## MAT244H5F – Differential Equations I

## Fall 2018

## Assignment 2

Due Wednesday, October 17, in TUT for TUT0101, TUT0102, TUT0103, TUT0104. Due Friday, October 19, in TUT for TUT0105, TUT0106.

**Problem 1:** Find the general solution of the differential equation  $3xy^2y' = 3x^4 + y^3$ . Is this a Bernoulli equation?

**Problem 2:** Find the general solution of the differential equation  $x^2y' = xy + x^2e^{y/x}$  by first writing the equation in normal form and then making the substitution v = y/x. Write the differential equation for v and solve it.

**Problem 3:** The growth of cancerous tumors can be modeled by the Gompertz law

$$\frac{dN}{dt} = -aN\log(bN),$$

where N(t) is proportional to the number of cells in the tumor and a, b > 0 are biological parameters. Find the critical points of this model and classify them as stable or unstable. Draw a typical trajectory of the solution N(t) which starts at  $N(0) = \frac{1}{2b}$ . Sketch the vector field for a = b = 2 in the rectangle  $-3 \le t \le 3$ ,  $-3 \le y \le 3$ .

**Problem 4:** The fish and game department in a certain state is planning to issue hunting permits to control the deer population (one deer per permit). It is known that if the deer population falls below a certain level m, the deer will become extinct. It is also known that if the deer population rises above the carrying capacity M, the population will decrease back to M through disease and malnutrition. Consider the following model for the growth rate of the deer population as a function of time:

$$\frac{dP}{dt} = rP(M-P)(P-m),$$

where P is the deer population and r > 0 is a constant of proportionality. Assume M > m > 0.

- a) Determine the equilibrium points of this model and classify each one as stable or unstable. Draw the phase line and sketch several graphs of solutions.
- b) About how many permits should be issued if there are M+1 deers? What if there are m-1 deers?

**Problem 5:** Solve the simplified logistic equation

$$\frac{dy}{dx} = y(y-1), \text{ with } y(0) = \frac{2}{3}.$$

What would be the general solution if y(0) = 1?

**Problem 6:** Consider the following initial value problem

$$\frac{dy}{dt} = 3 + 2t - y, \quad y(0) = 1.$$

- a) Estimate y(1) using Euler's method with stepsize h = 0.25.
- b) Find y(t) and the exact value of y(1). Is the answer from part a) an overestimate or an underestimate?

**Problem 7:** Consider the second order differential equation  $x^2y'' + xy' = 0$  for x > 0. Make the substitution  $v = \ln(x)$  and write a differential equation for v. Find the general solution y(x) of the initial equation.

**Problem 8:** Find the solution of the initial value problem and sketch the graph of the solution for  $-1 \le x \le 1$ .

a) 
$$y'' - 3y' + 2y = 0$$
,  $y(0) = 0$ ,  $y'(0) = 5$ 

b) 
$$y'' + 6y' + 13y = 0$$
,  $y(0) = 2$ ,  $y'(0) = 0$ 

c) 
$$y'' + 2y' + y = 0$$
,  $y(0) = 2$ ,  $y'(0) = -1$ 

Comment: To plot the graph of the solution it may be useful to use WolframAlpha. For example, to plot the graph of the function  $x^2$  on the interval [-1, 1] write **Plot**[ $\{x^2\}$ ,  $\{x, -1, 1\}$ ].

**Problem 9:** Find a particular solution  $y_p$  of the differential equation:

a) 
$$y'' + 4y = 4\sin(2t)$$

b) 
$$y'' - 4y = 4e^{3t}$$

**Problem 10:** Find the general solution of the differential equation:

a) 
$$y^{(4)} - y = 0$$

b) 
$$y^{(4)} - 8y'' + 16y = 0$$

c) 
$$y^{(4)} + 2y^{(3)} + 3y'' + 2y' + y = 0$$
 (*Hint:* Expand  $(r^2 + r + 1)^2$ )

d) 
$$y^{(3)} + y' - 10y = 0$$

Comment: To solve an equation such as  $x^2 - 2 = 0$  in WolframAlpha write Solve[x^2-2==0, x] or Roots[x^2-2], or NSolve[x^2-2==0, x] to solve the equation numerically (useful for equations which are not polynomial). To factor the polynomial  $x^2 - 2$  try Factor[x^2-2] or Simplify[x^2-2].