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Introduction

The excessive functions with respect to a right continuous Markov
process are related to the generator of the process (or to its inverse,
the potential kernel) in the same way as the classical superharmonic
functions on an Euclidean open set are related to the Laplace oper-
ator on that set (or to the Newtonian kernel).

The aim of this work is to present systematically several prop-
erties of the excessive functions with respect to a transition func-
tion (a semigroup of sub-Markovian kernels), possible associated
to a Markov process. We follow essentially the first Chapter from
the monograph [BeBo 04], the monograph [Sh 88], and the article
[St 89] of J. Steffens; cf. also [Be 11b] and [BeBoR&6 06]. The main
property we characterize is the stability to the pointwise infimum
of the convex cone of all excessive functions. From the probabilistic
point of view, this property is precisely the fact that all the points
of the state space of the process are nonbranch point.

The final aim is to present an application to the construction of
Right Markov processes in infinite dimensional situations.

The plan of the work is the following.

In the first section (Preliminaries) we present some useful basic
results on the Gaussian semigroup in R¢, transition functions, the
associated resolvent of kernels, the infinitesimal generator, the def-
inition of the Markov processes, and the Brownian motion as an
example.

In Ssection 2 we give results on the excessive functions with re-
spect to a sub-Markovian resolvent of kernels: Hunt’s Approxima-
tion Theorem (Theorem 2.1), the Cp-resolvent of contractions on
LP-spaces induced by such a resolvent (Theorem 2.2). The main
result is Theorem 2.5, stating the above mentioned characterization
of the min-stability of the excessive functions. It turns out that this
characterization of the property that all the points are nonbranch
points is an esential step in the construction of the measure-valued
branching Markov processes; cf. [Be 11a] for the case of continu-
ous branching, using several potential theoretical tools. We expect
that a similar procedure will be efficient in the case of the discrete
branching processes, as treated in the Addendum of [BeOpll]; see
also [INW 68], [Si68] and [Na 76].



The announced application is developed in Section 3. More pre-
cisely, we prove in Theorem 3.2 that the min-stability property of
the excessive functions is preserved by subordination with a con-
volution semigroup, the so called Bochner subordination; we follow
the notations and the approach from [BlHa 86]. We complete in
this way results from the recent article [BeR6 11], where this prop-
erty was supposed to be satisfied by the subordinate resolvent, in
order to associate to it a cadlag Markov process; see the Example
following Corollary 5.4 from [BeR6 11].



1 Preliminaries

The n-dimensional Brownian motion:
the Gaussian semigroup and the Newtonian potential kernels

For each f € pB(R") and t > 0, the Gaussian kernel P, on R" is
defined by:

1 —Jz—y|?
Pif(x) = W/]R”e 2 f(y)dy,

where pB = pB(R™) denotes the set of all positive, real-valued Bore-
lian functions on R™.

The family (P;):>0, FPo = Id is called the Gaussian semigroup on
R™.

Let g¢, g: : R® — R, be the density of the Gaussian kernel F;,
1 —|a|?
gi(z) = We 2t

Clearly, the kernel P; is defined by a convolution,

Pof(x) = g * f(z) = / ala — ) f(y)dy

n

for all f € pB.

Proposition 1.1. (i) For each t > 0 the kernel P, is Markovian,
i.e., P1 = 1. In particular, for every x € R™ the measure f ——
P, f(x) is a probability on R™.

(17) Py is a linear operator on the space b3 of all bounded Borel
measurable functions on R"™ and if f > 0 then P.f > 0.

(1ii) The family (P)i>o is a semigroup of kernel on R™, i.e.,
P;o P, = P, 4 for all s,t > 0.

Proof. (i) If n = 1, then we have:

1 o y—)? 2t [
Pl(z) = \/ﬁ/ e~ E dy = \/\/2% e dz=1.

The case n > 1 follows by Fubini’s Theorem:

1 _lz—y|? - 1 0 @imup?
P1(x) = —(27rt)"/2 /Rne 3 dy = E [ 57 /_Ooe 3t dyil =1.




(i) Let f € 0B, [f| < M. Then |Ff| < P(|f]) < M =
M - P,1 = M. Consequently P,f € bB.

(7i1) Since P,f = g, f and Pyo Py(f) = g; * gs * f for all f € bB,
it follows that in order to prove the semigroup property of (F;)i>o
we have to show that g; x g; = g:1s. We check the above equality in
the case n = 1:

(=) 42
- rzg 6_% dy

(z) 1 1 /°°

ok p(T) = ——— e

Js = 9t V2Tt /278 J oo
1 2 1 oo _s+t,2

— % e YT dy

= e
2m\/ts V2rt J -

&0 s+t t 2 1 2
= ) gy = PR — ().
/_OO Yy 2(s + 1) 9s+t(x)

]

Let E be a metrizable Lusin topological space and B the Borel
o-algebra on F

Transition function. A family of kernels (P;);>0 on (F, B) which
are sub-Markovian (i.e., P,1 <1 for all t > 0), such that Pof = f
and Py(P,f) = Psy.f for all s,t > 0 and f € pB is called transition
function on E.

We assume further that for all f € bpB the real-valued function
(t,z) — P.f(z) is B([0,00)) ® B-measurable.

Resolvent of kernels. The resolvent of kernels associated with
the transition function (P;)i>o is the family U = (Uy)as0 on (E, B)
defined by

Unf ::/ e Pfdt.
0

The following two properties hold for the resolvent of kernels as-
sociated with a transition function.

e The family U = (U,)a>0 satisfies the resolvent equation, i.e., for
all f € bpB we have

Uy =Us+ (6 —a)UU;s for all a, 3 > 0.



Note that in particular we have: U,Ug = Ugl,, for all o, 3 > 0.

e The resolvent family U = (U, )aso is sub-Markovian, i.e., aU,1 < 1
for all > 0. Indeed, we have: Uyl = [ e P 1dt < [~ e dt = +.

Right continuous Markov process. A system X = (,G,G;, X3, 6, P*)
is called right continuous Markov process with state space E, with
transition function (P;)i>o provided that the following conditions

are satisfied:

a) (2,G) is a measurable space, (G;);>o is a family of sub o-
algebras of G such that G, C G, if s <t; forall t >0

b) X; : Q — En is a G;/Ba-measurable map such that X;(w) = A
for all t > ty if Xy (w) = A, where A is a cemetery state adjoined
to E as an isolated point of En := E U {A} and Ba is the Borel
o-algebra on Fa.

¢) ((w) :=inf{¢ ‘ Xi(w) = A} (the lifetime of X)

d) For each t > 0, the map 6, : 2 — Q is such that X 060, = X,y
for all s >0

(74) (Markov property). For all x € Ea, P* is a probability mea-
sure on (2, G) such that x — P?(F') is universally B-measurable

for all € G, E*(f o Xy) = f(x), and
E*(f o Xeyy - G) = E*(P)fo X, G)

for all x € Ea, s5,t > 0, f € pBa and G € pG,, where P” is the
Markovian kernel on (Ea,Ba) such that P21 =1 and P2 |gp = P,.

Brownian motion. A (right) continuous Markov process (B:)i>o
with state space R" is called n-dimensional Brownian motion pro-
vided that its transition function is the Gaussian semigroup:

- 1 7\w—y\2 n
P(BtEA):W/AG 2t d’y, for all AEB(R )



The generator. Let F' be a Banach space and (P;);>o be a semi-
group of contractions on F'. We define

Pu—
D(L) := {u € F: there exists lim ——— € F} .
t\0 t
For u € D(L) we define:

Pu—u
Lu :=lim — ,
t\0 t

The linear operator (L, D(L)) is called the infinitesimal operator
(or generator) of the semigroup (F;)>o.

Example. The infinitesimal operator of the Gaussian semigroup
(P)i>0 (regarded, e.g., as a Cy-semigroup of contractions on F' =
L*(R™, )\)) is the Laplace operator, we write P, = e'®. More pre-
cisely, if u € C3(R), then we have in L*(R™, \): limp o 2= = Au.



2 Sub-Markovian resolvent of kernels

Let U = (Uy)aso be a sub-Markovian resolvent of kernels on the
Lusin measurable space (E,B). We shall denote by U the initial
kernel of U : U = sup,~o Ua.

If ¢ > 0, then the family U, = (Uj+4)a>0 is also a sub-Markovian
resolvent of kernels on (£, B), having U, as (bounded) initial kernel.

Excessive function. A function v € pB is called U-supermedian if
aU,v <w for all a > 0.

A U-supermedian function v is named U -ezxcessive if in addition
SUP 4~ @Uav = v. We denote by E(U) (resp. S(U)) the set of all B-
measurable U-supermedian functions. It is easy to check that S(U)
and E(U) are convex cones.

If v € S(U) then the function v := sup,.,alU,v is U-excessive
and the set M = [v # ¥] is U-neglijable, i.e., Ug(ly) = 0 for some
(and hence all) § > 0. In addition the following assertions hold:

(2.1) IfueSU) then: u e EU) if and only if u = u.

(2.2)  If (u,), is a sequence of U-supermedian functions which is
pointwise increasing to u, then the function w is also U-supermedian
and the sequence (u, ), increases to u.

In particular,

(2.3) if (uy), is a sequence of U-excessive functions which is point-
wise increasing to u, then the function w is also a U-excessive.

A first main results on the U-excessive function is the following
approximation result of G.A. Hunt.

Theorem 2.1. Hunt’s Approximation Theorem. Let U =
(Ua)aso be a sub-Markovian resolvent of kernels on the measurable
space (E,B) and let us fix ¢ > 0 . Then for each v € E(U,) there
exists a sequence (fy)n in bpB such that U,f, is bounded for all n
and the sequence (Uyfy)n is pointwise increasing to v.

—

Proof. Let v, := inf(v,nU,1). Note first that if € E is such that



U, l(z) = 0 and v € E(U,), then v(x) = 0. Indeed, we have v =
sup,, inf(v, n) and so Uy, (inf(v,n))(x) < Uy(n)(z) =0, Uppav(z) =
sup,, Uyta(inf(v,n))(z) = 0. Therefore v(z) = sup, aUq+av( ) =0.

By (2.3) we deduce that the sequence (v,), is increasing and
sup,, v, = sup,, inf(v,nW,1) = v = v. Since v € £(U,) it follows
that sup, nUg4nv, = v.

If we set
fn = n(Un - anJrnUn)a

then U, f, = nUnv,. We conclude that the sequence (U,f,)n is
increasing and sup,, U, f,, = sup,, nUg4nv,, = v. ]

Excessive measure. Recall that a o-finite measure £ on (F, (B))
is called U-excessive provided that £ o al, < & for all a > 0. We
denote by Exc(U) the set of all U-excessive measures.

Let further m be a fixed U-excessive measure.

Notation: We denote by pBN LP(E, m) the set of all B-measurable
functions which belong to LP(E,m).

If fe LP(E,m)and f' € pBNLP(E,m) is a m-version of f then
clearly U, f is the element of LP(FE, m) having the function U, f" as
m-version. Usually we shall identify a function from pB N LP(E,m)
with its class in LP(u). For instance if f € pB N LP(E, m) then U, f
denotes in the same time a function from pB N LP(E, m) and the
element from LP(E, m) having U, f as m-version.

Theorem 2.2. Assume that the set £(U,) of all B-measurable U,-
excessive functions generates the o-algebra B. If 1 < p < o0 is ﬁxed
then the following assertions hold.

i) If f € pB and f =0 m-a.e. thenU,f =0 m-a.e. foralla > 0.

i) If a>0,1<p<ooand f € LP(E,m) then U,f € L*(E, m)
and |[aUe fllp < [|f]p-

i11) For every f € LP(E, m) we have lim, . ||@Unf — f||, =0
Consequently, the family (Uy)aso becomes a Co-resolvent of sub-
Markovian contractions on LP(E,m).



Proof. By hypothesis we get [ aU,fdm < [ fdm for all f € pB and
consequently if f = 0 m-a.e. then U,f = 0 m-a.e. for all a > 0.
Also if 0 < f <1 m-a.e. then aU,f < aU,1 < 1 m-a.e. and thus
U, becomes a continuous linear operator on L>°(FE, m) and L'(E, m)
respectively, such that ||aUs||pe~(gm) < 1 and ||04Ua||L1 Bm) < 1.

i) If « > 0 and = € E then U, f(z) < (aU, (fp)( )) (aUu1(z))?
< (aUqu(fP)(x ))%, where p' is such that % + = = 1. So, if f €
LP(E,m) then [laU,fPdm < [aU.(|f?) dm < f|f|pdm We con-
clude that U, f € LP(E,m) and ||aU,||, < 1.

i11) Because ||aU,f||, < 1 for all @ > 0, it follows that the set
A:={f € LP(E,;m)/limy_ ||aUsf—f||, = 0} is a closed subspace
of LP(E,m). If ¢ > 0 and v € bE(U,)NLP(E, m) then v € A. Indeed,
from aUgqv /' v we get limy oo || — aUyvl|, = lima—o0 ||V —
Uy qvl|, = 0. Let now g € LP(E,m) be such that (g, f) =
for all f € A. Particularly, we have [ ¢~ U,fdm = [ ¢g*U,fdm for
all f € L% (E,m). Thus the last equality holds for all f € pB. By
the mass uniqueness we get gt-dm = ¢g~-dm, i.e., g = 0, hence
A = L?(E,m) (Hahn-Banach Theorem). O

1
o

Nonbranch point. A point x € F is called nonbranch point with
respect to U provided that

(N1)  inf(u,v)(z) = inf(u,v)(z) for all u,v € EU)

and

(N2) 1(z)=1

We denote by D, the set of all nonbranch points with respect to U.

(2.4) By Hunt’s approximation theorem and using (2.2) and (2.3),
one can easyly see that: a point € F is a nonbranch point with
respect to U if and only if (NV2) holds and (N1) is verified for all
bounded functions u,v € £(U) of the form v = U f and v = Ug with
f.g € bB.

A U-excessive measure of the form g o U (where p is a o-finite
measure) is called potential. We denote by Pot(U) the convex cone
af all potential U-excessive measuares.

10



Further let L : Exc(U) x EU) — R, be the energy functional
(associated with U) defined by

L(&, v) = sup{p(v), Pot(U) > po U < &}

for all £ € Exc(U) and v € E(U). The energy functional associated
with U, will be denoted by L,.

For the rest of the section we assume that ¢ = 0.

Let P denotes the transition function (F;);>o and define

EP):={v:E—R,, Pv<wforallt>0and lir%Ptv =v}

Proposition 2.3. We have E(U) = E(P).
Proof. Let u € £(P). From Pyu < u for all ¢ > 0 we obtain

Usu :/ e " Pudt < / ey dt = u/ eotdt = =
0 0 0 @

and so, u € S(U).

Because u € E(P), the map t — P is descreasing and there
exists the pointwise limit

lim Pou = sup Pu = lim P, u = u,
t\.0 t>0 n—00

where (t,), is a sequence of positive numbers decreasing to zero.
We have

alUu = a/ e “Pudt = / e Py quds.
0 0

For each fixed s > 0 we have P,/,u — u as a — oo, therefore by
dominated convergence we get

(o] o (o]
lim e "Pyauds = / e ‘uds = u/ e °ds = u.

It follows that

u= lim aU,u = lim e Py ouds = u.

a—00 a—00 0

11



Hence u € £(U) and we conclude that E(P) C E(U).

Let now v € £U). By Hunt’s approximation Theorem there
exists a sequence (f,,), € bpB such that Uf, /" u. Consequently, to
prove that the function v belongs to £(P), it is enough to show that
PUf <Uf forall t >0 and that lim; .o BUf = Uf. We have

PUS = / Proof ds = / Pofds < / Pofds = Uf
0 t 0

and - -
limPth:lim/ Psfds:/ P,fds=Uf.
t—0 t—0 ¢ 0
O

Proposition 2.4. The following assertions hold for a resolvent of
kernels U = (Uy)aso on (E,B).

(1) The following two conditions are equivalent.
(i.a) All the points of E are nonbranch points with respect to U.
(i.b) The convex cone E(U) is min-stable and contains the positive
constant functions, i.e., for all u,v € EU) we have inf(u,v) € E(U)
and 1 € EU).

(13) IfU is the resolvent of right Markov process with state space
E, then all the points of E are nonbranch points with respect to U.

Proof. Since U is sub-Markovian, we clearly have that 1 € S(U).
Let u,v € bE(U) and set w := inf(u, v). Then clearly w € S(U)

(7) The equivalence between (i.a) and (i.b) is a direct consequence
of (2.1).

(17) Let X be the right Markov process having U as associated
resolvent. Then every U-excessive function is a.s. right continuous
along the paths of X, i.e.,

(2.5) If u € E(U) then the function t — wo X; is a.s. right contin-
uous on [0, c0).

We already noted that the constant function 1 is U-supermedian.
If x € E then P1(z) = E*([t < (]) and since E*(Xy = x) = 1 we
deduce that a.s. ¢ > 0 and therefore limp o P1(z) = E*([0 < (]) =
1, hence 1 € E(U) since by Proposition 2.2 we have E(U) = P(U).

We also noted that if u, v € b€ (U) then the function w = inf(u, v)
is U-supermedian and by (2.4) w is also right continous along the

12



paths of X. By dominated convergence and again since E*(Xy =
x) =1 we get

11{15 Pw(z) = 11{%]3 (wo X;) = P (wo Xy) = w(x).
It follows that w € P(U), so, again by Proposition 2.2, it is U-
excessive, hence (i.b) holds and therefore also (i.a) is verified. We

conclude that all the points of F are nonbranch points with respect
to U and the proof is complete. ]

We can state now the central result of this section.

Theorem 2.5. Let (Uy)aso be a sub-Markovian resolvent of kernels
on (E,B), ¢ > 0 be fizred, and assume that the o-algebra generated
generated by E(U,) is precisely B. Then the following three asser-
tions are equivalent.

(1) All the points in E are nonbranch points with respect to U.

(i) The following two properties hold.
(UC) Uniqueness of charges: If u, v are two finite measures such
that po U, = v o U, then = v.
(SSP) Specific solidity of potentials: If £, eta € Exc(U,) such
that § +n = poU,, then there exists a measure v on E such that
E=vol,.

(2i3) The linear space [bE(U,)] spanned by bE(U,) is an unitary
algebra.

Proof. We show first that

(26) Ifv:E — R, and ¢ : I — Ryis an increasing concave
function, where I is an interval, 0 € I, such that Im(v) C I, and
if v e S(U,), then pov € S(U,). Particularly, the vector space
[bS(U,)] spanned by S(U,) is an algebra.

The first assertion follows by Jensen inequality, applied to the

sub-probability p, := aU,ia(z,dy) for all z € E. Indeed, for all
xr € E we have

aUyta(pov)(z) =/ poudiy < ¢(p2(v)) = p(alyrav(w)) < @(v(2)),

13



where the last inequality holds because ¢ is incresing and note that
pz(v) € I because 0 < pu,(v) < v(z).

To prove that [bS(U,)] is an algebra, it is sufficient to show that
v? € [bS(U,)], for every v € bS(U,). We may assume that v < 1 and
let ¢ : [0,1] — R, defined by ¢(x) = 2x — 2. Then ¢ is concave
and increasing, hence ¢ o v € bS(U,) and therefore v? € [bS(U,)].

(i) = (7ii). As before, to prove that [b€(U,)] is an algebra, it is
sufficient to show that v? € [bE(U,)] for every v € bE(U,). We may
assume that v < 1. By (2.6) it follows that v? belongs to [bS(U,)],
v? = 20 — w with w := 2v — v? € bS(U,). It remains to show that
w € E(U,). But w is a finely continuous U,-supermedian function,
hence it is U-excessive.

(t3i) = (7). Let A be the closure of [bS(Y,)] in the supremum
norm, it is a Banach algebra and therefore a lattice with respect to
the pointwise order relation. Since lim,_.o aUy+qv = v, pointwise
for all v € £(U,) it follows that the same property holds for all v € A.
Consequently, since 1 € A, we have 1 = 1 and if uj,us € & U,)
then the U,-supermedian function v = inf(uy, us) belongs to A and
therefore v = v, Dy, = E.

(1) = (4i). We show that if u, v are two measures on (E,B)
such that their potentials y1 o U, and v o U, are o-finite and

polU, =voly,

then p =v.
Indeed, the resolvent equation implies that if 5 > 0 then the
measures o U,y g and po U,U,u s are o-finite, hence

(2.7) poUyp=rvoU,pg forall §>0.

Let further g € bpB, g > 0, be such that o U,(g9) =voU,(g) < o0
and set h = U,g, so 0 < h € L'(E,p) N LY(E,v). If f € [bEU,)],
0 < f <1, then fh € [bE(U,)] (because by the already proved impli-
cation (1) == (i4i) it is an algebra) and therefore lim,nU,,(fh) =
fh.

Since nUyn(fh) < nUypnh < h € LYE,u) N LY (E,v), by (2.7)
and the dominated convergence, we obtain that u(fh) = v(fh) for
all f € [bE€(U,)] (which is an algebra of bounded functions generating
the o-algebra B). By the monotone class theorem we conclude that
p = v. Hence the unqueness of charges property (UC) holds.

14



We prove now that the specific solidity of potentials property
(SSP) also holds. Let &, nmuolU, € Exc(Uy)such {+n = poU,. We
may assume that the measure p is finite. Consider the functional
@e 1 bE(U,;) — R, defined as

@e(v) == Ly(&,v) for all v € bE(U,).

Note that L,(§,v) < Ly(pn 0o Uy, v) = p(v) < co. We may extand ¢
to a real valued linear functional on [b€(U,)] and we get

(2.8)  we(f) +@q(f) = u(f) for all f € [bEU,)]-

Note that ¢ is positive, i.e.
(2.9) ©e(f) > 0 provided that f € [bE(U,)] is positive.

This follows because (by the properties of the energy functional L,)
¢ is increasing as a functional on £(U,): if u,v € E(U,) and u < v,
then ¢¢(u) < ¢,(v). We claim taht if (f,), C [bE(U,)] is decreas-
ing poinwise to zero then the sequence (p¢(f,)), also decreases to
zero.Note first that by monotene convergence we have lim,, u(f,) =
0. From (2.8) and (2.9) it follows that 0 < @¢(f,) < p(f,) for all n
and thus

0 < limpe(fn) < limp(f,) = 0.

We can apply now Daniell’s theorem on the vector lattice [bE(U,)],
for the functional ¢¢. Hence there exists a positive measure v on B
such that

we(f) =v(f) for all f € bpB.
(Recall again that the o-algebra generated by [b€(U,)] is precisely
B.) Taking f = U,g with g € bpB, we get {(g9) = L,(&,Uyg) =
we(f) =v(Uyg) for all g € bpB,so { =voU,.
For the proof of (ii) = (i) see [St 89. O
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3 Subordination by convolution semigroups

A family (p)¢>0 of measures on RY is called a (vaguely continuous)
convolution semigroup on R7 if the following conditions are satisfied:

(¢) me(R%) < 1forallt >0,

(1) s * py = psyq for all s, > 0,

(147) Pi% e = €y (vaguely).

Note that (i) and (7i7) imply that lim; o p:(f) = f(0) for every
fe Cb(R+).

In the sequel we fix a transition function P = (P,);~¢ on (E, B)
and a convolution semigroup (/)0 on RY.

For each ¢ > 0 we define the kernel kernel P/ on (E, B) by

Plf :—/ P,fu(ds) for all f € bpB.
0

Proposition 3.1. The family P* = (P}');>0 is a sub-Markovian
semigroup of kernels on (E,B) and E(P) C E(P*). The semigroup
Pt = (P/')i=0 is called the sub-Markovian semigroup subordinated
to P by means of (j¢)=o.

Proof. Since for all t;,t5 > 0, and f € bpB we have

Perts = [ PP s = | ( / P51P52fut2<d82>) iy (ds1)

- / / Paysuy g (ds2) i, (ds1) = / Pof oy * iy (ds)
0 0 0

/ PSf(/’Ltl+t2 (d3> - Pt!f—&-tgv
0

it follows that the family of kernels P* is indeed a semigroup which
is certainly sub-Markovian.
We prove now that

E(P) C E(P") :
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Fix v € E(P). Then obviously P/'u < wu for every t > 0. Let
r € X, a<u(r)and 0 < b < 1. Then there exist sp > 0 and ¢, > 0
such that Pu(z) > a for every 0 < s < so and pu,(]0, so[) > b, hence

S0
Plu(x) > / Pou(z) g, (ds) > ab.
0
This implies that v € E(P*). O

Theorem 3.2. Assume that the resolvent U is proper and that all
the points of E are nonbranch points with respect to U. Then the
same property holds for the resolvent U* associated with P*.

Proof. By Theorem 2.5 we have to show that conditions (UC') and
(SSP) are verified by the resolvent U*.

Let v; and v5 be two positive finite measures on E such that 4 o
Ul = vp0U}. Using Theorem 2.1 (Hunt’s Approximation Theorem)
it follows that vi(v) = 1a(v) for all v € EUL). Because E(P) C
E(PH) = EUH) C E(UY), we get that vy (v) = vo(v) for all v € E(U).
In particular, we have v1(Uf) = p(Uf) for all f € bpB, hence
vy oU = vy o U. Because by hypothesis all the points of E are
nonbranch points with respect to U, by Theorem 2.5 we deduce
that the uniqueness of charges property holds for U. It follows that
v, = vp and we conclude that (UC') also holds for U*.

We check now that the specific solidity of potentials property
(SSP) holds with respect to U*. Let &, n, and voU¥ be U}'-excessive
measures such that

(3.1) &+n=voUk

We may assume that v is a finite measure, consequently the mea-
sures £ and 7 are also finite. We define the positive measures ¢ and
n on E by

§f) =Ly Uf), o' (f):=Lyn,Uf) forall fe€bpB.

We claim that £ and 7’ are U-excessive measures. Indeed, if o > 0
then

§oala(f) = Ly, alaUf) < Ly(§,Uf) =&'(f).

We show now that ¢’ is a o-finite measure. If f, € bpB, f, > 0, is
such that U f, < 1, then

§(fo) =Ly, Ufo) < Ly(w o Uy, U fo) = v(Ufo) < w(1) < oo
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Hence the measure ¢’ is o-finite. We conclude that &' is U-excessive
and analogously one gets that 1’ is also a U-excessive measure.
Using (3.1), we have for every f € bpB

) +u'(f) =Ly Uf) + Ly, Uf) =

Ly(€+nUf) = Ly(wo U, Uf) = v(Uyf).
We obtained that the following equality of U-excessive measures
holds:
g+n=vol.
Since by hypothesis the property (SSP) holds for U, we deduce

from the last equality that there exists a measure A on E such that
& =MXoU. It follows that

Ly & Uf) =&(f) =AUf) = Ly(Ao U}, Uf),
hence
Ly Uf)=LE(Ao UK, Uf) forall f € bpB.
In particular, taking f = U¥g, with g € bpB3, and since UU}' = U}'U,
it follows that for all ¢ € bpB we have
§WUg) = Ly(§, UUYg) = Ly(A o Uy, UyiUg) = Ao Uy (Ug)
Note that in addition we have

£(Ug) < WUMTg) < éuwg).

In particular, the measures { o U and (Ao U)o U are o-finite and
equal. Because by the resolvent equation we have U,g = U(9—qU,9)
for all g € bpB, g < f,, it follows that £ o Uyg = (Ao U¥) o Uyg,
and therefore § o U, = (Ao U¥') o U,. By the uniqueness of charges
propert (UC) for the resolvent U (see the proof of the implication
(1) = (i1) in the proof of Theorem 2.5) we conclude that § = AoU,
so, the property (SSP) holds with respect to U*. ]
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