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Introduction

The Beilinson spectral sequences were introduced as a powerful tool for characterizing
some vector bundles on complex projective spaces in terms of their cohomology and the
cohomology of their twists. Many results such as the Riemann-Roch Theorem, Serre
duality, the long exact sequence in cohomology, the vanishing theorems etc show that we
have a great deal of techniques for computing these invariants. Given a vector bundle
M , the Beilinson spectral sequence associated to this bundle computes the successive
quotients of a filtration on M . This mysterious filtration can be recuperated from the
first few sheets of the spectral sequence if we impose enough restrictions on the cohomology
of M . If we are lucky enough to obtain a filtration by only one sub-sheaf, then we have
obtained our bundle M . If we were less fortunate and have obtained a filtration by two
sub-sheaves, then we have M as an extension. If this extension is split, then we again
recover M and so on.

By following Beilinson’s proof from [OkScSp,88], a proof that we detail in Chapter 3,
we see that the Koszul resolution of the diagonal inside the product Pn × Pn plays the
main role in the proof. Therefore similar spectral sequences to Beilinson’s can be obtained
when we work over a variety X for which the diagonal ∆X in X × X admits a Koszul
resolution i.e. it is the scheme of zeros of a vector bundle of rank equal to the dimension
of X over the product X × X. The real power of these sequences becomes apparent if
the vector bundle whose section resolves the diagonal is a product of bundles as we will
explain later. Following [ApBr,06], we see that ruled surfaces have these properties and
we explain the associated Beilinson type spectral sequence as well as the simpler form it
has for rational ruled surfaces.

Chapter 4 gives an application of these techniques in proving two splitting criteria for
rank 2 bundles on a rational ruled surface.

The first two chapters serve more as reference for the last two chapters than as infor-
mation sources and should be treated accordingly.
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Chapter 1

Spectral Sequences

A differential module is a an abelian group E equipped with some group endomorphism

d that is a differential i.e. d2 def
= d ◦ d = 0. Associated to a differential module we

have the usual notion of (co)homology H(E) = ker d
Imd

. The definition is consistent since
d2 = 0⇔ ker d ⊇ Imd. With these definitions we can define our basic object of interest.

Definition 1.1. A spectral sequence is a set of differential modules (Er, dr)r∈N such
that Er+1 = H(Er) for all r.

While this is a very general definition, our fundamental example is that of the spectral
sequence attached to a bicomplex which will appear as the spectral sequence attached to
a filtered complex. In building these we follow [GrHa,78].

Let (C∗, d∗) be a complex indexed by Z with a given differential d that increases
degrees i.e. dn : Cn → Cn+1. Define Zn = ker dn and Bn = Imdn−1. We can see (C∗, d∗)
as a differential module by defining C =

⊕
n∈ZC

n and taking the differential d as induced
by d∗. C is a graded abelian group and d is an endomorphism of degree 1. We can do the
same thing for Z∗, B∗ and introduce the graded groups Z and B. Define Hn(C∗, d∗) = Zn

Bn
.

Notice that H(C, d) =
⊕

n∈ZH
n(C∗, d∗).

By a filtration on C we mean a decreasing sequence of graded subgroups

C = F 0C ⊇ F 1C ⊇ . . . ⊇ F nC = 0

such that dF kC ⊆ F kC. Since the filtration is by graded subgroups, it induces a filtration
on C∗ and by restriction also on Z∗ and B∗. Denote these filtration by F ∗C∗, F ∗Z∗ and
F ∗B∗ respectively. Since for all m ∈ Z and k = 0, n− 1 we have F k+1Zm ∩ F kBm =
F k+1Bm, we get natural inclusions Fk+1Z

Fk+1B
↪→ FkZ

FkB
on. This sequence of inclusion is a

filtration on the cohomology of C.
We define the associated graded complex to C∗ corresponding to the filtration F ∗

by Grk(C∗) = FkC∗

Fk+1C∗
. We also have an associated graded complex Gr∗H∗(C∗, d∗) on

cohomology.

Theorem 1.2. Let (C, d) be a filtered complex with filtration F ∗. Then there exists a
spectral sequence (Er, dr) such that:

a. for all r ≥ 0,

Er =
⊕
p,q∈Z

Ep,q
r

and dr is induced by
dp,qr : Ep,q

r → Ep+r,q−r+1
r

for all p, q ∈ Z.
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b.

Ep,q
0 =GrpCp+q

Ep,q
1 =Hp+qGrpC∗

Ep,q
∞ =Grp(Hp+qC∗).

The meaning of E∞ is that for fixed p, q, the sequence Ep,q
r eventually stabilizes as

r grows. The last assertion is usually denoted

E∞ ⇒ H∗C∗.

We say that E∞ approximates the cohomology of the complex C. What this means is
that we have a filtration on Hn(C∗, d∗) and (Ep,q

∞ )p+q=n computes the successive quotients.
H(C) cannot always be recovered from the spectral sequence, but there are some special
cases when it can.

For example if the filtration on H(C) is by vector spaces we can express each Hk(C)
as a direct sum of members of E∗,∗∞ .

Another fortunate case is when all but at most one term in (Ep,q
∞ )p+q=n are 0. In this

case the nonzero term is Hn(C∗, d∗). This is because of the simple observation that if
A = A0 ⊇ A1 ⊇ . . . ⊇ An = 0 is a filtration on the abelian group A, k < n is an integer
and Ai/Ai+1 = 0 for all i 6= k, then A0 = . . . = Ak and Ak+1 = . . . = An = 0.

Remark 1.3. Even though we have chosen the filtration F ∗ on C to be finite, all the
results above hold if we replace this finiteness condition with a weaker property; that is we
require that the filtration is finite on every Cn, not necessarily on C. This will be the case
in the examples and applications that follow.

Proof. of 1.2 (sketch). Define

Ep,q
r =

{a ∈ F pCp+q| da ∈ F p+rCp+q+1}
dF p−r+1Cp+q−1 + F p+1Cp+q

.

The convention is that when the denominator is not a subgroup of the numerator we take
the intersection and then make the quotient. It is easy to see that the terms E0 and E1

defined in this manner are who they were supposed to be. Define on Ep,q
r

dra = [da] ∈ Ep+r,q−r+1
r .

For fixed n, large r and all p+ q = n,

Ep,q
r =

{a ∈ F pCn| da = 0}
dCn−1 + F p+1Cp+q

=
F pZn

Bn + F p+1Cn
=

F pZn

F pBn

(Bn+F p+1Cn)∩F pZn

F pBn

.

Since (Bn+F p+1Cn)∩F pZn = (Bn+F p+1Cn)∩Zn∩F pCn = (Bn∩F pCn+F p+1Cn∩Zn) =
F pBn + F p+1Zn,

Ep,q
r =

F pZn

F pBn

F pBn+F p+1Zn

F pBn

=
F pZn

F pBn

F p+1Zn

F pBn∩F p+1Zn

=
F pZn

F pBn

F p+1Zn

F p+1Bn

= GrpHn(C∗).

Notice that the technical difficulty with this proof is the verification of H(Er) =
Er+1.
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The natural definition of the differentials dr is what justifies the somehow strange
direction of the arrows in Er. We draw some pictures. At E0 the differentials all go up:

. . . Ep,q+2
0 Ep+1,q+2

0

Ep,q+1
0

dp,q+1
0

OO

Ep+1,q+1
0

dp+1,q+1
0

OO

Ep,q
0

dp,q0

OO

Ep+1,q
0

dp+1,q
0

OO

. . .

Next, on E1 they all go one place to the right:

. . . // Ep,q+2
1

dp,q+2
1 // Ep+1,q+2

1

Ep,q+1
1

dp,q+1
1 // Ep+1,q+1

1

Ep,q
1

dp,q0 // Ep+1,q
1

dp+1,q
0 //// . . .

We now start building the spectral sequence associated to a bigraded complex.
A bigraded complex is a triplet (C∗,∗, d∗,∗, δ∗,∗) with dp,q : Cp,q → Cp+1,q and δp,q :

Cp,q → Cp,q+1 such that 
d2 = 0
δ2 = 0

dδ + δd = 0

everywhere the compositions are possible. The total complex associated to C∗,∗ is
the complex Kn =

⊕
p+q=nC

p,q with differential D = d + δ. Since D2 = (d + δ)2 =

d2 + δ2 + (dδ+ δd) = 0, we see that (K,D) is a true complex. It has two natural filtration
given by {

F pKn =
⊕

p′+q=n, p′≥pC
p′,q

′F qKn =
⊕

p+q′=n, q′≥q C
p,q′

These filtration are not finite but they satisfy the condition in the remark 1.3 of being
finite on each Kn.

By 1.2 we get two spectral sequences E and ′E which both approximate the cohomol-
ogy of K. Let’s take a closer look at the first one. We have

Ep,q
0 =

F pKp+q

F p+1Kp+q
=
Cp,q + Cp+1,q−1 + . . .

Cp+1,q−1 + . . .
= Cp,q.

d0 : Ep,q
0 → Ep,q+1

0 is induced from D = d+ δ by passing to the quotient. We can identify
this with δ because d is 0 on the quotient.

Ep,q
1 is by the definition of the spectral sequence the cohomology of E∗,∗0 at (p, q) and

this is easily seen to be Hq
δ (Cp,∗)

def
= Hq(Cp,∗, δ). d1 is also induced by D and similarly to

the previous case we can see that it can be identified with d.
Ep,q

2 = Hp,q(Ep,q
1 , d) = Hp

d(Hq
δ (C∗,∗)) but this time we have no easy way of building d2.
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The computations for E can also be done for ′E and we have the two spectral sequences
E, ′E approximating H(K) such that{

Ep,q
2 = Hp,q(Ep,q

1 , d) = Hp
d(Hq

δ (C∗,∗))
′Ep,q

2 = Hp,q(′Ep,q
1 , δ) = Hq

δ (Hp
d(C∗,∗))

Remark 1.4. The condition dδ + δd = 0 seems to go against the nature of our usual
commutative diagram condition. We will see that any bicomplex (C∗,∗, d∗,∗, δ∗,∗) can de
turned into a a triple (C∗,∗,′ d∗,∗, δ∗,∗) with

′d2 = 0
δ2 = 0

′d ◦ δ = δ ◦′ d

with no affect on cohomology. We do this by setting{ ′d2∗,∗ = d2∗,∗

′d2∗+1,∗ = −d2∗+1,∗ .

The same change of signs could have been applied to δ instead of d for a similar result.
This remark obviously applies the other way around i.e. from a triple (C∗,∗,′ d∗,∗, δ∗,∗)

with the commutativity condition we obtain a bicomplex. From now on I will use the term
bicomplex indiscriminately for both types of triples.

An example of a typical construction of a spectral sequence that will be used in this
paper, especially in the proof of the existence of the Beilinson spectral sequence in 3.1,
is the hyperdirect image. Let f : M → N be a (continuous) map of topological spaces
and take C∗ be a complex of sheaves on M . Choose a Cartan-Eilenberg resolution L∗,∗

of C∗. L is an injective resolution of C. By applying f∗ to this complex we obtain the
complex of sheaves f∗L

∗,∗ on N . The cohomology of the total complex associated to this
bicomplex is called the hyperdirect image of f through C∗ and is denoted by R∗f∗(C∗).
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Chapter 2

Some Algebraic Geometry

2.1 Vector Bundles on Complex Projective Spaces

In this section we will deal with developing a basic vocabulary for this paper - we will
introduce the basic definitions, establish our notation and state some useful results.

The n-dimensional complex projective space Pn(C) is the set of lines in Cn+1. It
can also be defined as Cn+1 \ {0} modulo linear equivalence. Pn becomes a topological
space with the quotient topology, but also a compact complex manifold. We denote the
class of the element (x0, . . . , xn) ∈ Cn+1 by [x0 : . . . : xn].

The same definition can be given for any n + 1-dimensional complex vector space V .
The associated n-dimensional projective space is denoted P(V ).

The map Pn → {hyperplanes in Pn} given by

[a0 : . . . : an]→ {
n∑
i=0

aiXi = 0}

is a bijection and we denote the image by (P n)∗. The same construction can be carried
for any vector space V , but the bijection is not natural as it depends on the choice of a
basis on V .

For a holomorphic vector bundle E of rank r over X, we have the associated sheaf of
sections OX(E) which is a locally free sheaf of rank r. We make the convention to identify
E and OX(E). Define Ex to be the stalk at x of OX(E) and E(x) = Ex/mxEx, where
mx is the maximal ideal of the local ring Ox. Notice that E(x) is just the fibre of E over
x, hence it is isomorphic to Cr.

For a bundle morphism f : E → F , we have associated maps fx : Ex → Fx and
f(x) : E(x)→ F (x). Nakayama’s lemma says that fx is surjective if, and only if, f(x) is.
It can happen that fx is injective even though f(x) is not.

We shall now construct the holomorphic line bundles on Pn. Define the tautological
line bundle to be the bundle OPn(−1) that has as fibre over every point of Pn the
corresponding line in Cn+1 i.e.

OPn(−1) = {(l, v) ∈ Pn × Cn+1| v ∈ l}

Its dual is denoted OPn(1) and we set OPn(n) = OPn(1)⊗n for all integers n.
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Denote the set of isomorphism classes of line bundles on X by Pic(X). This is a group
with multiplication given by the tensor product and the inverse of each line bundle is its
dual. Sending the isomorphism class of a line bundle L to the transition maps of the
bundle which make a multiplicative Čech 1-cocycle proves that Pic(X) and H1(X,O∗X)
are isomorphic as groups, where O∗X is the sheaf of non-vanishing holomorphic functions.

For Pn it can be proved by using the equivalence between divisors and line bundles
that Pic(Pn) ' Z and that OPn(1) is a generator.

By playing with the transition functions, we can prove that H0(Pn,O(n)) is isomorphic
to the linear space of complex homogeneous polynomials of degree n.

For an arbitrary sheaf F on Pn, define the n-th twist of F by

F(n) = F ⊗OPn O(n)

The Euler exact sequence

0→ OPn(−1)→ On+1
Pn → Q→ 0

on Pn, where the first map is given by the geometric realization of the fibres of O(−1),
defines a bundle Q that we call the twisted holomorphic tangent bundle and denote by

TPn(−1).

Twisting by O(1) gives the tangent bundle of Pn. The dual of TPn is the sheaf of rank 1
differential forms on Pn and is denoted by ΩPn . From the Euler sequence we obtain

0→ ΩPn → On+1
Pn (−1)→ OPn → 0

For any complex manifold of dimension n, the sheaf of rank 1 differential forms on X,
denoted by ΩX is the dual bundle of the tangent bundle TX . The n-th exterior power of
ΩX is denoted by ωX and is called the canonical sheaf on X. Notice that it is the sheaf
of differentials of maximal rank and it is a line bundle.

For X = Pn, we have by raising Ω’s Euler sequence to the top power that

n∧
ΩPn ⊗

1∧
OPn '

n+1∧
(OPn(−1)) ' OPn(−n− 1),

which proves
ωPn ' O(−n− 1).

Theorem 2.1 (Hirzebruch). Let E be a holomorphic line bundle of rank r over the
complex manifold X. Then, for all q,

q∧
E∗ '

r∧
E∗ ⊗

r−q∧
E,

with the convention
∧<0E = 0.

Theorem 2.2. Let X be a compact complex manifold. Then for any analytic sheaf F on
X, we have

hp(X,F)
def
= dimCH

p(X,F) <∞

6



Theorem 2.3 (Serre duality). Let X be a compact projective complex manifold and let
ωX be its canonical line bundle. For any holomorphic vector bundle E on X, we then
have

H i(X,E)∗ ' Hn−q(X,E∗ ⊗ ωX)

Let f : X → Y be a proper holomorphic map of complex spaces, F a coherent analytic
sheaf on X and E a holomorphic vector bundle on Y .

Theorem 2.4 (Coherence). The i-th direct image sheaf Rif∗F is a coherent analytic sheaf
over Y for all i ≥ 0.

Proposition 2.5. Let f : X → Y be a continuous map of topological spaces. Let F be
a sheaf of abelian groups, and assume that Rif∗(F) = 0 for all i > 0. Then there are
natural isomorphisms, for each i ≥ 0,

H i(X,F) ' H i(Y, f∗F)

Theorem 2.6 (Semicontinuity). If f is projective and E is a flat coherent sheaf over Y ,
then for all i, s ≥ 0,

{y ∈ Y | hi(f−1(y), E|f−1(y)) ≥ s}
is a closed analytic subset of Y , where the fibres have the induced complex structure
Of−1(y) = OX/myOX .

Theorem 2.7 (Grauert). If f : X → Y is a projective morphism of noetherian schemes,
Y is integral, F is a coherent analytic sheaf on X, flat over Y , and if for some i the
function hi(y,F) is constant on Y , then Rif∗(F) is locally free on Y , and for every y the
natural map Rif∗(F)⊗ k(y)→ H i(Xy,Fy) is an isomorphism.

Theorem 2.8 (Base-change). Assume that f is flat, that Y is reduced and that there
exists some i ≥ 0 such that s(y) = hi(f−1(y), E|f−1(y)) is independent of y. Denote the
common value by s. If

X ′
ψ //

g

��

X

f

��
Y ′ ϕ

// Y

is some arbitrary base change, then the canonical OY -modules homomorphism

ϕ∗Rif∗(E)→ Rig∗(ψ
∗E)

is an isomorphism. In particular, for any y ∈ Y

(Rif∗(E))(y) ' H i(f−1(y), E|f−1(y)).

Rif∗(E) is a rank s complex bundle over Y .

Theorem 2.9 (Projection formula). Let E ′ be a vector bundle over Y . Then for all i ≥ 0,

Rif∗(f
∗E ′ ⊗ F ) ' E ′ ⊗Rif∗(F ).

Proposition 2.10. Let Y be a noetherian scheme, and let E be a locally free OY -module
or rank n + 1, n ≥ 1. Let X = P(E), with the associated invertible sheaf OX(1) and the
projection morphism π : X → Y .
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a. Then π∗(O(l)) ' Sl(E) for l ≥ 0, π∗(O(l)) = 0 for l < 0; Riπ∗(O(l)) = 0 for
0 < i < n and all l ∈ Zl and Rnπ∗(O(l)) = 0 for l > −n− 1.

b. There is a natural exact sequence

0→ ΩX/Y → (π∗E)(−1)→ O → 0,

so the relative canonical sheaf ωX/Y =
∧n ΩX/Y is isomorphic to the invertible sheaf

(π∗
∧n+1 E)(−n − 1). Furthermore, there is a natural isomorphism Rnπ∗(ωX/Y ) '

OY .

c. For any l ∈ Z,

Rnπ∗(O(l)) ' π∗(O(−l − n− 1))∗ ⊗ (
n+1∧
E)∗.

d. pa(X) = (−1)npa(Y ) and pg(X) = 0.

2.1.1 Koszul Complexes

Computing the cohomology of sheaves is a very important problem in Algebraic Geometry
because it makes it easy to distinguish objects. One method used for computing coho-
mology is by taking injective resolutions of sheaves. These exist and are natural, which
allows us to compute some other derived functors such as Ext. They however present
a dramatic computational disadvantage. Čech cohomology computed with respect to an
acyclic covering has the advantage that it can be computed easier, but since it is not even
a sheaf resolution, it does not behave well with respect to functors. The Koszul complex
has both advantages of the injective resolutions and of the Čech complex, but it does not
always exist. You can think of the Koszul complex as of a finite, locally free resolution of
some special class of sheaves of ideals I on a variety X. Without further ado, we unwrap
the result:

Theorem 2.11 (Koszul complex). Let X be a complex variety of dimension n and E a
vector bundle on X of rank r. For a section s of E, let S be the corresponding scheme
of zeros and Is be the corresponding sheaf of ideals such that OS ' OX/Is. Then, if the
codimension of S in X is r, we have a locally free resolution:

0→ detE∗ →
r−1∧

E∗ → . . .→
2∧
E∗ → E∗ → OX → OS,

where the map E∗ → OX is the dual map of the natural map OX → E induced by s.

Since by definition Is is the image of the map E∗ → OX , we see that we obtain the
complex above by splicing a locally free resolution of Is with OX .

Notice that if D is an effective divisor, then its associated invertible sheaf (or line
bundle) O(D) has a section whose divisor of zeros is D. Effective divisors are actually the
only subschemes of X whose ideal sheaves are the sheaves of sections of vector bundles
on X i.e. locally free sheaves.
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2.2 Ruled Surfaces

This section contains the basic results about ruled surfaces and especially rationally ruled
surfaces that will be referred to later, but lets start with some general facts about surfaces.
The bibliography for this section is mainly [Ha,77].

Let S be a smooth complex projective surface. If C and D are nonsingular curves of
S meeting transversally, then we define the intersection number C.D as the number of
intersection points. This definition extends by linearity to a bilinear pairing Div(S) ×
Div(S) → Z such that for any divisor D and irreducible nonsingular curve C, C.D =
degC(O(D)⊗OC).

Theorem 2.12 (Adjunction Formula). If C is nonsingular on S of genus g(C) and if
K(S) denotes the canonical divisor of S, then

2g(C)− 2 = C.(C +K).

Theorem 2.13 (Riemann-Roch for divisors on surfaces). If D ∈ Div(S), then

χ(O(D)) =
1

2
D.(D −K) + 1 + pa,

where pa denotes the arithmetic genus of S.

Theorem 2.14 (Riemann-Roch for vector bundles of rank 2 on a surface). If M is a
vector bundle of rank 2 on a surface S, then

χ(M) =
1

2
c1(M)(c1(M)−K(S))− c2(M) + 2χ(OS)

Theorem 2.15 (Nakai-Moishezon Criterion). D ∈ Div(S) is very ample if, and only if,
D2 > 0 and D.C > 0 for all irreducible curves C in S.

Let C be a smooth complex projective curve (a Riemann surface). There are several
ways to think of a ruled surface X over C. We may see it as a locally trivial P1

bundle over C that is itself a projective variety. An equivalent way to see it is as the
projective line bundle associated to the dual of a rank 2 vector bundle E over C i.e
X = P(E∗) = Proj(Sym(E)). Since a morphism from an open subset of a projective
curve to a projective space extends on the curve, we see that any ruled surface has a
section. Any of these sections and the pullback image of Pic(C) in Pic(X) generate
Pic(X). More precisely, we have:

Proposition 2.16. Let X be a ruled surface over C and let C0 ⊆ X be a section. Then
Pic(X) ' Z · C0 ⊕ π∗Pic(C). We have the intersection numbers C0 · f = 1 and f 2 = 0
for any fibre f of π : X → C.

Lemma 2.17. Let D be a divisor on the ruled surface X and assume that D · f ≥ 0.
Then π∗O(D) is locally free of rank D · f + 1 on C. In particular π∗OX = OC. Also
Riπ∗O(D) = 0 for i > 0, and for all i, H i(X,O(D)) ' H i(C, π∗O(D)).

As a consequence of this lemma we prove that if C is a curve of genus g, then the
arithmetic genus of X is −g, the geometric genus of X is 0 and h1(X,OX) = g.

By the correspondence between sections of π and invertible sheaves L on C with a
surjective mapping E → L, there exists a section C0 such that O(C0) = OP(E)(1). If we

denote e = −deg(
∧2 E), then it can be proved that

C2
0 = −e.

9



Proposition 2.18. The canonical divisor K on X is given by

K(X) ∼ −2C0 + π∗(K(C) +O(
2∧
E)),

where K(C) is the canonical divisor on C.

2.2.1 Rational Ruled Surfaces

A rational ruled surface is a ruled surface over P1. It can be proved that any such surface is
P(E∗) with E = O⊕O(−e) for some e ≥ 0. For e ≥ 0, we denote by Xe the rational ruled
surface defined by O ⊕ O(−e). Denote any divisor aC0 + π∗(O(b)) on Xe, by aC0 + bf .
Then Pic(Xe) is freely generated by C0 and by any of the fibres f . For the basis {C0, f} of
Pic(Xe), that we denote by (1, 0) and (0, 1) respectively, we have the following intersection
numbers:

(1, 0).(1, 0) = −e (1, 0).(0, 1) = 1 (0, 1).(0, 1) = 0 .

With this notation, the canonical divisor is

K(Xe) = (−2,−e− 2).

Theorem 2.19 (Riemann-Roch for rank 2 vector bundles on X−n). Let M be a rank 2
vector bundle on X−n for some n ≤ 0. Then

χ(M) =
1

2
c1(c1 − (−2, n− 2))− c2 + 2

Proof. This only differs from 2.14 in that it says χ(O) = 1. This is because χ(O) =
χ(π∗O) = χ(OP1) = 1.

10



Chapter 3

The Beilinson Spectral Sequence

Theorem 3.1 (Beilinson). Let E be a holomorphic vector bundle of rank r on Pn. Then
there exists a spectral sequence Ep,q

r with E1 term

Ep,q
1 = Hq(Pn, E(p))⊗ Ω−p(−p)

which converges to

Ei =

{
E, for i=0
0, otherwise

i.e. Ep,q
∞ = 0 for p+ q 6= 0 and

⊕n
p=0 E

−p,p
∞ is the associated graded sheaf of a filtration of

E.

The point of this theorem is that a holomorphic vector bundle on Pn can be sometimes
recuperated and at least approximated by twists of the sheaf of differentials and by the
cohomology groups of twists of E.

Proof. of 3.1. A Koszul complex that resolves the diagonal of Pn × Pn gives by tensoring
with E a locally free resolution of E. The solution to our problem is a spectral sequence
that gives the hyperdirect image of a map through this complex. In short and with a
strong abuse of terminology, this is the idea behind the proof of Beilinson’s theorem.

We will first explain the construction of the Koszul complex. Consider the diagram

Pn × Pn
p2 //

p1

��

Pn

Pn

Make the convention F � G = p∗1F ⊗ p∗2G. We will construct a bundle on Pn × Pn and
prove that it has a section whose scheme of zeros is ∆Pn .

Let Q be the twisted tangent sheaf TPn(−1). It can be computed from the Euler
sequence

0→ OPn(−1)→ O⊕n+1
Pn → Q→ 0

Consider the vector bundle on Pn × Pn

F = OPn(1) �Q ' Hom(p∗1OPn(−1), p∗2Q)

11



SinceH1(OPn(−1)) = 0, from the Euler sequence we have thatH0(Q) = H0(O⊕n+1
Pn )/H0(OPn(−1)) '

Cn+1, so

H0(F ) = H0(Pn × Pn, p∗1OPn(1)⊗ p∗2Q) ' H0(Pn,OPn(1))⊗H0(Pn, Q) '

' (Cn+1)∗ ⊗ Cn+1 ' EndC(Cn+1)

Let s ∈ H0(F ) be the section that corresponds to the identity by the above isomor-
phism. For x, y ∈ Pn,

F(x,y) = (OPn(1) �Q)(x,y) = (p∗1OPn(1)⊗ p∗2Q)(x,y) =

= (p∗1OPn(1))(x,y) ⊗ (p∗2Q)(x,y) = OPn(1)x ⊗Qy = (OPn(−1))∗x ⊗Qy '

' Hom((OPn(−1))x, Qy)

The above isomorphisms are all natural as isomorphisms of germs of sheaves and
moreover induce natural isomorphism on the fibres. Since OPn(−1) is the tautological
line bundle of Pn, the fibre at x is canonically identified to the lined spanned by x in
Cn+1. The same identification and the Euler sequence show that Q(y) is canonically
identified to the quotient Cn+1/Cy of Cn+1 by the one dimensional subspace spanned by
y. So we have a canonical isomorphism

F (x, y) ' HomC(Cx,Cn+1/Cy).

Let v, w pe fixed nonzero elements of the lines x, y in Cn+1. The naturality of all our
isomorphisms shows us that s(x, y)(av) = av for all a ∈ C. In particular, s vanishes at
(x, y) if, and only if, v = 0 in Cn+1/Cy which is equivalent to saying that v lies on the
line spanned by y i.e. x = y. Therefore the zero locus of s is supported as a scheme on
the diagonal ∆ of Pn × Pn.

What we want to prove is that this zero locus is the diagonal as a scheme also. In any
case, if we denote this scheme by S, we have a canonic map OS → O∆ and the Koszul
locally free resolution:

0→ ∧nF ∗ → ∧n−1F ∗ → . . .→ F ∗ → OPn×Pn → OS → 0

which is the same as

0→ ∧n(OPn(−1) �Q∗)→ ∧n−1(OPn(−1) �Q∗)→ . . .→

→ OPn(−1) �Q∗ → OPn×Pn → OS → 0 (3.1)

From the Koszul complex it is now immediate that OS is zero exactly outside ∆ and a
vector bundle when restricted to ∆. These are sufficient to prove that the map OS → O∆

is an isomorphism and S = ∆. Now that we have built the Koszul complex, we make the
next step in the proof.

Since ∧n(L ⊗ F ) = L⊗n ⊗ ∧nF for any line bundle L, bundle F and any n ∈ N, and
Q∗ = TPn(−1)∗ = ΩPn(1), we can tensor the locally free resolution 3.1 by p∗1E to obtain
the complex of sheaves:

0→ E(−n) � Ωn(n)→ E(−n+ 1) � Ωn−1(n− 1)→ . . .→ E(−1) � Ω1(1)→

→ E �O∆ → 0

12



Denote by C∗ the complex C−k = E(−k) � Ωk
Pn(k).

Let Rip2∗(C
∗) be the ith hyperdirect image defined as the limit of any of the two

spectral sequences E∗,∗∗ or ′E∗,∗∗ attached to the double complex obtained from applying
p2∗ to a resolution L∗,∗ of C∗. These two spectral sequences have second terms

Ep,q
2 = Hp(Rqp2∗(C

∗))

′Ep,q
2 = Rpp2∗(H

q(C∗)).

Since C∗ is a locally free resolution of p∗1E|∆, it follows that

Hq(C∗) =

{
p∗1E|∆ ,if q = 0
0 ,otherwise

⇒

′Ep,q
2 = Rpp2∗(H

q(C∗)) '
{
E ,if p = q = 0
0 ,otherwise

The last follows from the infamous formula p2∗(p
∗
1E|∆) ' E which may be seen as a fancy

way of saying that if we take E, pull it back through p1, restrict to the diagonal and push
through p2 we get E; or may be proved by the Base Change Theorem.

Since we know the limit of ′E∗,∗∗ , we conclude that

Rip2∗(C
∗) '

{
E ,if i = 0
0 ,otherwise

The solution to the problem is not ′E∗, but E∗. We only have to compute E1.

Ep,q
1 = Rqp2∗(C

p) = Rqp2∗(E(p) � Ω−p(−p)) =

= Rqp2∗(p
∗
1E(p))⊗ Ω−p(−p) = Hq(E(p))⊗ Ω−p(−p),

by the Projection Formula and Base Change.

A similar result could have been obtained by using the complex

D−k = O(−k) � (E ⊗ Ωk(k)).

Theorem 3.2 (Beilinson II). Let E be a holomorphic vector bundle of rank r over Pn.
Then there exists a spectral sequence E∗ with E1 term

Ep,q
1 = Hq(Pn, E ⊗ Ω−p(−p))⊗OPn(p),

with

E∗ ⇒ Ei =

{
E ,if i = 0
0 ,otherwise

i.e. Ep,q
∞ = 0 for p+ q 6= 0 and

⊕n
p=0E

−p,p
∞ is the associated graded sheaf of a filtration of

E.
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Now this has been the classical Beilinson spectral sequence. If we look at it closely, we
see that the main ingredients are the Koszul complex and the resolution of the diagonal,
so the main recipe in generalizing this result would be to find for a given variety X of
dimension n, a bundle E of rank n on X × X and a section s ∈ H0(E) such that its
scheme of zeros is the diagonal ∆. Not all varieties X meet these criteria. Examples and
counter-examples of such varieties ar given in [PrSrPa,07].

We will concern ourselves with proving that a Beilinson type spectral sequence exists
for ruled surfaces. The reason why we consider this case is that in these conditions we
can choose the bundle whose section solves ∆ to be of type A�B which will appease the
pain of the cumbersome formulas we would have to work with otherwise. The inspiration
for this is [ApBr,06].

Let C be a Riemann surface of genus g and let X be a ruled surface associated to
a vector bundle E of rank 2 on C. Consider the natural projections π : X → C and
p : X × X → C × C. The diagonal is a divisor in C × C, so the associated line bundle
O(∆C) on C × C has a section (because ∆C is effective) whose scheme of zeros is ∆C .
Denote the line bundle by L and the section by s. It is clear that Y = p∗(∆C) is X×CX,
the scheme theoretic product of X with itself as a scheme over C by π. Y is the scheme
of zeros of the section p∗(s) of the line bundle p∗L.

Consider the line bundle on X ×X

F = TX/C(−1) �OX(1)
def
= p∗1(TX/C(−1))⊗ p∗2(OX(1)),

where O(1) is naturally associated to P(E∗) = X with the property π∗(O(1)) = E and
TX/C is the relative tangent bundle given by the generalized Euler sequence

0→ OX(−1)→ π∗(E∗)→ TX/C(−1)→ 0.

There exists a section σ of F |Y whose scheme of zeros is ∆X . The associated Koszul
complex yields a resolution of O∆X

over OY . A resolution of the same structural sheaf, but
over OX×X can be constructed by use of the following extension lemma (cf. [ApBr,06]):

Lemma 3.3. Let Z be a smooth projective, irreducible variety, Y an effective divisor on
Z, F a vector bundle on Z, and σ ∈ H0(Y, F |Y ). If G denotes the vector bundle on Z
given by the extension

0→ F → G→ OZ(Y )→ 0,

corresponding to the image of σ by the canonical morphism H0(Y, F |Y )
δ→ H1(Z, F (−Y )),

then there exists u ∈ H0(Z,G) such that u|Y = σ. In particular, zero(u) = zero(σ) ⊂ Y .

Proof. The proof of this lemma is a diagram chase at its very best. First of all, an
extension of vector bundles is always a vector bundle; being a vector bundle is a local
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property and an extension of free modules is always split. We have the large diagram:

0

��

0

��

0

��
0 // F (−Y ) //

��

G(−Y ) //

��

O //

��

0

0 // F //

��

G //

��

O(Y ) //

��

0

0 // F |Y //

��

G|Y //

��

OY (Y ) //

��

0

0 0 0

In this diagram, all the rows and columns are short exact sequences and we will also
see that it is commutative. The bottom row is the restriction to Y of the second row
which is the given extension of O(Y ) through F , so it is exact. It should be easy to see
that restricting the picture to the last two rows we have a commutative diagram. That
the entire diagram is commutative follows from a Snake-Lemma-type argument.

We check that the image of σ through the natural map H0(Y, F |Y ) → H0(Y,G|Y )
belongs to

Ker(H0(Y,G|Y )→ H1(Z,G(−Y ))) = Im(H0(Z,G)→ H0(Y,G|Y )).

For this, notice that we have another commutative diagram coming from the long
exact sequences associated to the first two exact columns of the diagram:

H0(Z, F ) //

��

H0(Z,G)

��
H0(Y, F |Y ) //

��

H0(Y,G|Y )

��
H1(Z, F (−Y )) // H1(Z,G(−Y ))

. (3.2)

Since Y is an effective divisor on Z, O(Y ) is a line bundle. The extension 0 → F →
G→ O(Y )→ 0 corresponds to the element of Ext1(O(Y ), F ) given by the image of the

identity endomorphism via the map Hom(O(Y ),O(Y ))
δ→ Ext1(O(Y ), F ) induced from

the long exact sequence of the derived functors of Hom(O(Y ), ·) applied to our extension.
Hom(O(Y ),O(Y )) = H0(Z,O) since O(Y ) is a line bundle. Also Ext1(O(Y ), F ) =
Ext1(O, F (−Y )) = H1(Z, F (−Y )) for the same reason of O(Y ) being a line bundle. By
these identifications, the extension corresponds to the image of 1 in H1(Z, F (−Y )) by the
map H0(Z,O)→ H1(Z, F (−Y )). The last map fits into an exact sequence induced from
the first row of the large diagram:

H0(Z,O)→ H1(Z, F (−Y ))→ H1(Z,G(−Y )). (3.3)

By all that we have said, it should be clear that σ and 1 map to the same element of
H1(Z, F (−Y )). This element must map further to 0 in H1(Z,G(−Y )) because 3.3 is a
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complex. By using the commutativity of 3.2, we have checked that the image χ of σ
through the natural map H0(Y,G|Y ) → H0(Y,G|Y ) lies where we said it would, so we
can extend χ to a section u ∈ H0(Z,G).

We now prove that zero(u) = zero(σ). One inclusion is obvious because u extends
σ, so any zero of σ is a zero of u. Let ρ be the image of u in H0(Z,O(Y )). Because we
have the complex 0 → H0(Y, F |Y ) → H0(Y,G|Y ) → H0(Y,O(Y )|Y ), the restriction of ρ
to Y vanishes. But then zero(ρ) ≥ Y . Since zero(ρ) is an effective divisor of Z linearly
equivalent to Y , we must have zero(ρ) = Y . This means that u cannot have zeros outside
Y , and since u and σ coincide in Y , we are done.

We apply the lemma for the above σ and the extension

0→ F → G→ p∗(L)→ 0 (3.4)

to obtain an extension u in G of σ to X ×X such that zero(u) = ∆X . We can therefore
repeat all the arguments in the construction of the Beilinson spectral sequence to obtain
(cf. [ApBr,06]):

Theorem 3.4. With the notation above, for any complex vector bundle M of rank 2 on
X, there exists a spectral sequence Ep,q

r abutting to M if p + q = 0 and to 0 otherwise,
such that

Ep,q
1 = Rqp1∗(

−p∧
G∨ ⊗ p∗2M)

and this first sheet of the spectral sequence can be computed from the long exact sequence:

. . .→ Rqp1∗(p
∗(L∨)⊗ p∗2M(p+ 1))⊗ Ω−p−1

X/C (−p− 1)→

→ Ep,q
1 → Hq(X,M(p))⊗ Ω−pX/C(−p)→

→ Rq+1p1∗(p
∗L∨ ⊗ p∗2M(p+ 1))⊗ Ω−p−1

X/C (−p− 1)→ Ep,q+1
1 → . . .

Moreover, for all q:
E0,q

1 ' Hq(X,M)⊗OX

E−2,q
1 ' Rqp1∗(p

∗L∨ ⊗ p∗2M(−1))⊗OX(−1)⊗ π∗(
2∧

(E)).

Proof. The spectral sequence is, as we said, constructed as in 3.1. What needs explaining
is the long sequence. For this, by taking exterior powers in the dual of 3.4, we obtain the
short exact sequences for all negative p:

0→
−p−1∧

F∨ ⊗ p∗L∨ →
−p∧
G∨ →

−p∧
F∨ → 0.

The long exact sequence is obtained by applying p1∗ to this sequence after tensoring by
p∗2M and then using the identifications

Rqp1∗(p
∗L∨ ⊗

−p−1∧
F∨ ⊗ p∗2M) ' Rqp1∗(p

∗L∨ ⊗ p∗2M(p+ 1, 0))⊗ Ω−p−1
X/C (−p− 1, 0)

Rqp1∗(

−p∧
F∨ ⊗ p∗2M) ' Hq(X,M(p, 0))⊗ Ω−pX/C(−p, 0)

in the long exact sequence for R∗p1∗ that follows.
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Remark 3.5. The previous result can be generalized to the case when M is any complex
vector bundle over any curve. For the proof of the general result, see [ApBr,06].

This theorem has a simpler form if C = P1. In this case,

p∗(L) = p∗1(0, 1)⊗ p∗2(0, 1)

with the notation (0, 1) = O(f) which does not depend on the choice of the fibre f . Then

Rqp1∗(p
∗(L∨)⊗ p∗2(M(p+ 1, 0))) = Hq(X,M(p+ 1,−1))⊗ (0,−1),

and as a consequence of 3.4, we have (cf. [Buch,87]):

Theorem 3.6. Let E → P1 be a rank 2 vector bundle with degE = n and let X = P(E∗)
be the associated rational ruled surface. Then, for any vector bundle M on X, there exists
a spectral sequence Ep,q

r abutting to M if p + q = 0 and to 0 otherwise, and whose first
sheet can be computed from the long exact sequence

. . .→ Hq(X,M(p+ 1,−1))⊗ Ω−p−1
X/P1 (−p− 1,−1)→ Ep,q

1 →

→ Hq(X,M(p, 0))⊗ Ω−pX/P1(−p, 0)→

→ Hq+1(X,M(p+ 1,−1))⊗ Ω−p−1
X/P1 (−p− 1,−1)→ . . .

Moreover, for all q, we have

E0,q
1 ' Hq(X,M)⊗OX

and
E−2,q

1 ' Hq(X,M(−1,−1))⊗O(−1, n− 1).

Caution: Notice the sign change. In the definition of the ruled surface Xe, we had the
associated rank two vector bundle E , but it had degree −e whereas in the above theorem
we chose a vector bundle of degree n. The conclusion is that we have no problem as long
as we remember to replace n by −n in any of the previous formulas we had about ruled
surfaces.

In his paper [Buch,87], Buchdahl actually uses this generalization of the Beilinson
spectral sequence arising from the second version of the spectral sequence that in the case
of a projective space was used to prove 3.2.

Theorem 3.7. Under the same hypotheses as the previous theorem, there exists a spectral
sequence E∗,∗∗ with the following properties:

a. Ep,q
∞ ⇒M if p+ q = 0 and Ep,q

∞ ⇒ 0 otherwise.

b. Ep,q
1 = 0 if |p+1| > 1 or |q−1| > 1. E0,q

1 = Hq(M)⊗O and E−2,q
1 = Hq(M(−1, n−

1))⊗ (−1,−1).

c. There exists a long exact sequence

. . .→ Hq(M(0,−1))⊗ (0,−1)→ E−1,q
1 → Hq(M(−1, n))⊗ (−1, 0)→ . . .
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Chapter 4

Two Splitting Criteria

In this chapter we apply the Beilinson type spectral sequence in order to prove some
splitting criteria for rank 2 bundles on rational ruled surfaces. Throughout this chapter,
Σn denotes the rational ruled surface corresponding to the rank 2 vector bundle of degree
n, OP1 ⊕OP1(n) on P1. Recall that this Σn corresponds to X−n defined in the section on
ruled surfaces and we must have n ≤ 0. With this notation:

K(Σn) = (−2, n− 2)

ΩΣn/P1 = (−2, n)

by 2.10.b.
Denote (1, 0) = OΣn(1) and (0, 1) = π∗OP1(1). Recall the intersection formulas

(1, 0).(1, 0) = n

(1, 0).(0, 1) = 1

(0, 1).(0, 1) = 0.

The first result we are looking for is:

Theorem 4.1. Let M be a holomorphic complex vector bundle of rank 2 on Σn. Then
M is isomorphic to the direct sum

M ' (0,−1)⊕ (−1, n− 1) (4.1)

if, and only if, 
h0(M) = 0 , h1(M(−1,−1)) = 0
h2(M(0,−1)) = 0 , h2(M(−1, 0)) = 0
c1(M) = (−1, n− 2) , c2(M) = 1

.

In these conditions, the two direct summands of M can be recovered from the first Beilinson
spectral sequence.

A step towards proving this theorem is:

Proposition 4.2. Let M be a holomorphic complex vector bundle of rank 2 on Σn that
is given by an extension

0→ (0,−1)→M → (−1, n− 1)→ 0.

Then the extension is split, E−1,1
1 = E−1,1

∞ = (0,−1) and E−2,2
1 = E−2,2

∞ = O(−1, n− 1),
where E is the Beilinson spectral sequence of M given in 3.1.
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Proof. We first check that the extension is split. The extensions of this type are parame-
terized by

Ext1((−1, n− 1), (0,−1)) = H1(Σn, (1,−n)).

Since (1,−n).f = 1 ≥ 0, we have h1(1,−n) = h1(P1, π∗(OΣn(1) ⊗ π∗OP1(−n))) =
h1(P1, (OP1 ⊕OP1(n))⊗OP1(−n)) = h1(P1,OP1 ⊕OP1(−n)) = H0(P1,OP1(−2)⊗ (OP1 ⊕
OP1(n))) = h0(P1,OP1(−2) ⊕ OP1(n − 2)) = h0(P1,OP1(−2)) ⊕ H0(P1,OP1(n − 2)) = 0,
because n is negative. We have used the projection formula and Serre duality for P1.
Therefore all the extensions of type 4.1 are split.

From 3.6 we have
E0,q

1 = Hq(Σn,M)⊗OΣn

and
E−2,q

1 ' Hq(Σn,M(−1,−1))⊗O(−1, n− 1).

The long sequence that computes E1 is:

. . .→ Hq(M(p+ 1,−1))⊗ (−2, n)−p−1(−p− 1,−1)→ Ep,q
1 →

→ Hq(M(p, 0))⊗ (−2, n)−p(−p, 0)→

→ Hq+1(M(p+ 1,−1))⊗ (−2, n)−p−1(−p− 1,−1)→ . . .

We see from the sequence and from Grothendieck’s vanishing theorem that Ep,q
1 is con-

centrated in p ∈ {−2,−1, 0} and q ∈ {0, 1, 2}.
We will first prove that all E0,q

1 are zero by proving that Hq(M) = 0 for all q. From
the splitting 4.1 we have for all i:

hi(M) = hi(0,−1) + hi(−1, n− 1).

H0(0,−1) = H0(−1, n − 1) = 0 because (0,−1) and (−1, n − 1) are not effective
divisors, so H0(M) = 0.

Because (0,−1).f = 0 ≥ 0, H1(0,−1) = H1(P1,O(−1)) = 0 and H2(0,−1) =
H2(P1,O(−1)) = 0.

The line bundle (−1, n−1) is not as easy to work with. It has negative degree −1 along
the fibres, so the cohomology along the fibres vanishes in all dimensions. By Grauert 2.7,
it follows that Riπ∗(−1, n − 1) = 0 for all i and so H i(−1, n − 1) = H i(π∗(−1, n − 1)).
But π∗(−1, n − 1) = π∗((−1, 0) ⊗ π∗(OP1(n − 1))) = π∗(−1, 0) ⊗ OP1(n − 1) = 0 by the
projection formula and 2.10. So all the cohomology of (−1, n−1) vanishes. Summing up,
gives H∗(M) = 0, so E0,q

1 = 0 for all q.

We now move our attention to E−2,q
1 . We know

E−2,q
1 = Hq(M(−1,−1))⊗O(−1, n− 1).

If we tensor the splitting 4.1 by (−1, 1)) and use additivity for cohomology on direct sums,
we get for all i:

hi(M(−1,−1)) = hi(−1,−2) + hi(−2, n− 2).

The same arguments used for (−1, n − 1) can be used now to prove that all the co-
homology of (−1,−2) vanishes. (−2, n − 2) is the canonical sheaf, so by Serre Duality,
hi(−2, n− 2) = h2−i(Σn,OΣn) = h2−i(P1,OP1). So the cohomology of the canonical sheaf
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is zero in dimension 0 or 1, but is 1-dimensional as a complex vector space in dimension
2. If we combine these arguments with the splitting, we see that the canonical sheaf
and M(−1,−1) have the same cohomology. This proves that E−2,2

1 ' (−1, n − 1) and
E−2,q

1 = 0 for q 6= 2.

To compute E−1,q
q , we use the long exact sequence in 3.6 which is

. . .→ Hq(M(0,−1))⊗ (0,−1)→ E−1,q
1 →

→ Hq(M(−1, 0))⊗ (−1, n)→ Hq+1(M(0,−1))⊗ (0,−1)→ . . . ,

and the part that counts is

0→ H0(M(0,−1))⊗ (0,−1)→ E−1,0
1 → H0(M(−1, 0))⊗ (−1, n)→

→ H1(M(0,−1))⊗ (0,−1)→ E−1,1
1 → H1(M(−1, 0))⊗ (−1, n)→

→ H2(M(0,−1))⊗ (0,−1)→ E−1,2
1 → H2(M(−1, 0))⊗ (−1, n)→ 0.

From 4.1 follow the obvious formulas:

hi(M(0,−1)) = hi(0,−2) + hi(−1, n− 2)

hi(M(−1, 0)) = hi(−1,−1) + hi(−2, n− 1).

We have (0,−2).f = 0, so hi(0,−2) = hi(P1,OP1(−2)) = h1−i(OP1) by the same
techniques we have used before. So the cohomology of (0,−2) is isomorphic to C in
dimension 1 and vanishes elsewhere. Just like for (−1,−2), we prove that the cohomology
of (−1, n−2) vanishes in all dimensions. In conclusion, H1(M(0,−1)) ' C and M(0,−1)
has no other nonzero cohomology groups.

Again, (−1,−1) has no cohomology. By Serre duality, hi(−2, n − 1) = h2−i(0,−1) =
h2−i(P1,OP1(−1)) = 0 for all i. So all the cohomology groups of M(−1, 0) vanish.

We conclude that E−1,1
1 = (0,−1) and E−1,q

1 = 0 for q 6= 1.
The first sheet of the spectral sequence E is:

(−1, n− 1) 0 0
0 (0,−1) 0
0 0 0

By the construction of the spectral sequence and the way the arrows go in higher sheets,
we see that E1 = E∞.

We now prove 4.1.

Proof. From the previous proof, we get that if M is given by the splitting 4.1, then all the
required vanishing condition are fulfilled and (0,−1) and (−1, n − 1) are recovered from
the long sequence associated to the Beilinson spectral sequence. Computing the Chern
classes is a very easy exercise. We are more interested in the converse.

If M has no nonzero sections, then the same must hold for M(0,−1), M(−1, 0) and
M(−1,−1), because of the general result: If M is a vector bundle on a smooth projective
variety such that M has no nonzero sections and if L is an invertible sheaf corresponding
to an effective divisor, then M ⊗ L∨ has no nonzero section. For a proof, notice that a
nonzero section of M ⊗L∨ is a nontrivial (injective) sheaf morphism O →M ⊗L∨ which
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is equivalent to a morphism L → M . Since L has sections i.e. there exists a nonzero
morphism O → L, the composition O → L→M gives a nonzero section of M .

If we have the given vanishing conditions, then it immediately follows from the long
sequence in 3.6:

0→ H0(M(0,−1))⊗ (0,−1)→ E−1,0
1 → H0(M(−1, 0))⊗ (−1, n)→

→ H1(M(0,−1))⊗ (0,−1)→ E−1,1
1 → H1(M(−1, 0))⊗ (−1, n)→

→ H2(M(0,−1))⊗ (0,−1)→ E−1,2
1 → H2(M(−1, 0))⊗ (−1, n)→ 0,

that E−1,0
1 = E−1,2

1 = 0. All the sheets of the spectral sequence E are concentrated in
−2, 0× 0, 2 and by what we know so far, we have for E1:

E−2,2
1 0 E0,2

1

0 E−1,1
1 E0,1

1

0 0 0

.

We have used the formulas:

E0,q
1 = Hq(Σn,M)⊗OΣn

E−2,q
1 ' Hq(Σn,M(−1,−1))⊗O(−1, n− 1).

Ep,q
∞ = 0 for p + q 6= 0 from 3.6. Keeping in mind the direction of the arrows in different

sheets of E, we see that Ep,q
2 = Ep,q

∞ for

(p, q) ∈ {(−2, 0), (−1, 2), (−1, 1), (−1, 0), (0, 2)}.

Because E−1,2
1 = 0, E0,2

1 = E0,2
2 = E0,2

∞ = 0. From E−2,1
1 = 0, it follows that E−1,1

1 =
E−1,1

2 = E−1,1
∞ .

We compute χ(M). Riemann-Roch (2.19) tells us:

χ(M) =
1

2
(−1, n− 2).(1, 0)− 1 + 2 =

1

2
(−n+ n− 2)− 1 + 2 = 0.

For any bundle L on Σn, a formal splitting of M as a sum of line bundles can be used
to prove the following relations for the Chern classes of twists of M :

c1(M ⊗ L) = c1(M) + 2c1(L)

c2(M ⊗ L) = c2(M) + c1(M)c1(L) + c2
1(L).

With these relations and the Riemann-Roch formula, we can compute χ(M(−1, 0)) = 0,
χ(M(0,−1)) = −1 and χ(M(−1,−1)) = 1. From these, from the formulas for E0,q

1 and
from the long sequence in 3.6, we draw the following picture:

E−2,2
1 0 0
0 (0,−1) 0
0 0 0

,

which proves also E−2,2
1 = E−2,2

∞ . But E−2,2
1 = H2(M(−1,−1)) ⊗ (−1, n − 1) and from

Riemann-Roch again h2(M(−1,−1)) = 1, so E−2,2
1 = (−1, n− 1).

From the general theory of spectral sequences, we see that we have a filtration of M
by two terms M = F−2 ⊇ F−1 ⊇ F 0 = 0 such that E−1,1

∞ = F−1 and E−2,2
∞ = F−2/F−1.

This means that we have the extension 0→ (0,−1)→ M → (−1, n− 1)→ 0 that arises
from the Beilinson spectral sequence. The proof ends here since we have already proved
that any such extension is split.

21



Since we have a plural in the title, we should present another application of the
Beilinson spectral sequence. Not stretching too far from the previous criterion, we can
prove:

Theorem 4.3. The rank 2 vector bundle M on Σn is isomorphic to

OΣn ⊕ (−1, n− 1)

if, and only if, c1(M) = (−1, n − 1), c2(M) = 0, and h0(M(−1, 0)) = h1(M) =
h1(M(−1,−1)) = h2(M(0,−1)) = 0. In this case, the direct summands of M can be
recovered from the Beilinson spectral sequence associated to M .

Even more, if n = 0 i.e. Σ0 = P1 × P1, then we can drop the assumptions on
h0(M(−1, 0)) and h2(M(0,−1)).

Proof. Since computing the Chern classes and the required cohomology spaces presents no
difficulty and can be done in similar fashion to the previous case, we skip to the converse,
but not before mentioning that just like before we can prove that any extension

0→ (0, 0)→M → (−1, n− 1)→ 0

is actually split.

We will use (repetitively) this generalization of a result in the proof of the first splitting
criterion:

Over any projective variety, if M is a vector bundle and L is a line bundle such that
h0(L) > h0(M), then h0(M ⊗ L∨) = 0.

To prove this, assume for a contradiction that M⊗L∨ has nonzero sections. Any such
section corresponds to an injective bundle map O →M ⊗L∨ which produces an injective
map L → M . Taking global sections yields an injective linear map H0(L) → H0(M)
which cannot exist by a dimension count.

Serre duality and the previous result use h2(M(0,−1)) = 0 to prove that h2(M) = 0.
This, h1(M) = 0 and Riemann-Roch prove that h0(M) = 1. Since h0(0, 1) = 2, the
previous result shows h0(M(0,−1)) = 0. Again our ubiquitous tool can be used to
prove h0(M(−1,−1)) = 0. Together with h1(M(−1,−1)) = 0 and Riemann-Roch,
h2(M(−1,−1)) = 1. From h0(0, 1) = 2, h2(M(−1,−1)) = 1, from Serre duality and
our result, we obtain h2(M(−1, 0) = 0. Riemann-Roch can be used to prove that
h1(M(0,−1)) = h1(M(−1, 0)) = 0. By plugging all the data that we have collected so far
in the long exact sequence computing E−1,∗

1 , we see that all these sheaves are 0. From the
spectral sequence we can extract an extension 0 → (0, 0) → M → (−1, n − 1) → 0 that
we know is split, so we are done.

Note that we could not have used our proposition as shown to prove that h2(M(−1,−1)) =
1 implies h2(M(0,−1)) = 0 or that h0(M) = 1 implies h0(M(−1, 0)) = 0 if n < 0,
because h0(1, 0) = h0(P1,O ⊕ O(n)) = 1. But if n = 0, then h0(1, 0) = 2 and the
previous arguments work because in any case h0(M) ≤ 1 and h2(M(−1,−1)) ≤ 1 from
h1(M) = h1(M(−1,−1)) = 0 and Riemann-Roch. So if h1(M) = 0, then h0(M(−1, 0)) =
h0(M(0,−1)) = h0(M(−1,−1)) = 0 and if h1(M(−1,−1)) = 0, then the following van-
ishing results are proved: h2(M(−1, 0)) = h2(M(0,−1)) = h2(M) = 0. These, and again
Riemann-Roch, imply h0(M) = h2(M(−1,−1)) = 1 and h1(M(−1, 0)) = h1(M(0,−1)) =
0. Just like in the case n < 0, the conclusion follows.
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