An example of quantum group fusion rules and a nonabelian weight lattice

joint work with T. Banica

Roland Vergnioux

Université de Caen, France

Bucarest, april 26th, 2011

3

A B M A B M

Matrix compact quantum groups

Definition

A matrix compact quantum group is a pair (A, u) where A is a unital C^* -algebra generated by the entries of $u \in M_n(A)$ such that

1 there exists $\Delta : A \to A \otimes A$ such that $\Delta(u_{ij}) = \sum u_{ik} \otimes u_{kj}$,

2
$$u$$
 and $\bar{u} = (u_{ii}^*)$ are invertible in $M_n(A)$.

Examples :

•
$$G \subset U_n \text{ compact}$$
: take $A = C(G)$, $u = i_{can} : G \to M_n(C)$,
 $\Delta(f) = ((g, h) \mapsto f(gh)) \in C(G \times G) \simeq C(G) \otimes C(G)$.

- **2** $\Gamma = \langle g_1, \ldots, g_n \rangle$ finitely generated group : take $A = C^*(\Gamma)$ or $C^*_r(\Gamma)$, $u = \operatorname{diag}(g_1, \ldots, g_n)$, and $\Delta(g) = g \otimes g$.
- $A_o(n) = \langle u_{ij} | u = \overline{u}$ unitary \rangle . Heuristically " $A_o(n) = C(O_n^+)$ " where O_n^+ is the "free orthogonal quantum group".

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

There is a notion of *corepresentation* for compact quantum groups.

Theorem (Peter-Weyl-Woronowicz)

Corepresentations of (A, u) are direct sums of irreducibles. Irreducible corepresentations are finite-dimensional.

Fusion rules : for $u, v \in \text{Irrep}(A, u)$, write $u \otimes v = \bigoplus m_{uv}^w w$.

Examples :

- A = C(G) : usual decomposition of tensor products of irreducible representations of G. Have u⊗v ≃ v⊗u.
- A = C*(Γ) : irreducibles correspond to elements of Γ and u⊗v = uv. Thus (m^w_{uv}) is the multiplication table of Γ.
- $A = A_o(n)$. Same fusion rules as SU(2): irreducibles u_k , $k \in \mathbb{N}$ with $u_k \otimes u_l = u_{|k-l|} \oplus u_{|k-l|+2} \oplus \cdots \oplus u_{k+l}$ [Banica].

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Half-liberated orthogonal groups

Observe that $C(O_n) = A_o(n)/\langle ab = ba \mid a, b \in \{u_{ij}\}\rangle$. In other words we have $O_n \subset O_n^+$.

There is an intermediate "liberation" $O_n \subset O_n^* \subset O_n^+$ associated to an intermediate algebra $A_o^*(n)$:

Definition (Banica-Speicher)

$$A_o^*(n) = A_o(n)/\langle abc = cba \mid a, b, c \in \{u_{ij}\} \rangle$$

Non-trivial fact : $A_o(n) \neq A_o^*(n) \neq C(O_n)$ for $n \ge 3$.

イロト 不得 トイヨト イヨト 二日

Half-liberated orthogonal groups

Definition (Banica-Speicher) $A_o^*(n) = A_o(n)/\langle abc = cba \mid a, b, c \in \{u_{ij}\} \rangle$

Brauer diagrams

For each k, l consider the following subspaces of $L(\mathbb{C}^{kn}, \mathbb{C}^{ln})$

$$\operatorname{Hom}_{O_n^+}(u^{\otimes k}, u^{\otimes l}) \subset \operatorname{Hom}_{O_n^*}(u^{\otimes k}, u^{\otimes l}) \subset \operatorname{Hom}_{O_n}(u^{\otimes k}, u^{\otimes l})$$

There is a standard procedure to produce linear maps $\mathbb{C}^{kn} \to \mathbb{C}^{ln}$ from partition diagrams with k upper points and l lower points. Then

• Hom_{$$O_n$$} $(u^{\otimes k}, u^{\otimes l}) =$ Span{all pair partitions}

Omo_n^{*}(u^{⊗k}, u^{⊗l}) = Span{pair part. with even number of crossings}
 Hom_{O⁺}(u^{⊗k}, u^{⊗l}) = Span{non-crossing pair partitions}

Half-liberated orthogonal groups

Definition (Banica-Speicher) $A_o^*(n) = A_o(n)/\langle abc = cba \mid a, b, c \in \{u_{ij}\} \rangle$

Projective version

Projective version of
$$(A, u)$$
 : sub- C^* -algebra $P\!A = \langle u_{jj}u_{kl}^* \rangle \subset A$.

Case $G \subset U_n$: PC(G) = C(PG) where PG is the image of G in PU_n .

Proposition

The compact quantum group PO_n^* is isomorphic to PU_n .

Proof : pair partitions with even number of crossings correspond to pair partitions compatible with labelling $ababa\cdots$ of points.

イロト 不得 トイヨト イヨト ニヨー

Diagonal groups

Definition

Diagonal quotient of
$$(A, u)$$
: $C_u^*(L) = A/\langle u_{ij} = 0 | i \neq j \rangle$.
Diagonal group : $L = \langle u_{ii} \rangle$.

Examples :

•
$$A = C(G), G \subset U_n \text{ connected} \rightarrow L = \hat{T} \text{ where } T = G \cap \mathbb{T}^n$$

$$A = A_o(n) \rightarrow L = (\mathbb{Z}/2\mathbb{Z})^{*n}$$

Example 1 : up to global conjugacy, T is a maximal torus and L is the weight lattice \rightarrow "nonabelian weight lattice" in general ?

Proposition

If the u_{ii} 's are distinct in L, $C^*(L)$ is maximal as a cocommutative quotient of (A, u). This is the case for $A_o^*(n)$.

3

イロト イポト イヨト イヨト

Weights for representations

(A, u) matrix compact quantum group with diagonal group L.

Quotient + decomposition into irreducibles yields : $r \in \operatorname{Rep}(A) \twoheadrightarrow r' \in \operatorname{Rep}(C^*(L)) \twoheadrightarrow \Sigma(r) \subset L$ (with repetitions).

If $G \cap \mathbb{T}^n$ is a maximal torus of $G \subset U_n$, the sets of weights $\Sigma(r)$ classify irreducibles representations r. This also works for O_n^+ , U_n^+ — but not S_n^+ .

Proposition

If $r, s \in \operatorname{Irrep}(O_n^*)$ are distinct then $\Sigma(r) \neq \Sigma(s)$.

Proof : by comparison with the case $G = U_n$.

One can go on :

- dominant and positive weights $L_{++} \subset L_+ \subset L$
- highest weight $\lambda_r \in L_{++}$ for $r \in \operatorname{Irrep}(\mathcal{O}_n^*)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Eusion rules

There is an injective map ψ : Irrep $(O_n^*) \rightarrow$ Irrep (U_n) defined at the level of highest weights :

$$\psi(\lambda \cdot x) = \lambda \text{ for } \lambda \in \mathbb{Z}^n, \ x \in \mathbb{Z}/2\mathbb{Z}.$$

For $r \in \text{Irrep } O_n^*$ and $t \in \text{Irrep } U_n$, put $t^r = t$ if r is even, $t^r = \overline{t}$ else.

Proposition

Let
$$r, s \in \operatorname{Irrep}(O_n^*)$$
. Then $\psi(r \otimes s) = \psi(r) \otimes \psi(s)^r$.

Hence the fusion rules of O_n^* can easily be computed from the ones of U_n . They are noncommutative, although the ones of O_n and O_n^+ are!

イロト 不得下 イヨト イヨト 二日

Fusion rules

Proposition

Let $r, s \in \operatorname{Irrep}(O_n^*)$. Then $\psi(r \otimes s) = \psi(r) \otimes \psi(s)^r$.

Hence the fusion rules of O_n^* can easily be computed from the ones of U_n . They are noncommutative, although the ones of O_n and O_n^+ are!

Cayley graphs :

Fusion rules

Proposition

Let
$$r, s \in \operatorname{Irrep}(O_n^*)$$
. Then $\psi(r \otimes s) = \psi(r) \otimes \psi(s)^r$.

Hence the fusion rules of O_n^* can easily be computed from the ones of U_n . They are noncommutative, although the ones of O_n and O_n^+ are!

Questions :

- When is there a "good" nonabelian weight lattice ?
- 2 Analogues of O_n^* for other groups than U_n ?

- 3

イロト イポト イヨト イヨト