
MAT324: Real Analysis – Fall 2016
Assignment 2 – Solutions

Problem 1: Suppose E1, E2 ⊆ R are measurable sets. Show that

m(E1 ∪ E2) +m(E1 ∩ E2) = m(E1) +m(E2).

Solution. Notice that E1 ∪ E2 can be expressed as a union of disjoint measurable sets

E1 ∪ E2 = (E1 \ E2) ∪ (E1 ∩ E2) ∪ (E2 \ E1).

Additivity implies that

m(E1 ∪ E2) = m(E1 \ E2) +m(E1 ∩ E2) +m(E2 \ E1)

= m(E1 ∩ E2) +m(E1 ∩ (E2)
c) +m(E2 ∩ (E1)

c)

Hence

m(E1 ∪ E2) +m(E1 ∩ E2) = [m(E1 ∩ E2) +m(E1 ∩ (E2)
c)] + [m(E2 ∩ (E1)

c) +m(E1 ∩ E2)]

= m(E1) +m(E2)

�

Problem 2: Construct a Cantor-like closed set C ⊂ [0, 1] so that at the kth stage of the construction
one removes 2k−1 centrally situated open intervals each of length `k, with

`1 + 2`2 + . . .+ 2k−1`k < 1.

Suppose `k are chosen small enough so that
∞∑
k=1

2k−1`k < 1.

a) Show that m(C) = 1−
∞∑
k=1

2k−1`k and conclude that m(C) > 0.

b) Give an example of a sequence (`k)k≥1 that verifies the hypothesis.

Solution.

a) The intervals removed are disjoint. If Cn denotes what is left in [0, 1] after the n-th process,
then m(Cn) = 1 −

∑n
k=1 2k−1lk. Furthermore, by construction we have Cn+1 ⊂ Cn. Apply

Theorem 2.19.
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b) Let lk = 4−k = 2−2k. Then

∞∑
k=1

2k−12−2k =

∞∑
k=1

2−1−k =
1

2 �

Problem 3: Let E1, E2, . . . , E2014 ⊂ [0, 1] be measurable sets such that
2014∑
k=1

m(Ek) > 2013. Show

that m

(
2014⋂
k=1

Ek

)
> 0.

Solution. Let Fn = [0, 1] \ En, for each 1 ≤ n ≤ 2014. Notice that

m

(
2014⋃
n=1

Fn

)
= 1−m

(
2014⋂
n=1

En

)
.

Use subadditivity and the inequality provided to show that m

(
2014⋃
n=1

En

)
< 1. Combined with

the result in the previous paragraph, m

(
2014⋃
n=1

En

)
> 0. �

Problem 4: Suppose A ∈M and m(A∆B) = 0. Show that B ∈M and m(A) = m(B).

Solution. See page 36 in the textbook. �

Problem 5: Suppose A ⊂ E ⊂ B where A and B are measurable sets of finite measure. Show
that if m(A) = m(B), then E is measurable.

Solution. Notice that
m(B) = m(A) +m(B \A)

Since m(A) = m(B) < ∞, we can subtract this on both sides to get m(B \ A) = 0. Since
E \A ⊂ B \A, completeness of the Lebesgue measure shows that E \A is measurable, but then so
is E = A ∪ (E \A). �

Problem 6: Suppose E ∈M and m(E) > 0. Prove that there exists an open interval I such that

m(E ∩ I) > 0.99 ·m(I).

Hint: Argue by contradiction, using the regularity of Lebesgue measure. See Theorems 2.17, 2.29.

Solution. We’ll show that in fact a more general result holds.

Claim 1 If E ∈M and m(E) > 0, then for any 0 < α < 1, there exists an interval I such that

m(E ∩ I) > α ·m(I).

Proof of Claim 1. We’ll use a slight modification of Theorem 2.29, which the reader can prove
as an exercise. This is the

Lemma 1 If E ∈M, then

m(E) = sup{m(K) | K ⊂ E, K is compact}.
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With this the reader can easily prove that if E has finite measure, we can find a finite union of
disjoint open intervals A =

⋃N
n=1 In such that m(E∆A) < ε (consider a suitable open cover of K

by open intervals, and extract a finite subcover).
Let ε = (1− α)m(E), and ket A be the set given by the lemma. Since A is a measurable set,

m(E) = m(E ∩A) +m(E ∩Ac)

m(E) ≤ m(E ∩A) +m(E∆Ac)

m(E) < m(E ∩A) + (1− α)m(E)

αm(E) < m(E ∩A)

Since E is a measurable set,

m(A) = m(A ∩ E) +m(A ∩ Ec)

m(A) ≤ m(A ∩ E) + (1− α)m(E)

m(A) < m(A ∩ E) +
1− α
α

m(E ∩A)

m(A) <
1

α
m(E ∩A)

Now we notice that

m(A) =
N∑

n=1

m(In)

m(A ∩ E) =
N∑

n=1

m(E ∩ In)

This yields,

N∑
n=1

m(In) <
1

α

(
N∑

n=1

m(E ∩ In)

)

And this proves the claim if m(E) <∞ (argue by contradiction). Now if m(E) = +∞, take E′ ⊂ E
with m(E′) <∞ and proceed in the same way to get the result for E′. Apply monotonicity to get
the claim in its general form. �
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