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Introduction

The excessive functions with respect to a right continuous Markov
process are related to the generator of the process (or to its inverse,
the potential kernel) in the same way as the classical superharmonic
functions on an Euclidean open set are related to the Laplace oper-
ator on that set (or to the Newtonian kernel).

The aim of this work is to present systematically several prop-
erties of the excessive functions with respect to a transition func-
tion (a semigroup of sub-Markovian kernels), possible associated
to a Markov process. We follow essentially the first Chapter from
the monograph [BeBo 04], the monograph [Sh 88], and the article
[St 89] of J. Steffens; cf. also [Be 11b] and [BeBoRö 06]. The main
property we characterize is the stability to the pointwise infimum
of the convex cone of all excessive functions. From the probabilistic
point of view, this property is precisely the fact that all the points
of the state space of the process are nonbranch point.

The final aim is to present an application to the construction of
Right Markov processes in infinite dimensional situations.

The plan of the work is the following.
In the first section (Preliminaries) we present some useful basic

results on the Gaussian semigroup in Rd, transition functions, the
associated resolvent of kernels, the infinitesimal generator, the def-
inition of the Markov processes, and the Brownian motion as an
example.

In Ssection 2 we give results on the excessive functions with re-
spect to a sub-Markovian resolvent of kernels: Hunt’s Approxima-
tion Theorem (Theorem 2.1), the C0-resolvent of contractions on
Lp-spaces induced by such a resolvent (Theorem 2.2). The main
result is Theorem 2.5, stating the above mentioned characterization
of the min-stability of the excessive functions. It turns out that this
characterization of the property that all the points are nonbranch
points is an esential step in the construction of the measure-valued
branching Markov processes; cf. [Be 11a] for the case of continu-
ous branching, using several potential theoretical tools. We expect
that a similar procedure will be efficient in the case of the discrete
branching processes, as treated in the Addendum of [BeOp11]; see
also [INW 68], [Si68] and [Na 76].
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The announced application is developed in Section 3. More pre-
cisely, we prove in Theorem 3.2 that the min-stability property of
the excessive functions is preserved by subordination with a con-
volution semigroup, the so called Bochner subordination; we follow
the notations and the approach from [BlHa 86]. We complete in
this way results from the recent article [BeRö 11], where this prop-
erty was supposed to be satisfied by the subordinate resolvent, in
order to associate to it a cadlag Markov process; see the Example
following Corollary 5.4 from [BeRö 11].
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1 Preliminaries

The n-dimensional Brownian motion:
the Gaussian semigroup and the Newtonian potential kernels

For each f ∈ pB(Rn) and t > 0, the Gaussian kernel Pt on Rn is
defined by:

Ptf(x) =
1

(2πt)n/2

∫
Rn

e
−|x−y|2

2t f(y)dy,

where pB = pB(Rn) denotes the set of all positive, real-valued Bore-
lian functions on Rn.

The family (Pt)t≥0, P0 = Id is called the Gaussian semigroup on
Rn.

Let gt, gt : Rn −→ R, be the density of the Gaussian kernel Pt,

gt(x) =
1

(2πt)n/2
e
−|x|2

2t .

Clearly, the kernel Pt is defined by a convolution,

Ptf(x) = gt ∗ f(x) =

∫
Rn

gt(x− y)f(y)dy

for all f ∈ pB.

Proposition 1.1. (i) For each t > 0 the kernel Pt is Markovian,
i.e., Pt1 = 1. In particular, for every x ∈ Rn the measure f 7−→
Ptf(x) is a probability on Rn.

(ii) Pt is a linear operator on the space bB of all bounded Borel
measurable functions on Rn and if f ≥ 0 then Ptf ≥ 0.

(iii) The family (Pt)t≥0 is a semigroup of kernel on Rn, i.e.,
Ps ◦ Pt = Pt+s for all s, t ≥ 0.

Proof. (i) If n = 1, then we have:

Pt1(x) =
1√
2πt

∫ ∞

−∞
e−

(y−x)2

2t dy =

√
2t√
2πt

∫ ∞

−∞
e−z2

dz = 1.

The case n > 1 follows by Fubini’s Theorem:

Pt1(x) =
1

(2πt)n/2

∫
Rn

e−
|x−y|2

2t dy =
n∏

i=1

[
1√
2πt

∫ ∞

−∞
e−

(xi−yi)
2

2t dyi

]
= 1.
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(ii) Let f ∈ bB, |f | ≤ M . Then |Ptf | ≤ Pt(|f |) ≤ PtM =
M · Pt1 = M . Consequently Ptf ∈ bB.

(iii) Since Ptf = gt ∗ f and Pt ◦Ps(f) = gt ∗ gs ∗ f for all f ∈ bB,
it follows that in order to prove the semigroup property of (Pt)t≥0

we have to show that gt ∗ gs = gt+s. We check the above equality in
the case n = 1:

gs ∗ gt(x) =
1√
2πt

1√
2πs

∫ ∞

−∞
e−

(x−y)2

2s e−
y2

2t dy

=
1

2π
√

ts
e−

x2

2s
1√
2πt

∫ ∞

−∞
e−

s+t
2st

y2+x
s
y dy

=

∫ ∞

−∞
e−

s+t
2st (y− t

s+t
x)

2

dy =
1√

2π(s + t)
e−x2/2(s+t) = gs+t(x).

Let E be a metrizable Lusin topological space and B the Borel
σ-algebra on E

Transition function. A family of kernels (Pt)t≥0 on (E,B) which
are sub-Markovian (i.e., Pt1 ≤ 1 for all t ≥ 0), such that P0f = f
and Ps(Ptf) = Ps+tf for all s, t ≥ 0 and f ∈ pB is called transition
function on E.

We assume further that for all f ∈ bpB the real-valued function
(t, x) 7−→ Ptf(x) is B

(
[0,∞)

)
⊗ B-measurable.

Resolvent of kernels. The resolvent of kernels associated with
the transition function (Pt)t≥0 is the family U = (Uα)α>0 on (E,B)
defined by

Uαf :=

∫ ∞

0

e−αt Ptf dt .

The following two properties hold for the resolvent of kernels as-
sociated with a transition function.

• The family U = (Uα)α>0 satisfies the resolvent equation, i.e., for
all f ∈ bpB we have

Uα = Uβ + (β − α)UαUβ for all α, β > 0.
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Note that in particular we have: UαUβ = UβUα for all α, β > 0.

• The resolvent family U = (Uα)α>0 is sub-Markovian, i.e., αUα1 ≤ 1
for all α > 0. Indeed, we have: Uα1 =

∫∞
0

e−αtPt1dt ≤
∫∞

0
e−αtdt = 1

α
.

Right continuous Markov process. A system X = (Ω,G,Gt, Xt, θt, P
x)

is called right continuous Markov process with state space E, with
transition function (Pt)t≥0 provided that the following conditions
are satisfied:

a) (Ω,G) is a measurable space, (Gt)t≥0 is a family of sub σ-
algebras of G such that Gs ⊆ Gt if s < t; for all t ≥ 0

b) Xt : Ω → E∆ is a Gt/B∆-measurable map such that Xt(ω) = ∆
for all t > t0 if Xt0(ω) = ∆, where ∆ is a cemetery state adjoined
to E as an isolated point of E∆ := E ∪ {∆} and B∆ is the Borel
σ-algebra on E∆.

c) ζ(ω) := inf
{
t
∣∣ Xt(ω) = ∆

}
(the lifetime of X)

d) For each t ≥ 0, the map θt : Ω → Ω is such that Xs ◦θt = Xs+t

for all s > 0

(ii) (Markov property). For all x ∈ E∆, P x is a probability mea-
sure on (Ω,G) such that x 7−→ P x(F ) is universally B-measurable
for all F ∈ G, Ex(f ◦X0) = f(x), and

Ex(f ◦Xs+t ·G) = Ex(P∆
t f ◦Xs ·G)

for all x ∈ E∆, s, t ≥ 0, f ∈ pB∆ and G ∈ pGs, where P∆
t is the

Markovian kernel on (E∆,B∆) such that P∆
t 1 = 1 and P∆

t |E = Pt.

Brownian motion. A (right) continuous Markov process (Bt)t≥0

with state space Rn is called n-dimensional Brownian motion pro-
vided that its transition function is the Gaussian semigroup:

P x(Bt ∈ A) =
1

(2πt)n/2

∫
A

e−
|x−y|2

2t dy, for all A ∈ B(Rn).
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The generator. Let F be a Banach space and (Pt)t≥0 be a semi-
group of contractions on F . We define

D(L) :=

{
u ∈ F : there exists lim

t↘0

Ptu− u

t
∈ F

}
.

For u ∈ D(L) we define:

Lu := lim
t↘0

Ptu− u

t
,

The linear operator (L, D(L)) is called the infinitesimal operator
(or generator) of the semigroup (Pt)t≥0.

Example. The infinitesimal operator of the Gaussian semigroup
(Pt)t≥0 (regarded, e.g., as a C0-semigroup of contractions on F =
L2(Rn, λ)) is the Laplace operator, we write Pt = et∆. More pre-
cisely, if u ∈ C2

0(R), then we have in L2(Rn, λ): limt↘0
Ptu−u

t
= ∆u.
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2 Sub-Markovian resolvent of kernels

Let U = (Uα)α>0 be a sub-Markovian resolvent of kernels on the
Lusin measurable space (E,B). We shall denote by U the initial
kernel of U : U = supα>0 Uα.

If q > 0, then the family Uq = (Uq+α)α>0 is also a sub-Markovian
resolvent of kernels on (E,B), having Uq as (bounded) initial kernel.

Excessive function. A function v ∈ pB is called U-supermedian if
αUαv ≤ v for all α > 0.

A U -supermedian function v is named U-excessive if in addition
supα>0 αUαv = v. We denote by E(U) (resp. S(U)) the set of all B-
measurable U -supermedian functions. It is easy to check that S(U)
and E(U) are convex cones.

If v ∈ S(U) then the function v̂ := supα>0 αUαv is U -excessive
and the set M = [v 6= v̂] is U -neglijable, i.e., Uβ(1M) = 0 for some
(and hence all) β > 0. In addition the following assertions hold:

(2.1) If u ∈ S(U) then: u ∈ E(U) if and only if u = û.

(2.2) If (un)n is a sequence of U -supermedian functions which is
pointwise increasing to u, then the function u is also U -supermedian
and the sequence (ûn)n increases to û.

In particular,

(2.3) if (un)n is a sequence of U -excessive functions which is point-
wise increasing to u, then the function u is also a U -excessive.

A first main results on the U -excessive function is the following
approximation result of G.A. Hunt.

Theorem 2.1. Hunt’s Approximation Theorem. Let U =
(Uα)α>0 be a sub-Markovian resolvent of kernels on the measurable
space (E,B) and let us fix q > 0 . Then for each v ∈ E(Uq) there
exists a sequence (fn)n in bpB such that Uqfn is bounded for all n
and the sequence (Uqfn)n is pointwise increasing to v.

Proof. Let vn := ̂inf(v, nUq1). Note first that if x ∈ E is such that
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Uq1(x) = 0 and v ∈ E(Uq), then v(x) = 0. Indeed, we have v =
supn inf(v, n) and so Uq+α(inf(v, n))(x) ≤ Uq(n)(x) = 0, Uq+αv(x) =
supn Uq+α(inf(v, n))(x) = 0. Therefore v(x) = supα αUq+αv(x) = 0.

By (2.3) we deduce that the sequence (vn)n is increasing and

supn vn = ̂supn inf(v, nWq1) = v̂ = v. Since v ∈ E(Uq) it follows
that supn nUq+nvn = v.
If we set

fn := n(vn − nUq+nvn),

then Uqfn = nUq+nvn. We conclude that the sequence (Uqfn)n is
increasing and supn Uqfn = supn nUq+nvn = v.

Excessive measure. Recall that a σ-finite measure ξ on (E, (B))
is called U -excessive provided that ξ ◦ αUα ≤ ξ for all α > 0. We
denote by Exc(U) the set of all U -excessive measures.

Let further m be a fixed U -excessive measure.

Notation: We denote by pB∩Lp(E, m) the set of all B-measurable
functions which belong to Lp(E, m).

If f ∈ Lp(E, m) and f ′ ∈ pB ∩Lp(E, m) is a m-version of f then
clearly Uαf is the element of Lp(E, m) having the function Uαf ′ as
m-version. Usually we shall identify a function from pB ∩Lp(E, m)
with its class in Lp(µ). For instance if f ∈ pB ∩Lp(E, m) then Uαf
denotes in the same time a function from pB ∩ Lp(E, m) and the
element from Lp(E, m) having Uαf as m-version.

Theorem 2.2. Assume that the set E(Uq) of all B-measurable Uq-
excessive functions generates the σ-algebra B. If 1 < p < ∞ is fixed
then the following assertions hold.

i) If f ∈ pB and f = 0 m-a.e. then Uαf = 0 m-a.e. for all α > 0.

ii) If α > 0, 1 < p < ∞ and f ∈ Lp(E, m) then Uαf ∈ Lp(E, m)
and ||αUαf ||p ≤ ||f ||p.

iii) For every f ∈ Lp(E, m) we have limα→∞ ||αUαf − f ||p = 0
Consequently, the family (Uα)α>0 becomes a C0-resolvent of sub-
Markovian contractions on Lp(E, m).
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Proof. By hypothesis we get
∫

αUαfdm ≤
∫

fdm for all f ∈ pB and
consequently if f = 0 m-a.e. then Uαf = 0 m-a.e. for all α > 0.
Also if 0 ≤ f ≤ 1 m-a.e. then αUαf ≤ αUα1 ≤ 1 m-a.e. and thus
Uα becomes a continuous linear operator on L∞(E, m) and L1(E, m)
respectively, such that ||αUα||L∞(E,m) ≤ 1 and ||αUα||L1(E,m) ≤ 1.

ii) If α > 0 and x ∈ E then αUαf(x) ≤ (αUα(fp)(x))
1
p (αUα1(x))

1
p′

≤ (αUα(fp)(x))
1
p , where p′ is such that 1

p
+ 1

p′
= 1. So, if f ∈

Lp(E, m) then
∫
|αUαf |pdm ≤

∫
αUα(|f |p)dm ≤

∫
|f |pdm. We con-

clude that Uαf ∈ Lp(E, m) and ||αUα||p ≤ 1.
iii) Because ||αUαf ||p ≤ 1 for all α > 0, it follows that the set

A := {f ∈ Lp(E, m)/ limα→∞ ||αUαf−f ||p = 0} is a closed subspace
of Lp(E, m). If q > 0 and v ∈ bE(Uq)∩Lp(E, m) then v ∈ A. Indeed,
from αUq+αv ↗ v we get limα→∞ ||v − αUαv||p = limα→∞ ||v −
αUq+αv||p = 0. Let now g ∈ Lp′(E, m) be such that 〈g, f〉 = 0
for all f ∈ A. Particularly, we have

∫
g−Uqfdm =

∫
g+Uqfdm for

all f ∈ Lp
+(E, m). Thus the last equality holds for all f ∈ pB. By

the mass uniqueness we get g+·dm = g−·dm, i.e., g = 0, hence
A = Lp(E, m) (Hahn-Banach Theorem).

Nonbranch point. A point x ∈ E is called nonbranch point with
respect to U provided that

(N1) inf(u, v)(x) = ̂inf(u, v)(x) for all u, v ∈ E(U)

and

(N2) 1̂(x) = 1

We denote by DU the set of all nonbranch points with respect to U .

(2.4) By Hunt’s approximation theorem and using (2.2) and (2.3),
one can easyly see that: a point x ∈ E is a nonbranch point with
respect to U if and only if (N2) holds and (N1) is verified for all
bounded functions u, v ∈ E(U) of the form u = Uf and v = Ug with
f, g ∈ bB.

A U -excessive measure of the form µ ◦ U (where µ is a σ-finite
measure) is called potential. We denote by Pot(U) the convex cone
af all potential U -excessive measuares.
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Further let L : Exc(U)× E(U) −→ R̄+ be the energy functional
(associated with U) defined by

L(ξ, v) := sup{µ(v), Pot(U) 3 µ ◦ U ≤ ξ}

for all ξ ∈ Exc(U) and v ∈ E(U). The energy functional associated
with Uq will be denoted by Lq.

For the rest of the section we assume that q = 0.

Let P denotes the transition function (Pt)t≥0 and define

E(P) := {v : E −→ R+, Ptv ≤ v for all t > 0 and lim
t→0

Ptv = v}

Proposition 2.3. We have E(U) = E(P).

Proof. Let u ∈ E(P). From Ptu ≤ u for all t > 0 we obtain

Uαu =

∫ ∞

0

e−αtPtu dt ≤
∫ ∞

0

e−αtu dt = u

∫ ∞

0

e−αt dt =
u

α

and so, u ∈ S(U).

Because u ∈ E(P), the map t 7−→ Ptu is descreasing and there
exists the pointwise limit

lim
t↘0

Ptu = sup
t>0

Ptu = lim
n→∞

Ptnu = u,

where (tn)n is a sequence of positive numbers decreasing to zero.
We have

αUαu = α

∫ ∞

0

e−αtPtu dt =

∫ ∞

0

e−sPs/αu ds.

For each fixed s > 0 we have Ps/αu −→ u as α →∞, therefore by
dominated convergence we get

lim
α→∞

∫ ∞

0

e−sPs/αu ds =

∫ ∞

0

e−su ds = u

∫ ∞

0

e−sds = u.

It follows that

û = lim
α→∞

αUαu = lim
α→∞

∫ ∞

0

e−sPs/αu ds = u.

11



Hence u ∈ E(U) and we conclude that E(P) ⊂ E(U).
Let now u ∈ E(U). By Hunt’s approximation Theorem there

exists a sequence (fn)n ∈ bpB such that Ufn ↗ u. Consequently, to
prove that the function v belongs to E(P), it is enough to show that
PtUf ≤ Uf for all t > 0 and that limt→0 PtUf = Uf . We have

PtUf =

∫ ∞

0

Pt+sf ds =

∫ ∞

t

Psf ds ≤
∫ ∞

0

Psf ds = Uf

and

lim
t→0

PtUf = lim
t→0

∫ ∞

t

Psf ds =

∫ ∞

0

Psf ds = Uf.

Proposition 2.4. The following assertions hold for a resolvent of
kernels U = (Uα)α>0 on (E,B).

(i) The following two conditions are equivalent.
(i.a) All the points of E are nonbranch points with respect to U .
(i.b) The convex cone E(U) is min-stable and contains the positive
constant functions, i.e., for all u, v ∈ E(U) we have inf(u, v) ∈ E(U)
and 1 ∈ E(U).

(ii) If U is the resolvent of right Markov process with state space
E, then all the points of E are nonbranch points with respect to U .

Proof. Since U is sub-Markovian, we clearly have that 1 ∈ S(U).
Let u, v ∈ bE(U) and set w := inf(u, v). Then clearly w ∈ S(U)

(i) The equivalence between (i.a) and (i.b) is a direct consequence
of (2.1).

(ii) Let X be the right Markov process having U as associated
resolvent. Then every U -excessive function is a.s. right continuous
along the paths of X, i.e.,

(2.5) If u ∈ E(U) then the function t 7−→ u ◦Xt is a.s. right contin-
uous on [0,∞).

We already noted that the constant function 1 is U -supermedian.
If x ∈ E then Pt1(x) = Ex([t < ζ]) and since Ex(X0 = x) = 1 we
deduce that a.s. ζ > 0 and therefore limt↘0 Pt1(x) = Ex([0 < ζ]) =
1, hence 1 ∈ E(U) since by Proposition 2.2 we have E(U) = P(U).

We also noted that if u, v ∈ bE(U) then the function w = inf(u, v)
is U -supermedian and by (2.4) w is also right continous along the
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paths of X. By dominated convergence and again since Ex(X0 =
x) = 1 we get

lim
t↘0

Ptw(x) = lim
t↘0

P x(w ◦Xt) = P x(w ◦X0) = w(x).

It follows that w ∈ P(U), so, again by Proposition 2.2, it is U -
excessive, hence (i.b) holds and therefore also (i.a) is verified. We
conclude that all the points of E are nonbranch points with respect
to U and the proof is complete.

We can state now the central result of this section.

Theorem 2.5. Let (Uα)α>0 be a sub-Markovian resolvent of kernels
on (E,B), q > 0 be fixed, and assume that the σ-algebra generated
generated by E(Uq) is precisely B. Then the following three asser-
tions are equivalent.

(i) All the points in E are nonbranch points with respect to U .

(ii) The following two properties hold.
(UC) Uniqueness of charges: If µ, ν are two finite measures such
that µ ◦ Uq = ν ◦ Uq then µ = ν.
(SSP ) Specific solidity of potentials: If ξ, eta ∈ Exc(Uq) such
that ξ + η = µ ◦ Uq, then there exists a measure ν on E such that
ξ = ν ◦ Uq.

(iii) The linear space [bE(Uq)] spanned by bE(Uq) is an unitary
algebra.

Proof. We show first that

(2.6) If v : E −→ R+ and ϕ : I −→ R+is an increasing concave
function, where I is an interval, 0 ∈ I, such that Im(v) ⊂ I, and
if v ∈ S(Uq), then ϕ ◦ v ∈ S(Uq). Particularly, the vector space
[bS(Uq)] spanned by S(Uq) is an algebra.

The first assertion follows by Jensen inequality, applied to the
sub-probability µx := αUq+α(x, dy) for all x ∈ E. Indeed, for all
x ∈ E we have

αUq+α(ϕ◦v)(x) =

∫
ϕ◦v dµx ≤ ϕ(µx(v)) = ϕ(αUq+αv(x)) ≤ ϕ(v(x)),
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where the last inequality holds because ϕ is incresing and note that
µx(v) ∈ I because 0 ≤ µx(v) ≤ v(x).

To prove that [bS(Uq)] is an algebra, it is sufficient to show that
v2 ∈ [bS(Uq)], for every v ∈ bS(Uq). We may assume that v ≤ 1 and
let ϕ : [0, 1] −→ R+ defined by ϕ(x) = 2x − x2. Then ϕ is concave
and increasing, hence ϕ ◦ v ∈ bS(Ua) and therefore v2 ∈ [bS(Uq)].

(i) =⇒ (iii). As before, to prove that [bE(Uq)] is an algebra, it is
sufficient to show that v2 ∈ [bE(Uq)] for every v ∈ bE(Uq). We may
assume that v ≤ 1. By (2.6) it follows that v2 belongs to [bS(Uq)],
v2 = 2v − w with w := 2v − v2 ∈ bS(Uq). It remains to show that
w ∈ E(Uq). But w is a finely continuous Uq-supermedian function,
hence it is Uq-excessive.

(iii) =⇒ (i). Let A be the closure of [bS(Uq)] in the supremum
norm, it is a Banach algebra and therefore a lattice with respect to
the pointwise order relation. Since limα→∞ αUq+αv = v, pointwise
for all v ∈ E(Uq) it follows that the same property holds for all v ∈ A.

Consequently, since 1 ∈ A, we have 1̂ = 1 and if u1, u2 ∈ E(Uq)
then the Uq-supermedian function v = inf(u1, u2) belongs to A and
therefore v̂ = v, DUq = E.

(i) =⇒ (ii). We show that if µ, ν are two measures on (E,B)
such that their potentials µ ◦ Uq and ν ◦ Uq are σ-finite and

µ ◦ Uq = ν ◦ Uq,

then µ = ν.
Indeed, the resolvent equation implies that if β > 0 then the

measures µ ◦ Uq+β and µ ◦ UqUq+β are σ-finite, hence

(2.7) µ ◦ Uq+β = ν ◦ Uq+β for all β > 0.

Let further g ∈ bpB, g > 0, be such that µ ◦ Uq(g) = ν ◦ Uq(g) < ∞
and set h := Uqg, so 0 < h ∈ L1(E, µ) ∩ L1(E, ν). If f ∈ [bE(Uq)],
0 ≤ f ≤ 1, then fh ∈ [bE(Uq)] (because by the already proved impli-
cation (i) =⇒ (iii) it is an algebra) and therefore limnnUq+n(fh) =
fh.

Since nUq+n(fh) ≤ nUq+nh ≤ h ∈ L1(E, µ) ∩ L1(E, ν), by (2.7)
and the dominated convergence, we obtain that µ(fh) = ν(fh) for
all f ∈ [bE(Uq)] (which is an algebra of bounded functions generating
the σ-algebra B). By the monotone class theorem we conclude that
µ = ν. Hence the unqueness of charges property (UC) holds.
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We prove now that the specific solidity of potentials property
(SSP) also holds. Let ξ, ηmu◦Uq ∈ Exc(Uq)such ξ +η = µ◦Uq. We
may assume that the measure µ is finite. Consider the functional
ϕξ : bE(Uq) −→ R+ defined as

ϕξ(v) := Lq(ξ, v) for all v ∈ bE(Uq).

Note that Lq(ξ, v) ≤ Lq(µ ◦ Uq, v) = µ(v) < ∞. We may extand ϕξ

to a real valued linear functional on [bE(Uq)] and we get

(2.8) ϕξ(f) + ϕη(f) = µ(f) for all f ∈ [bE(Uq)].

Note that ϕξ is positive, i.e.

(2.9) ϕξ(f) ≥ 0 provided that f ∈ [bE(Uq)] is positive.

This follows because (by the properties of the energy functional Lq)
ϕξ is increasing as a functional on E(Uq): if u, v ∈ E(Uq) and u ≤ v,
then ϕξ(u) ≤ ϕη(v). We claim taht if (fn)n ⊂ [bE(Uq)] is decreas-
ing poinwise to zero then the sequence (ϕξ(fn))n also decreases to
zero.Note first that by monotene convergence we have limn µ(fn) =
0. From (2.8) and (2.9) it follows that 0 ≤ ϕξ(fn) ≤ µ(fn) for all n
and thus

0 ≤ lim
n

ϕξ(fn) ≤ lim
n

µ(fn) = 0.

We can apply now Daniell’s theorem on the vector lattice [bE(Uq)],
for the functional ϕξ. Hence there exists a positive measure ν on B
such that

ϕξ(f) = ν(f) for all f ∈ bpB.

(Recall again that the σ-algebra generated by [bE(Uq)] is precisely
B.) Taking f = Uqg with g ∈ bpB, we get ξ(g) = Lq(ξ, Uqg) =
ϕξ(f) = ν(Uqg) for all g ∈ bpB, so ξ = ν ◦ Uq.

For the proof of (ii) =⇒ (i) see [St 89].
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3 Subordination by convolution semigroups

A family (µt)t>0 of measures on R∗+ is called a (vaguely continuous)
convolution semigroup on R∗+ if the following conditions are satisfied:

(i) µt(R∗+) ≤ 1 for all t > 0,
(ii) µs ∗ µt = µs+t for all s, t > 0,
(iii) lim

t→0
µt = ε0 (vaguely).

Note that (i) and (iii) imply that limt→0 µt(f) = f(0) for every
f ∈ Cb(R+).

In the sequel we fix a transition function P = (Pt)t>0 on (E,B)
and a convolution semigroup (µt)t>0 on R∗+.

For each t > 0 we define the kernel kernel P µ
t on (E,B) by

P µ
t f :=

∫ ∞

0

Psfµt(ds) for all f ∈ bpB.

Proposition 3.1. The family Pµ = (P µ
t )t≥0 is a sub-Markovian

semigroup of kernels on (E,B) and E(P) ⊂ E(Pµ). The semigroup
Pµ = (P µ

t )t>0 is called the sub-Markovian semigroup subordinated
to P by means of (µt)t>0.

Proof. Since for all t1, t2 > 0, and f ∈ bpB we have

P µ
t1P

µ
t1f =

∫ ∞

0

Ps1(P
µ
t2f)µt1(ds1) =

∫ ∞

0

(∫ ∞

0

Ps1Ps2fµt2(ds2)

)
µt1(ds1)

=

∫ ∞

0

∫ ∞

0

Ps1+s2fµt2(ds2)µt1(ds1) =

∫ ∞

0

Psf(µt1 ∗ µt2(ds)

∫ ∞

0

Psf(µt1+t2(ds) = P µ
t1+t2 ,

it follows that the family of kernels Pµ is indeed a semigroup which
is certainly sub-Markovian.

We prove now that

E(P) ⊂ E(Pµ) :

16



Fix u ∈ E(P). Then obviously P µ
t u ≤ u for every t > 0. Let

x ∈ X, a < u(x) and 0 < b < 1. Then there exist s0 > 0 and t0 > 0
such that Psu(x) > a for every 0 < s < s0 and µt0(]0, s0[) > b, hence

P µ
t0u(x) ≥

∫ s0

0

Psu(x)µt0(ds) ≥ ab.

This implies that u ∈ E(Pµ).

Theorem 3.2. Assume that the resolvent U is proper and that all
the points of E are nonbranch points with respect to U . Then the
same property holds for the resolvent Uµ associated with Pµ.

Proof. By Theorem 2.5 we have to show that conditions (UC) and
(SSP ) are verified by the resolvent Uµ.

Let ν1 and ν2 be two positive finite measures on E such that ν1 ◦
Uµ

q = ν2◦Uµ
q . Using Theorem 2.1 (Hunt’s Approximation Theorem)

it follows that ν1(v) = ν2(v) for all v ∈ E(Uµ
q ). Because E(P) ⊂

E(Pµ) = E(Uµ) ⊂ E(Uµ
q ), we get that ν1(v) = ν2(v) for all v ∈ E(U).

In particular, we have ν1(Uf) = ν2(Uf) for all f ∈ bpB, hence
ν1 ◦ U = ν2 ◦ U . Because by hypothesis all the points of E are
nonbranch points with respect to U , by Theorem 2.5 we deduce
that the uniqueness of charges property holds for U . It follows that
ν1 = ν2 and we conclude that (UC) also holds for Uµ.

We check now that the specific solidity of potentials property
(SSP ) holds with respect to Uµ. Let ξ, η, and ν◦Uµ

q be Uµ
q -excessive

measures such that

(3.1) ξ + η = ν ◦ Uµ
q .

We may assume that ν is a finite measure, consequently the mea-
sures ξ and η are also finite. We define the positive measures ξ′ and
η′ on E by

ξ′(f) := Lµ
q (ξ, Uf), η′(f) := Lµ

q (η, Uf) for all f ∈ bpB.

We claim that ξ′ and η′ are U -excessive measures. Indeed, if α > 0
then

ξ′ ◦ αUα(f) = Lµ
q (ξ, αUαUf) ≤ Lµ

q (ξ, Uf) = ξ′(f).

We show now that ξ′ is a σ-finite measure. If fo ∈ bpB, fo > 0, is
such that Ufo ≤ 1, then

ξ′(fo) = Lµ
q (ξ, Ufo) ≤ Lµ

q (ν ◦ Uµ
q , Ufo) = ν(Ufo) ≤ ν(1) < ∞.
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Hence the measure ξ′ is σ-finite. We conclude that ξ′ is U -excessive
and analogously one gets that η′ is also a U -excessive measure.

Using (3.1), we have for every f ∈ bpB

ξ′(f) + η′(f) = Lµ
q (ξ, Uf) + Lµ

q (η, Uf) =

Lµ
q (ξ + η, Uf) = Lµ

q (ν ◦ Uµ
q , Uf) = ν(Uqf).

We obtained that the following equality of U -excessive measures
holds:

ξ′ + η′ = ν ◦ U.

Since by hypothesis the property (SSP ) holds for U , we deduce
from the last equality that there exists a measure λ on E such that
ξ′ = λ ◦ U . It follows that

Lµ
q (ξ, Uf) = ξ′(f) = λ(Uf) = Lµ

q (λ ◦ Uµ
q , Uf),

hence
Lµ

q (ξ, Uf) = Lµ
q (λ ◦ Uµ

q , Uf) for all f ∈ bpB.

In particular, taking f = Uµ
q g, with g ∈ bpB, and since UUµ

q = Uµ
q U ,

it follows that for all g ∈ bpB we have

ξ(Ug) = Lµ
q (ξ, UUµ

q g) = Lµ
q (λ ◦ Uµ

q , Uµ
q Ug) = λ ◦ Uµ

q (Ug)

Note that in addition we have

ξ(Ug) ≤ ν(Uµ
q Ug) ≤ 1

q
ν(Ug).

In particular, the measures ξ ◦ U and (λ ◦ Uµ
q ) ◦ U are σ-finite and

equal. Because by the resolvent equation we have Uqg = U(g−qUqg)
for all g ∈ bpB, g ≤ fo, it follows that ξ ◦ Uqg = (λ ◦ Uµ

q ) ◦ Uqg,
and therefore ξ ◦ Uq = (λ ◦ Uµ

q ) ◦ Uq. By the uniqueness of charges
propert (UC) for the resolvent U (see the proof of the implication
(i) =⇒ (ii) in the proof of Theorem 2.5) we conclude that ξ = λ◦Uµ

q ,
so, the property (SSP ) holds with respect to Uµ.
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