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Motivation

We study quantum electrodynamics on Moyal space, which is generated by
coordinates subject to

[qµ, qν ] = iσµν .

This is motivated by

A semiclassical analysis leading to uncertainty relations between
coordinates [Doplicher, Fredenhagen & Roberts 94]

The appearance of such commutation relations in a particular limit of
string theory (σ0i = 0) [Schomerus 99, Seiberg & Witten 99]

Typically, QFTs on this space exhibit a distortion of the dispersion
relation. Quantum electrodynamics seems to be a very interesting
testbed.
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Formal vs Strict

The noncommutativity can either be implemented in a formal or a
strict sense,

(f ? h)(x) = e
i
2
∂yµσ

µν∂zν f (y)h(z)|x=y=z vs f (q)h(q).

The Seiberg-Witten map uses the formal expansion to relate gauge
theories on commutative and noncommutative spaces.

The formal expansion is also the basis for the twist approach of Wess
et al.

In the formal approach the fact that noncommutative spaces are
intrinsically nonlocal is hidden in the appearance of derivatives of
arbitrary order.

It is in general not clear whether the expansion converges.

Here we consider strict noncommutativity.
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Euclidean vs Lorentzian

In QFT on ordinary flat spacetime, it is often convenient to work in
Euclidean signature. The Osterwalder-Schrader theorem then relates
the results obtained on Euclidean space to the ones on the physical
Lorentzian space.

It is straightforward to derive modified Feynman rules in the
noncommutative case from a Euclidean path integral. [Filk 96]

Due to the absence of Osterwalder-Schrader reflection positivity, it is
not clear what this tells us about the Lorentzian case.

A naive application of these rules in the Lorentzian setting leads to a
violation of unitarity for σ0i 6= 0. [Gomis & Mehen 00]

The reason for this is an inappropriate definition of time-ordering.
[Bahns, Doplicher, Fredenhagen & Piacitelli 02]

In the Lorentzian case, one can use the Hamiltonian or the
Yang-Feldman approach.
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Hamiltonian vs Yang-Feldman

In the Hamiltonian approach, one postulates a Hamiltonian H(t) and
expands the time evolution in the coupling constant.

In the Yang-Feldman approach, one directly uses the equation of
motion.

In the commutative case, the Hamiltonian approach yields the
Feynman rules. The Yang-Feldman rules are more complicated than
the Feynman rules, but are believed to be equivalent.

In the NC case, the two approaches differ. The combinatorics of the
Hamiltonian approach is in general more complicated.

In the Hamiltonian approach, the interacting field does, at tree level,
not fulfill the equation of motion. [Bahns 04]

For NCQED, this leads to a violation of transversality at tree level.
[Ohl, Rückl & Zeiner 03]
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Calculus on the noncommutative Minkowski space I

We assume that the commutation relations can be integrated to Weyl
form

e ikqe ipq = e i(k+p)qe−
i
2
kµσµνpν = e i(k+p)qe−

i
2
kσp.

The factor e−
i
2
kσp is called twisting factor.

Functions of the noncommuting coordinates are defined by

f (q) = 1
(2π)2

∫
d4k e−ikq f̂ (k); f̂ (k) = 1

(2π)2

∫
d4k e ikx f (x).

The product of two such functions is given by

f (q)h(q) = 1
(2π)4

∫
d4k e−ikq

∫
d4l f̂ (l)ĥ(k − l)e

i
2
kσl .

For f (x) ∈ S(R4), one obtains a topological ∗-algebra S. A
subalgebra M of its multiplicator algebra is convenient (it contains
the q’s and the e ikq’s). [Gracia-Bondia & Varilly 88]
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Calculus on the noncommutative Minkowski space II

Derivations on M can be defined as

∂µf (q) = (∂µf )(q) = −iσ−1µν [qν , f (q)].

A trace on S is given by∫
d4q f (q) =

∫
d4x f (x) = (2π)2f̂ (0).

A metric is introduced in an ad hoc way by using, e.g.,

L = ηµν∂µφ∂νφ = ∂µφ∂
µφ

as the kinetic term in the Lagrangean.
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Gauge theory I

Inspired by the Serre-Swan theorem, we describe gauge theories by
finitely generated projective M-modules E . The case of
electrodynamics is obtained by choosing E =M and the metric
E × E 3 (ψ, φ) 7→ ψ∗φ ∈M.

We also have to choose a differential calculus over M. We choose
the one generated by dqµ subject to [qµ,dqν ] = 0.

There is a natural pairing between m-forms and symmetric tensor
products of derivations ∂µ given by

〈f dqµ1 . . . dqµm , ∂ν1 ⊗ · · · ⊗ ∂νn〉 = δmn f
∑
π

(−1)sign(π)δµ1νπ(1)
. . . δµmνπ(m)

.

Given a connection D on E and choosing a normalized basis section
s ∈ E , we define the vector potential Aµ as

〈Ds, ∂µ〉 = −iesAµ.

If D is metric, then the Aµ are self-adjoint.
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Gauge theory II

The field strength corresponding to the above connection is

Fµν = i
e 〈D

2s, ∂µ ⊗ ∂ν〉 = ∂µAν − ∂νAµ − ie[Aµ,Aν ].

Under an infinitesimal gauge transformation δλs = −iesλ, Aµ and
Fµν transform as

δλAµ = ∂µλ− ie[Aµ, λ], δλF = ie[λ,F ].

With the action

S = 1
4

∫
d4q FµνF

µν

one obtains the equation of motion

DµF
µν = ∂µF

µν − ie[Aµ,F
µν ] = 0.
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Covariant coordinates

Problem: The naive local observable∫
d4q Fµν f

µν(q)

is not gauge invariant, as F transforms covariantly, and f (q)
does not.

Solution: The covariant coordinates

Xµ = qµ + eσµνAν

transform covariantly. [Madore, Schraml, Schupp & Wess 00]

Proof: δλX
µ = eσµν∂νλ− ie2σµν [Aµ, λ] = −ie[Xµ, λ].

When the universal differential calculus is employed, such a construction is
possible for arbitrary a ∈M. [Bahns, Doplicher, Fredenhagen & Piacitelli 10]
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Local observables

We may now define the local, gauge invariant observable∫
d4q Fµν f

µν(X ).

Elements f (X ) can be defined analogously to f (q):

f (X ) = (2π)−2
∫

d4k e−ikX f̂ (k).

We can write

e ikX = e ikq
∞∑

N=0

(ie)N(2π)−2N
∫ N∏

i=1

d4ki e
−ik1q . . . e−ikNq

× kσÂ(k1) . . . kσÂ(kN)PN(−ikσk1, . . . ,−ikσkN)

with a certain polynomial PN .
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The Yang-Feldman formalism

Ingredient: Eom with a well-posed Cauchy problem.

Example: φ3 model, i.e., (� + m2)φ = λφ2.

Ansatz: φ =
∑∞

n=0 λ
nφn.

⇒ (� + m2)φn =
∑n−1

k=0 φkφn−1−k .

φ0 is the free field. We identify it with the incoming field.

φ1(q) =
∫
d4x ∆ret(x)φ0(q − x)φ0(q − x) = ∆ret × (φ0φ0)(q).

φ2(q) = ∆ret × (φ1φ0 + φ0φ1)(q).

Dispersion relations from two-point function

〈Ω|φ(f )φ(h)|Ω〉 =

∫
d4k f̂ (−k)ĥ(k)Σ(k).

Σ(k) = ∆̂+(k)

(
1 + λ2

∫
d4l ∆̂+(l)∆̂ret(k + l)12(1 + cos kσl)

)
.

Thus, Σ(k) = Σ(k2, (σk)2), hence distorted dispersion relations.
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The goal

We want to compute the two-point correlation function

〈Ω|
(∫

d4q f µν(X )Fµν

)(∫
d4q hλρ(X )Fλρ

)
|Ω〉 (1)

of the interacting field (defined by the Yang-Feldman formalism) to
second order in e.

Because of the presence of the higher order terms in the observables,
the two-point function (1) contains, at order e2, also three- and
four-point functions of the photon field.

Previously, the (time-ordered) two-point function

〈Ω|TAµ(x)Aν(y)|Ω〉

was calculated with the modified Feynman rules, and a severe
distortion of the dispersion relation was found.

Does the same happen in the Yang-Feldman formalism?

Do the covariant coordinates help?
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The Lagrangean

In order to set up the Yang-Feldman series, we need a well-posed
Cauchy problem. Thus, we have to break gauge invariance:

⇒ L = −1
4FµνF

µν + ∂µBA
µ + α

2B
2 − ∂µc̄Dµc .

Nonlinear eom ⇒ Already pure NCQED is self-interacting.

We do not add fermions. At the one-loop level, their contribution is
as in the commutative case.

This transforms covariantly under the BRST transformation

δξAµ = ξDµc ,

δξc = ξ i
2e{c , c},

δξ c̄ = ξB,

δξB = 0.

As usual, δξ is nilpotent.
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The two-point function I

The two-point function contains a lot of terms. We focus on those that
contribute to the discrete spectrum. We write

〈Ω|
(∫

d4q f µν(X )Fµν

)(∫
d4q hλρ(X )Fλρ

)
|Ω〉

=

∫
d4k f̂ µν(−k)ĥλρ(k)Σµνλρ(k).

At zeroth order, we obtain the usual

Σµνλρ(k) = −4(2π)2gνρkµkλ∆̂+(k).

The second order contribution from

4〈Ω|
(∫

d4q f µν(q)∂µAν

)(∫
d4q hλρ(q)∂λAρ

)
|Ω〉

corresponds to the two-point function that was calculated previously
with the modified Feynman rules.
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The self-energy

From these graphs, we obtain

Σ1
µνλρ(k) = −20

3 e
2gνρkµkλ∆̂+(k) lnµ

√
−(σk)2,

Σ2
µνλρ(k) = −4e2kµkλ

(σk)ν(σk)ρ
(σk)4

(
8 ∂
∂m2 ∆̂+(k)− (σk)2

3 ∆̂+(k)
)
.

This coincides with the results obtained with the modified Feynman rules.
[Hayakawa 99]

The first term corresponds to a momentum dependent field strength
renormalization.

The second term was interpreted as a severe distortion of the
dispersion relation. [Matusis, Susskind and Toumbas 00]

But: Not well-defined ⇒ Nonlocal renormalization ambiguity
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The two-point function II

There are many other terms. Most of them do not contribute to the
discrete spectrum or are not relevant for the present discussion.
Using the O(e) contribution of the covariant coordinates in one
observable, we obtain the contribution

Σµνλρ(k) = −8(2π)2kµkλ∆̂+(k)

×
∫

d4l [∆̂+(l) + ∆̂+(−l)]∆̂R(k − l)
sin2 kσl

2
kσl
2

{(kσ)ρlν + (kσ)ν lρ} .

The loop integral is not well-defined. Formally, it is of the form

(σk)ν(σk)ρ
(σk)2

× log. div. + fin.

Thus, we found another nonlocal divergence, stemming from the covariant
coordinates.
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Supersymmetric NCQED

Upon introducing supersymmetry, the term proportional to
(σk)µ(σk)ν

(σk)4

in the self-energy vanishes.

The nonlocal divergence from the covariant coordinates is removed
when the supersymmetric covariant coordinates

Xµ = qµ + eσµν
(

1

4e
σ̄α̇αν D̄α̇

(
e−2eVDαe

2eV
))

= qµ + eσµν
(
Aν − iθσν λ̄+ iλσν θ̄ + higher orders in θ, θ̄

)
are employed.

The only modification to the one-particle spectrum is the nonlocal
wave function renormalization

Σµνλρ(k) = −4e2gνρkµkλ∆̂+(k) lnµ
√
−(σk)2
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Summary & Outlook

Rigorous and complete calculation of the photon self-energy at the
one-loop level (for k2 > 0).

Severe distortion of the dispersion relation or interpretation as a
nonlocal renormalization ambiguity.

The covariant coordinates were fully taken into account.

They also contribute nonlocal divergences.

These vanish upon introducing supersymmetry and using observables
appropriate for the supersymmetric case.

Unfortunately, this only holds for unbroken supersymmetry.

Use nonlocal counterterms and usual dispersion relation as
renormalization condition?
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