index formula. This idea has been exploited in [15] for cusp mani-
folds with corners, and in [17] for fibered-cusp metrics. We need here
a variant of Melrose’ and Nistor’s results.

Proposition 14. Let p ∈ R∗+ and C ⊃ Ω 3 z 7→ A(z) ∈ Ψz,pz
c (X,S)

an analytic family of cusp operators indexed by a connected open subset
Ω ⊂ C. Then the trace map

{z ∈ Ω;<(z) < −n,<(pz) < −1} 3 z 7→ Tr(A(z))

is holomorphic, and extends meromorphically to Ω with (at most dou-
ble) possible poles occurring at the superposition of the sets (N−n) and
(N− 1)/p.

The first occurring pole is

• simple at z = −n, if n > 1/p, with residue

− 1
(2π)n

∫
cS∗X

trσ−nA(−n);

• double at z = −n if n = 1/p, with leading coefficient

n
(2π)n

∫
cS∗X|M

trσ−n(N (x−1A(−n)));

• simple at z = −1/p, if n < 1/p, with residue

− n
2π

∫
R

TrN (x−1A(−1/p))(ξ)dξ.

Proof. (sketch) By an analytic family of operators of varying order
we mean that A is holomorphic at z ∈ Ω inside the Banach space of
bounded operators B(Hk,b

c , L2
c) for k > <(z), b > p<(z).

For a trace-class cusp operator A we write its trace as the integral of the
Schwartz kernel of A on the diagonal in the cusp double-space [25]. By
the Fourier inversion formula, this becomes the integral on cT ∗X of the
pointwise trace of the full symbol of A, times the (singular) canonical
volume form given by the cusp symplectic form. Then we try to extend
this integral meromorphically beyond the critical z. This extension
follows by a standard elementary argument from the polyhomogeneity
of the symbol at the boundary of the unit ball bundle, see [25] or [15].
Along the way we collect the information about the leading coefficient
in the first pole (we could give all asymptotic coefficients in the same
way, however only the first one matters in the rest of the paper) . We
have omitted the canonical volume forms on cS∗X, resp. cS∗X |M , which
are obtained from the symplectic volume form by contraction with the
canonical radial, respectively cusp-normal vector field to M . �
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Proposition 15. Let A ∈ Ψa,b
c (X, E), a, b > 0, be fully-elliptic, sym-

metric (hence self-adjoint) and positive. Then the complex powers Az

form an analytic family as in Proposition 14.

Proof. (sketch) This is a particular case of [16, Thm. 7.1]. Here is the
idea of the proof. Recall that for classical pseudodifferential operators
on a closed manifold this was shown by Seeley [28]. Guillemin [11] gave
another proof for scalar operators, which was extended by Bucicovschi
to operators on vector bundles, or more generally with symbols taking
values in a von Neumann algebra. This last method extends to algebras
with ”symbols” taking values in algebras like the suspended algebras,
where the existence of complex powers is known. See also the recent
paper [1] where complex powers are constructed in a more general
framework. �

Let 0 < λ1 ≤ λ2 ≤ . . . be the eigenvalues of A. The previous two
propositions shows that the map

z 7→
∞∑
j=1

λ−zj = Tr(A−z)

is holomorphic for large real parts of z, extends meromorphically to
the complex plane with poles on the real axis, and describes the first
pole. To deduce the asymptotic behaviour of λj we use a result due to
Delange [9, Theorem III]:

Lemma 16. Let k ∈ N∗, a ∈ R∗+ and 0 < λ1 ≤ λ2 ≤ . . . be a non-
decreasing sequence such that the series

∞∑
j=0

λ−zj

is absolutely convergent for <(z) > a. Let ζ(z) denote the sum of this
series, thus ζ(z) is holomorphic for {<(z) > a}. Assume that ζ extends
to a meromorphic function in a neighborhood of {<(z) ≥ a}, regular
except at z = a where it has a pole of order k. Let C be the coefficient
of (z − a)−k in the Laurent expansion of ζ around z = a. Then the
counting function N(λ) := max{j ∈ N;λj < λ} satisfies

N(λ) ≈ C
a·(k−1)!

λa(log λ)k−1.

Proof. Set α(t) :=
∑∞

j=1 H(t− log λj), where H denotes the Heaviside
function. Then

f(z) :=

∫ ∞
0

e−ztα(t)dt =
1

z
ζ(z)
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satisfies the hypothesis of [9, Theorem III] with leading coefficient C/a
at z = a. Thus

N(et) = α(t) ≈ C/a
(k−1)!

eattk−1. �

We note here that Karamata’s method applied to the zeta function
gives a weaker result than Theorem 3, in terms of the asymptotics of
the spectral function

I(n) =
∑
λj<n

1

λj
.

This is because Karamata’s proof does not take into account the be-
havior of the zeta function outside the real line.

We obtain as a corollary a general result about p-operators.

Theorem 17. Let X be the interior of a compact manifold with bound-
ary X, with metric gp given by (4), p ∈ R. Let Σ be a hermitian vector
bundle over X, q > 0 and D ∈ Ψ1,q

c (X,Σ) a symmetric fully elliptic
cusp operator. Then D is essentially self-adjoint on C∞c (X,Σ) with
discrete spectrum, and the counting function of its eigenvalues satisfies

N(λ) ≈


Cλn for 1/n < q,

Cλn log λ for q = 1/n,

Cλ1/q for 0 < q < 1/n.

The constant C is explicitly given by Proposition 14 and Lemma 16.

Proof. Dq is isometric to A := xnp/2Dx−np/2 ∈ Ψ1,q
c (X, σ) acting in

L2(X, σ, g0) as in Proposition 7. Now N (xqA) = N (xqD) by the mul-
tiplicativity of the normal operator. So A is also fully elliptic. The
theorem follows from Corollary 13 and the results of this section. �

Notably, the invariance of the normal operator under conjugation by
powers of x breaks down for b-operators. As a result, the analysis of
conical singularities is more delicate.

6. The Dirac operator of a cusp metric

Let us return to the setting of Section 3. Assume that (X, g0) is spin,
and fix a spin structure PSpin(X) → PSO(X). Using Lemma 5 we ex-
tend PSpin(X) to a spin structure for the Riemannian bundle (cTX, g0).
We claim that the Dirac operator D0 associated to the cusp metric g0

given by (2) is a cusp differential operator (of order 1). For this we
first need to describe the smooth structure of the spinor bundle over
X. The problem is that g0 is singular over the boundary of X. Choose
a product decomposition

ı : M × [0, ε)→ X
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near M such that x becomes the variable in [0, ε), i.e., x(ı(y, t)) = t.
Then hX (see (5)) defines a Riemannian metric on the bundle TM ×
[0, ε), such that induced map ı : TM × [0, ε) → cTX is an isometric
injection.

Choose a local orthonormal frame on M × {0}, say Y1, . . . , Yn−1. Let
Y1(x), . . . , Yn−1(x) be the orthonormal frame obtained by the Gramm-
Schmidt procedure from Y1, . . . , Yn−1, viewed as a local frame on M ×
{x}. Let Y0 be inward-pointing unit vector field normal to M×{x} for
0 < x < ε. Again by (2), Y0 extends to a smooth cusp vector field down
to x = 0. Thus we have found a local orthonormal frame in (cTX, g0)
near x = 0 which defines a smooth structure on the orthonormal frame
bundle of (cTX, g0), and hence on the spin bundle PSpin(cTX).

An oriented orthonormal frame in TM × [0, ε) gives rise to a unique
oriented orthonormal frame in cTX by adding Y0 as the first component.
Thus we get a SO(n − 1)-map between the principal frame bundles.
Define a spin structure on M × {x}, 0 ≤ x < ε as the pull-back of
the spin bundle of X via this map. From the definition there exists a
Spin(n− 1)-injection PSpin(M × {x})→ PSpin(X).

Let Σn be the spinor representation of Spin(n). If n is odd, then
Σn = Σn−1 = Σ+

n−1 ⊕ Σ−n−1, while for n even, Σn = Σn−1 ⊕ Σn−1.
For n odd, the Clifford action of the extra vector V0 on Σn is given by
c0

Σn
= [ i 0

0 −i ], and at the same time, cjΣn = c0
Σn
cjΣn−1

for j = 1, . . . , n−1.

For n even, V0 acts as c0
Σn

= [ 0 −1
1 0 ], while cjΣn =

[
0 cjΣn−1

cjΣn−1
0

]
.

Let ΣM×{x}, ΣX be the spinor bundles over M×{x}, respectively X.
It follows from the above discussion that ΣX |M×{x} can be identified
with ΣM × {x} (for n odd), respectively with R2 ⊗ ΣM × {x} (for
n even) as smooth bundles over X. We wish to compute D0, the

Dirac operator of the metric g0, in terms of the Dirac operators DhXx

on M × {x}. First, like for all Dirac operators, σ2(D2
0)(ξ) = g0(ξ, ξ).

Lemma 5 implies that D2
0 (and hence D0) is cusp-elliptic.

Lemma 18. The Levi-Civita covariant derivative ∇ on (X, g0) extends
to a differential operator with smooth coefficients

∇ : C∞(X, cTX)→ C∞(X, cT ∗X ⊗ cTX).

Proof. Use the Koszul formula for ∇ applied to vectors Yj. Since cTX
is stable by Lie bracket and g0 is a true metric on cTX, the assertion
follows immediately. �

Let Ỹ be a local section in the principal spin bundle over X which
lifts the local orthonormal frame (Y0, . . . , Yn−1) constructed previously.
Let φ be a local section in ΣX. There exists s : X → Σn smooth



WEYL LAWS ON OPEN MANIFOLDS 15

so that φ = [Ỹ , s], where the square bracket denotes the equivalence
class modulo Spin(n). In other words, φ is represented by s in the
trivialization given by Ỹ . Recall that in such a trivialization, the Levi-
Civita covariant derivative of the spinor φ takes the form (at least
outside the boundary):

∇Y φ = Y (s) + 1
2

∑
0≤i<j≤n−1

g0(∇Y Yi, Yj)c
icjφ.

From Lemma 18 it follows that ∇ maps C∞(X,ΣX) to C∞(X, cT ∗X ⊗
ΣX). For n odd,

D0φ = c0(Dhφ+ Y0(s))

+ 1
2

∑
1≤i<j≤n−1

〈∇Y0Yi, Yj〉c0cicjφ

+ 1
2

∑
1≤i≤n−1

〈∇YiY0, Yi〉c0φ− 1
2
c0c(∇Y0Y0)φ.

(7)

For n even,

D+
0 φ = Dh + Y0(s) + 1

2

∑
1≤i<j≤n−1

〈∇Y0Yi, Yj〉cicjφ

+ 1
2

∑
1≤i≤n−1

〈∇YiY0, Yi〉φ− 1
2
c(∇Y0Y0)φ.

and so D0 ∈ D1
c (X,ΣX).

We make now the additional hypothesis that the metric g0 satisfies (3),
i.e., it is an exact cusp metric [25].

Lemma 19. If g0 is an exact cusp metric then

• for n odd, N (D0)(ξ) = c0(Dh + iξ);

• for n even, N (D0)(ξ) =
[

0 Dh−iξ
Dh+iξ 0

]
.

Thus D0 is fully elliptic if and only if Dh is invertible.

Proof. Recall that I is the ideal x · cV(X) = kerN inside cV(X). From
the hypothesis (3), Y0 = x2∂x + I. It follows that N (Y0) = iξ and also
[Y0, Yj] ∈ I for all j. The Koszul formula shows that ∇Y0Yi,∇YiY0 and
∇Y0Y0 all belong to I. Since N (I) = 0, formula (7) gives the desired
formula. Then clearly N (D0)(ξ) is invertible for all ξ ∈ R if and only
if Dh is invertible. �

For example, if scalh(M) ≥ 0 and does not vanish identically on any
connected component of M then, by Lichnerowicz’s formula, D0 is fully
elliptic.
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7. Proofs of the main results

In this section (3) is assumed to hold.

Proof of Theorem 1. By Proposition 7, we see that for each p, Dp is
isometric to an operator Ap ∈ D1,p

c (X,Σ) with the property that Ap −
x−pD0 ∈ D0,p−1

c (X,Σ). This means that Ap is fully elliptic if and only
D0 is. Lemmata 10 and 19 end the proof. �

Proof of Theorem 2. Assume that Dh is invertible, so Dp ∈
Ψ1,p
c (X,S(X)) is fully elliptic by Lemma 19. The result follows from

Corollary 13. �

Proof of Theorem 3. We assume that p > 0 and Dh is invertible. Then
Ap is fully elliptic and has discrete spectrum, and moreover PkerAp , the
orthogonal projection onto the kernel of Ap in L2(X,Σ, g0), belongs to
Ψ−∞,−∞c (X,Σ). We apply Proposition 14 to the analytic family A(z) :=
(A2

p + PkerAp)
z/2 ∈ Ψz,pz

c (X,Σ) to find that the zeta function of A2
p has

either a simple or a double leading pole. Note that σ1(A(1)) = ‖ · ‖gp .
From Lemma 19 we get

N (x−1A(1)−1/p)(ξ) = ((Dh)2 + ξ2)
− 1

2p ,

for n odd, respectively

N (x−1A(1)−1/p)(ξ) =

((Dh)2 + ξ2)
− 1

2p 0

0 ((Dh)2 + ξ2)
− 1

2p


for n even. Thus

trσ−nA(−n)|cS∗X = dim Σ(n) = 2[n/2];

trσ−n(N (x−1A(−n)))|cS∗X|M = dim Σ(n) = 2[n/2];

trN (x−1A(−1/p))(ξ) = εn tr((Dh)2 + ξ2)
− 1

2p .

The last identity implies that∫
R

TrN (x−1A(−1/p))(ξ)dξ = εn Tr((Dh)2)
− 1

2p
+

1
2

∫
R

(1 + ξ2)
− 1

2pdξ

= εnζ(Dh, 1
p
− 1)

√
πΓ
(

1
2p
−1

2

)
Γ
(

1
2p

)
where the integral was evaluated using [27, equation (4)]. The result
follows from these formulae, Proposition 14 and Lemma 16. �

Theorem 3 applies with minimal modifications to Dirac operators
twisted by a bundle W → X with smooth connection down to x = 0,
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provided that the induced twisted Dirac operator DM,W over M is in-
vertible. Namely, for p ≥ 1/n we have to multiply by dim(W ) the
coefficient of λn, resp. λn log λ, while for 0 < p < 1/n we must re-
place Dh by DM,W inside the zeta function. If M is connected then
the obstruction to the invertibility of DM,W given by index theory van-
ishes, as a consequence of cobordism invariance. Thus, by Anghel’s
result [2], DM,W is invertible for generic connections on W , at least if
dim(M) ≤ 4.

8. Weyl laws for general cusp metrics

Let us consider the case of a general cusp metric. Write g0 in the form
(5) and fix a product decomposition near M so that θX and hX are
uniquely defined. Let θ# be the dual vector field to θX relative to hX .
Set

F := 1/‖x2∂x − θ#‖g0 , f := F|M ∈ C∞(M).

Proposition 20. The normal operator of the Dirac operator corre-
sponding to g0 is given by

N (D0)(ξ) = c0(Dh + ifξ − f∇θ#

+ 1
4
fc(dθ)− 1

4
f tr(Lθ#h(0))− 1

2
c(df)/f)

(8)

for n odd, respectively

N (D+
0 )(ξ) = Dh + ifξ − f∇θ#

+ 1
4
fc(dθ)− 1

4
f tr(Lθ#h(0))− 1

2
c(df)/f

for n even.

Proof. The idea is to expand formula (7) for D0. Note that Y0 =
F (x2∂x − θ#), and therefore

[Yi, Y0] =
Yi(F )

F
Y0 + F (−[Yi, θ

#]− x2∂x(Yi))

≡ Yi(f)

f
Y0 − f [Yi, θ

#] + I2

(9)

(recall that I is the ideal xcV(X) annulated by N ). Thus

N (D0)(ξ) = c0 · (Dh + ifξ − f∇θ#)

+ 1
2

∑
1≤i<j≤n−1

〈∇fx2∂xYi, Yj〉|x=0c
0cicj

+ 1
2

∑
1≤i≤n−1

〈∇YiY0, Yi〉|x=0c
0

− 1
2

n−1∑
j=1

〈∇Y0Y0, Yj〉|x=0c
0cj.
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We already see here the first three terms from (8). Koszul’s formula
gives

2〈∇x2∂xYi, Yj〉 = Yi(θj)− Yj(θi)− θ([Yi, Yj]) = dθ(Yi, Yj)

so by summing over i < j we get the fourth term. Since Yi has constant
length 1, it follows by (9) that

〈∇YiY0, Yi〉 = 〈[Yi, Y0], Yi〉 = −f〈[Yi, θ#], Yi〉+ I2.

Use
n−1∑
i=1

〈[Yi, θ#], Yi〉 = 1
2

tr(Lθ#h(0)) =
Lθ#dh(0)

dh(0)

to get the fifth term. As for the last term, again by (9) we have

〈∇Y0Y0, Yj〉 = −〈Y0,∇Y0Yj〉 = 〈Y0, [Yj, Y0]〉 ≡ Yj(f)/f + I2.

This settles the case n odd. The case n even is done in the same
way. �

We wish now to give conditions on g0 so that N (D0)(ξ) is invertible for
all ξ ∈ R. If θ = 0 this condition was seen to be equivalent to DM,h(0)

being invertible. For the general case, we rewrite (8) as

N (D0)(ξ)

= c0f

(
f−

1
2Dhf−

1
2 + iξ −

(
∇θ# + 1

2

Lθ#dh(0)

dh(0)

)
+ 1

4
c(dθ)

)
.

It is not clear if a reasonable condition on h, f and θ exists so that the
above operator is invertible for all ξ ∈ R. Recall that the metric h is
not canonically determined by g0, since it depends on the choice of x
inside the fixed cusp structure. Thus, we rewrite N (D0) in terms of
the canonical metric gM on M , see Lemma 6, although we must still
fix x in order to define N .

Proposition 21. Let g0 be a cusp metric on X and α, gM , q defined in
Lemma 6. Then for n odd,

N (D0)(ξ) = c0q−
n+1

2 (DgM + iξ(1− c(α)) + 1
4
c(dα))q−

n−1
2

while for n even,

N (D+
0 )(ξ) = q−

n+1
2 (DgM + iξ(1− c(α)) + 1

4
c(dα))q−

n−1
2 .

Proof. Recall that in the expression (5) for g0, the tensors θX , hX are
well-defined only up to I2. Fix a product decomposition of X near M ,
thus removing the ambiguity.

First, assume that a00 = 1 nearM , so g0 = (dx/x2+θX)2+hX−θX⊗θX .
Let Ỹ0 := x2∂x. Define an isometric embedding

(TM × [0,∞), hX)→ (cTX, g0), Y 7→ Ỹ := Y − θ(Y )Ỹ0.
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This allows us to compare spinors on X and on M . Choose a lo-
cal orthonormal frame Y1, . . . , Yn−1 on M , transport it to X using
the product decomposition and re-orthonormalize it using Gramm-
Schmidt. Note that the frame {Yj} is different from the frame with the
same name from Section 6, since they are orthonormal with respect to
different metrics. Then Ỹ0, . . . , Ỹn−1 is a (smooth) orthonormal frame
on cTX. We use i, j, k to denote a subscript in {1, . . . , n − 1}. Notice
that

[Ỹi, Ỹj] = ˜[Yi, Yj]− dθ(Yi, Yj) + I2

[Ỹ0, Ỹi] ∈ I2

so

(∇Ỹi
Ỹj, Ỹk) = (∇YiYj, Yk)

∇Ỹ0
Ỹ0 ∈ I2

(∇Ỹi
Ỹ0, Ỹi) ∈ I2

(∇Ỹ0
Ỹj, Ỹk) = 1

2
dθ(Ỹi, Ỹj) + I2.

Using (7), under the assumption that a00 = 1 we get immediately in
the case n is odd

N (D0)(ξ) = c0(DgM + iξ(1− c(θ)) + 1
4
c(dθ))).

Remove now the assumption that a00 = 1 in a neighborhood of M .
Using the formula for the conformal change for Dirac operators (6), we
get the desired expression. The case n even is entirely similar. �

As a corollary, we give a condition for the full ellipticity of Dp in some
cases where g0 is not exact.

Corollary 22. Let g0 be a cusp metric with α closed (by Lemma 6, this
condition is independent on the boundary-defining function). Then Dp

is fully elliptic if and only if DgM is invertible.

Proof. By Proposition 21, we must check the invertibility of the family
of operators

P (ξ) := DgM − iξc(α) + iξ

for all ξ ∈ R. But P (ξ) is invertible if and only if P ∗(ξ)P (ξ) = (DgM −
iξc(α))2 + ξ2 is invertible. This holds automatically for ξ 6= 0, and for

ξ = 0 it is equivalent to DgM being invertible. �

Product cylindrical metrics have been studied by several authors start-
ing with [3]. Such metrics can be considered either as b- or as cusp met-
rics; they can actually be treated by elementary methods using separa-
tion of variables. Melrose [23] has successfully studied exact b-metrics,
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which are in some sense only asymptotically cylindrical. Corollary 22
allows even more geometric structure to be embedded in the metric. If
H1(M,R) 6= 0, it simply says that our results on Weyl laws hold for
some metrics (i.e., closed cusp metrics) which are not exact.

Let us finally state our most general result about Dirac eigenvalues of
cusp metrics.

Theorem 23. Assume that the normal operator of D0, computed in
two different ways in Propositions 20, 21, is invertible. Then for p > 0,
Dp is essentially self-adjoint with pure point spectrum accumulating
towards infinity. The rate of growth is given by Theorem 3 if p ≥ 1/n,
and by Theorem 17 if 0 < p < 1/n.

�

This theorem has the drawback that the invertibility of N (D0) must be
assumed. The only case where we have found a reasonable condition for
invertibility is for closed cusp metrics (Corollary 22). We are therefore
led to the following

Problem. Let (M, gM) be a connected compact Riemannian spin man-
ifold and θ a 1-form on M . Find conditions on θ, gM so that the family
of operators

DgM + iξ(1− c(θ)) + 1
4
c(dθ))

is invertible for all ξ ∈ R.

Another variant of the problem would be to assume additionally that
M vanishes in the Spin bordism ring. Mere invertibility of DgM is
not enough in general, as shown by the following example (courtesy of
Andrei Moroianu, see also [6]):

Example 24. Let M = S2 with an arbitrary metric h and D the as-
sociated Dirac operator. Then Dh is invertible, since the Dirac oper-
ator of the standard metric is invertible, and any two metrics on S2

are conformally isometric. Nevertheless, there exist a metric h and
θ ∈ Λ1(S2) so that Dh + c(θ) is not invertible. For this, take h to
be the metric induced from an immersion of S2 in R3 with total mean
curvature 0. First, there exists such an immersion, since we can deform
S2 by stretching cylinders of positive or negative mean curvature, thus
increasing or decreasing the total mean curvature at will. Secondly,
take φ̃ to be a constant spinor on R3, and pull it back to a spinor
φ = (φ+, φ−) on M . Then by [10, Proposition 2],

Dhφ+ = −iHφ−, Dhφ− = iHφ+,

where H is the mean curvature function of (M,h). The form Hdh
has volume 0, thus it is exact, i.e., Hdh = dθ for some θ ∈ Λ1(M,R).
Recall moreover that c(dh) acts by ±i on Σ±(M). Thus φ is a solution
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of the equation

(Dh + c(dθ))φ = 0.
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