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Let N ⊂ M be factors of type II1. Jones in 1983 showed that the
possible values of [M : N] = are {4 cos2 π/n, n ≥ 3} ∪ [4,∞).

If EN ∈ L2(M, tr) is the orthogonal projector onto N, then
[M : N] = (tr EN)−1. Jones’ basic construction:

M0 = N M1 = M Mi+1 =
〈
Mi ,EMi−1

〉 ∼= M ⊗N M ⊗N · · · ⊗N M︸ ︷︷ ︸
i+1

Relates to the Temperley–Lieb algebra: the ei = δEMi−1
satisfy

e2
i = δei eiei±1ei = ei eiej = ejei |i − j | > 1

with δ = [M : N]1/2. Positivity of the trace constrains δ.
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Graphical representation of the Temperley–Lieb algebra:

ei = . . . . . .

i i +1

Product is vertical concatenation. δ is the weight of a closed loop.

The full algebra TLk is the span of all planar pairings of 2k strands.
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Lots more work in this direction (Haagerup, Popa, Ocneanu).

Importance of higher relative commutants
M ′i ∩Mj = {x ∈ Mj : xy = yx ∀y ∈ Mi} which extend the
Temperley–Lieb construction. In Jones’ language, M ′0/1 ∩Mj form

a planar algebra (containing as subalgebra the Temperley–Lieb
algebra). Encoded in a bipartite graph (the principal graph), δ
being its Perron–Frobenius eigenvalue.

Inverse question: given Mi ∩M ′j , can we recover N ⊂ M?
Answered affirmatively by Popa (1995).

P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

A (subfactor) planar algebra is a collection of vector spaces
P = (Pk)k≥0, where Pk (really, P±k ) is “blobs” with 2k legs, and
P0 is scalars.
A. Guionnet, V. Jones, D. Shlyakhtenko (2008) introduced a new
product on P≥k :=

⊕
`≥k P`:

k
{

∧
k

=

an inclusion P≥k ⊂ P≥k+1:

k
{

7−→ k + 1

{
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and a new trace: (k = 0)

Tr0 = +

+ + +

They then show that the completion Mk of P≥k =
⊕

`≥k P` for
this trace is a II1 factor and the tower M0 ⊂ M1 ⊂ · · · has the
desired properties, in particular its associated planar algebra is P.
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We go further and study the analogue of non-Gaussian matrices:
we paste arbitrary tangles which respect bicoloration:

Trt(S) =
∞∑

n1,...,nk=0

k∏
i=1

tni
i

ni !

∑
P∈P(n1,...,nk ,S)

δ# loops in P

S

S1 S2
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We show

Theorem (Guionnet, Jones, Shlyakhtenko, Z-J)

Let P be a finite-depth subfactor planar algebra and let S1, . . . ,Sk

be elements of P. Then, for t small enough, Trt is a tracial state
on P, as a limit of matrix models.

We study in more detail a special case:

S1 = S2 =
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Definition
Relation to loop model

Let Γ = (V ,E ) be an arbitrary graph and Q a positive integer.

Configurations = maps σ from V to {1, . . . ,Q}

Hamiltonian = −K
∑
{i ,j}∈E

δσi ,σj

1 1

2 3

2

3
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The partition function is

ZΓ =
∑

σ:V→{1,...,Q}

exp(K
∑
{i ,j}∈E

δσi ,σj )

=
∑

σ:V→{1,...,Q}

∏
{i ,j}∈E

(1 + vδσi ,σj ) v := exp(K )− 1

=
∑
E ′⊂E

∑
σ:V→{1,...,Q}

∏
{i ,j}∈E ′

vδσi ,σj

=
∑
E ′⊂E

v # bonds Q# clusters

bonds=edges in E ′, clusters=connected components of the subgraph (V , E ′)

−→ v 4 Q3
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Definition
Relation to loop model

Assume Γ is embedded into the sphere (“planar map”).
In particular, Γ is promoted to Γ = (V ,E ,F ).
There is a dual planar map Γ̃ = (Ṽ , Ẽ , F̃ ), Ṽ ∼= F , Ẽ ∼= E , F̃ ∼= V .

Then we shall see that

ZΓ̃(Q, v) ∝ ZΓ(Q,Q/v)
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Relation to loop model

There is also a medial planar map Γm = (Vm,Em,Fm) with
Vm
∼= E , Fm

∼= V t F :

Splitting a vertex:
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Each cluster is surrounded by (2 + # bonds−# vertices) loops.
Therefore,

# loops = 2# clusters + # bonds−#V

and finally

ZΓ ∝
∑
loop

configs
on Γm

√
Q

# loops
( v√

Q

)#bonds

(loop configuration=splitting of each vertex)

The Q-state Potts model is equivalent to a model of loops with
fugacity n :=

√
Q.
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Definition
The U(n) matrix model
HS Transformation

We consider dynamical random lattices, that is

Z (x , y ,Q, v) =
∑

Γ=(V ,E ,F )

x#E y #V

symmetry factor
ZΓ(Q, v)

The summation is over arbitrary connected planar maps.

x and y are new parameters that control the typical size of the
map; in what follows we only use x . (in the language of quantum

gravity, it is the cosmological constant)

The duality Γ↔ Γ̃ of the Potts model now becomes a symmetry of
the model (at v =

√
Q)!
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The U(n) matrix model
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The equivalence to the loop model allows to state that

Z =
∑
Γm

1

symmetry factor

∑
loop

configs

n# loopsα
#

β
#

where the summation is restricted to 4-valent planar maps, and

n =
√

Q
α

β
=

v√
Q

β = x
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Consider the following formal matrix integral:

IN =

∫ n∏
a=1

dMadM†a exp
[
N tr

(
−

n∑
a=1

MaM†a

+
α

2

n∑
a,b=1

MaM†aMbM†b +
β

2

n∑
a,b=1

M†aMaM†bMb

)]
over N × N complex matrices.

Note the U(n) symmetry Ma →
∑

b UabMb.

The duality is now simply α↔ β, Ma ↔ M†a .
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It can be expanded in Feynman diagrams:〈
(Ma)ij(Mb)†kl

〉
0

= δabδilδjk =
j

i

k

l

tr(MaM†aMbM†b) =

tr(M†aMaM†bMb) =

P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

Definition
The U(n) matrix model
HS Transformation

It can be expanded in Feynman diagrams:〈
(Ma)ij(Mb)†kl

〉
0

= δabδilδjk =
j

i

k

l

tr(MaM†aMbM†b) =

tr(M†aMaM†bMb) =

P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

Definition
The U(n) matrix model
HS Transformation

The only use of the orientation of the edges is to distinguish Γ
from Γ̃ in the original Potts language. For α 6= β this is
important! For α = β one can remove the orientation and get
back to the so-called O(n) matrix model.

If one tried to introduce crossing vertices, i.e. , then
the corresponding terms tr(MaM†bMaM†b) would break the
U(n) symmetry (only the O(n) symmetry would survive).
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Definition
The U(n) matrix model
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The power of N of a diagram is its Euler–Poincaré
characteristic, and taking the log corresponds to keeping
connected diagrams, so that

Z = lim
N→∞

log IN
N2

Similary, correlation functions of the matrix model will
correspond to taking the trace trt in our planar algebras.
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IN =

∫ n∏
a=1

dMadM†ae
N tr

(
−

Pn
a=1 MaM

†
a +α

2
(
Pn

a=1 MaM
†
a )2+β

2
(
Pn

a=1 M†a Ma)2

)

=

∫
dA

∫
dB

∫ n∏
a=1

dMadM†aeN tr
(
−

Pn
a=1 MaM

†
a− 1

2α
A2− 1

2β
B2

+A
Pn

a=1 MaM
†
a +B

Pn
a=1 M†a Ma

)
=

∫
dA

∫
dBeN tr

(
− 1

2α
A2− 1

2β
B2
)

det(1⊗ 1− 1⊗ A− B ⊗ 1)−n

NB: at this stage the Feynman diagram expansion can be done for
arbitrary complex n.
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Definition
The U(n) matrix model
HS Transformation

Diagonalize the Hermitean matrices A and B → {ai}, {1− bi}

IN =

∫ N∏
i=1

daidbi

∏
1≤i<j≤N(aj − ai )

2(bj − bi )
2∏N

i ,j=1(ai − bj)n
eN

PN
i=1(− 1

2α
a2
i −

1
2β

(1−bi )
2)

Particles of two kinds, trapped in harmonic potentials, repelling
particles of same kind and attracted (n > 0) to particles of
different kind.

For sufficiently small α and β, the range of integration of the ai

and bj can be restricted to intervals around 0 and 1 respectively,
without changing the perturbative expansion, and such that the
denominator never vanishes. The integral is then well-defined
analytically.
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denominator never vanishes. The integral is then well-defined
analytically.
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Define the resolvents of A and B:

GA(a) = lim
N→∞

1

N

〈
tr

1

a− A

〉
GB(b) = lim

N→∞

1

N

〈
tr

1

1− b − B

〉
They are generating series for diagrams with the topology of the
disk and certain prescribed boundary conditions.

In the large N limit, the integral over the eigenvalues ai and bi is
dominated by a saddle point configuration characterized by limiting
measures dµA and dµB with supports [a1, a2] and [b1, b2]:

GA(a) =

∫ a2

a1

dµA(a′)

a− a′

GB(b) =

∫ b2

b1

dµB(b′)

b − b′
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These functions satisfy the following saddle point equations:

GA(z + i0) + GA(z − i0) = P(z) + nGB(z) z ∈ [a1, a2]

GB(z + i0) + GB(z − i0) = Q(z) + nGA(z) z ∈ [b1, b2]

with P(z) = z/α, Q(z) = (1− z)/β.
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Analytically continuing these equations shows that GA and GB live
on an infinite cover of the Riemann sphere:

a1 a2

b1 b2
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Alternatively, they live on an infinite cover of the elliptic curve
y 2 = (z − a1)(z − a2)(z − b1)(z − b2):

a1 a2 b1 b2

We therefore introduce the parameterization

u(z) =

∫ z

b2

dz√
(z − a1)(z − a2)(z − b1)(z − b2)

where u lives on the torus C/(ω1Z + ω2Z).
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More precisely, appropriate linear combinations of GA and GB :

G±(u) = q±1GA(u)− GB(u)± 1

q − 1/q
(P(u) + q±1Q(u))

are sections of certain line bundles over this elliptic curve:

G±(u + ω1) = G±(u)

G±(u + ω2) = q±2G±(u)

Here, n = q + q−1, |n| 6= 2.
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G+ is meromorphic with only poles at ±u∞, the two images of
z =∞. It can be expressed in terms of the theta function:

Θ(u) = 2
∞∑

k=0

e
iπ
ω2
ω1

(k+1/2)2

sin(2k + 1)
πu

ω1

Theorem

G+(u) = c+
Θ(u − u∞ − νω1)

Θ(u − u∞)
+ c−

Θ(u + u∞ − νω1)

Θ(u + u∞)

where q = exp(iπν), and

c± = ± Θ′(0)

Θ(νω1)

1

q − 1/q
(α−1 + q±1β−1)
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Assume q2p = 1. An important case is q = exp(iπ/p) (recall that
Q = (q + q−1)2; for example, Q = 0, 1, 2, 3 corresponds to
p = 2, 3, 4, 6).

Then G± satisfy:

G±(u + ω1) = G±(u)

G±(u + pω2) = G±(u)

i.e. they are elliptic functions with periods ω1, pω2.

We conclude that GA(u) (resp. GB(u)) and z(u), being both
elliptic with same periods, satisfy an algebraic equation:

PA(GA, z) = 0 PB(GB , z) = 0

cf recent work of Bousquet–Melou et al.
P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

The analytic problem
The elliptic parameterization
The solution
Root of unity case
Prospects

Assume q2p = 1. An important case is q = exp(iπ/p) (recall that
Q = (q + q−1)2; for example, Q = 0, 1, 2, 3 corresponds to
p = 2, 3, 4, 6).

Then G± satisfy:

G±(u + ω1) = G±(u)

G±(u + pω2) = G±(u)

i.e. they are elliptic functions with periods ω1, pω2.

We conclude that GA(u) (resp. GB(u)) and z(u), being both
elliptic with same periods, satisfy an algebraic equation:

PA(GA, z) = 0 PB(GB , z) = 0

cf recent work of Bousquet–Melou et al.
P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

The analytic problem
The elliptic parameterization
The solution
Root of unity case
Prospects

Assume q2p = 1. An important case is q = exp(iπ/p) (recall that
Q = (q + q−1)2; for example, Q = 0, 1, 2, 3 corresponds to
p = 2, 3, 4, 6).

Then G± satisfy:

G±(u + ω1) = G±(u)

G±(u + pω2) = G±(u)

i.e. they are elliptic functions with periods ω1, pω2.

We conclude that GA(u) (resp. GB(u)) and z(u), being both
elliptic with same periods, satisfy an algebraic equation:

PA(GA, z) = 0 PB(GB , z) = 0

cf recent work of Bousquet–Melou et al.
P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

The analytic problem
The elliptic parameterization
The solution
Root of unity case
Prospects

Does our construction produce a tower of factors?

Investigate criticality, and compare with Baxter’s conjectures.

Meaning of criticality in terms of factors?

P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

The analytic problem
The elliptic parameterization
The solution
Root of unity case
Prospects

Does our construction produce a tower of factors?

Investigate criticality, and compare with Baxter’s conjectures.

Meaning of criticality in terms of factors?

P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

The analytic problem
The elliptic parameterization
The solution
Root of unity case
Prospects

Does our construction produce a tower of factors?

Investigate criticality, and compare with Baxter’s conjectures.

Meaning of criticality in terms of factors?

P. Zinn-Justin Planar algebras / Potts model



Planar algebras
Potts model

Random lattices
Solution of matrix model

The analytic problem
The elliptic parameterization
The solution
Root of unity case
Prospects

1 As one increases α and β the system becomes more and more
unstable because of the attraction (n > 0) of particles of
opposite kinds. → singularity.

the singularity develops before the two types of particles meet:

= pure gravity

The singularity only occurs when the densities of the two types
of particles touch:

= critical statistical model

2 Baxter, based on numerical work, conjectured a spontaneous
symmetry breaking of the Z/2Z symmetry of the model.
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Criticality
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