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The setting Compact quantum groups

Matrix compact quantum groups

Definition

A matrix compact quantum group is a pair (A, u) where A is a unital
C ∗-algebra generated by the entries of u ∈ Mn(A) such that

1 there exists ∆ : A→ A⊗A such that ∆(uij) =
∑

uik⊗ukj ,

2 u and ū = (u∗ij) are invertible in Mn(A).

Examples :

1 G ⊂ Un compact : take A = C (G ), u = ican : G → Mn(C ),
∆(f ) = ((g , h) 7→ f (gh)) ∈ C (G × G ) ' C (G )⊗ C (G ).

2 Γ = 〈g1, . . . , gn〉 finitely generated group : take A = C ∗(Γ) or C ∗r (Γ),
u = diag(g1, . . . , gn), and ∆(g) = g⊗g .

3 Ao(n) = 〈uij | u = ū unitary〉. Heuristically “Ao(n) = C (O+
n )” where

O+
n is the “free orthogonal quantum group”.
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The setting Compact quantum groups

Fusion rules

There is a notion of corepresentation for compact quantum groups.

Theorem (Peter-Weyl-Woronowicz)

Corepresentations of (A, u) are direct sums of irreducibles. Irreducible
corepresentations are finite-dimensional.

Fusion rules : for u, v ∈ Irrep(A, u), write u⊗v =
⊕

mw
uvw .

Examples :

1 A = C (G ) : usual decomposition of tensor products of irreducible
representations of G . Have u⊗v ' v⊗u.

2 A = C ∗(Γ) : irreducibles correspond to elements of Γ and u⊗v = uv .
Thus (mw

uv ) is the multiplication table of Γ.

3 A = Ao(n). Same fusion rules as SU(2) : irreducibles uk , k ∈ N with
uk⊗ul = u|k−l | ⊕ u|k−l |+2 ⊕ · · · ⊕ uk+l [Banica].
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The setting Half-liberated orthogonal groups

Half-liberated orthogonal groups

Observe that C (On) = Ao(n)/〈ab = ba | a, b ∈ {uij}〉.
In other words we have On ⊂ O+

n .

There is an intermediate “liberation” On ⊂ O∗n ⊂ O+
n associated to an

intermediate algebra A∗o(n):

Definition (Banica-Speicher)

A∗o(n) = Ao(n)/〈abc = cba | a, b, c ∈ {uij}〉

Non-trivial fact : Ao(n) 6= A∗o(n) 6= C (On) for n ≥ 3.
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The setting Half-liberated orthogonal groups

Half-liberated orthogonal groups

Definition (Banica-Speicher)

A∗o(n) = Ao(n)/〈abc = cba | a, b, c ∈ {uij}〉

Brauer diagrams

For each k , l consider the following subspaces of L(Ckn,Cln)

HomO+
n

(u⊗k , u⊗l) ⊂ HomO∗
n

(u⊗k , u⊗l) ⊂ HomOn(u⊗k , u⊗l)

There is a standard procedure to produce linear maps Ckn → Cln from
partition diagrams with k upper points and l lower points. Then

1 HomOn(u⊗k , u⊗l) = Span{all pair partitions}
2 HomO∗

n
(u⊗k , u⊗l) = Span{pair part. with even number of crossings}

3 HomO+
n

(u⊗k , u⊗l) = Span{non-crossing pair partitions}
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The setting Half-liberated orthogonal groups

Half-liberated orthogonal groups

Definition (Banica-Speicher)

A∗o(n) = Ao(n)/〈abc = cba | a, b, c ∈ {uij}〉

Projective version

Projective version of (A, u) : sub-C ∗-algebra PA = 〈uiju
∗
kl〉 ⊂ A.

Case G ⊂ Un : PC (G ) = C (PG ) where PG is the image of G in PUn.

Proposition

The compact quantum group PO∗n is isomorphic to PUn.

Proof : pair partitions with even number of crossings correspond to pair
partitions compatible with labelling ababa · · · of points.
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Fusion rules A nonabelian weight lattice

Diagonal groups

Definition

Diagonal quotient of (A, u) : C ∗u (L) = A/〈uij = 0 | i 6= j〉.
Diagonal group : L = 〈uii 〉.

Examples :

1 A = C (G ), G ⊂ Un connected I L = T̂ where T = G ∩ Tn

2 A = Ao(n) I L = (Z/2Z)∗n

3 A = A∗o(n) I L = 〈ei · τ〉 ⊂ Zn o (Z/2Z), L ' Zn−1 o (Z/2Z)

Example 1 : up to global conjugacy, T is a maximal torus and L is the
weight lattice I “nonabelian weight lattice” in general ?

Proposition

If the uii ’s are distinct in L, C ∗(L) is maximal as a cocommutative
quotient of (A, u). This is the case for A∗o(n).
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Fusion rules A nonabelian weight lattice

Weights for representations

(A, u) matrix compact quantum group with diagonal group L.

Quotient + decomposition into irreducibles yields :
r ∈ Rep(A) I r ′ ∈ Rep(C ∗(L)) I Σ(r) ⊂ L (with repetitions).

If G ∩ Tn is a maximal torus of G ⊂ Un, the sets of weights Σ(r) classify
irreducibles representations r . This also works for O+

n , U+
n — but not S+

n .

Proposition

If r , s ∈ Irrep(O∗n) are distinct then Σ(r) 6= Σ(s).

Proof : by comparison with the case G = Un.

One can go on :

dominant and positive weights L++ ⊂ L+ ⊂ L

highest weight λr ∈ L++ for r ∈ Irrep(O∗n)
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Fusion rules Fusion rules

Fusion rules
There is an injective map ψ : Irrep(O∗n)→ Irrep(Un) defined at the level
of highest weights :

ψ(λ · x) = λ for λ ∈ Zn, x ∈ Z/2Z.

For r ∈ IrrepO∗n and t ∈ IrrepUn, put tr = t if r is even, tr = t̄ else.

Proposition

Let r , s ∈ Irrep(O∗n). Then ψ(r⊗s) = ψ(r)⊗ψ(s)r .

Hence the fusion rules of O∗n can easily be computed from the ones of Un.
They are noncommutative, although the ones of On and O+

n are!
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Fusion rules Fusion rules

Fusion rules

Proposition

Let r , s ∈ Irrep(O∗n). Then ψ(r⊗s) = ψ(r)⊗ψ(s)r .

Hence the fusion rules of O∗n can easily be computed from the ones of Un.
They are noncommutative, although the ones of On and O+

n are!

Cayley graphs :

PU(3) Ao*(3) SU(3)
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Fusion rules Fusion rules

Fusion rules

Proposition

Let r , s ∈ Irrep(O∗n). Then ψ(r⊗s) = ψ(r)⊗ψ(s)r .

Hence the fusion rules of O∗n can easily be computed from the ones of Un.
They are noncommutative, although the ones of On and O+

n are!

Questions :

1 When is there a “good” nonabelian weight lattice ?

2 Analogues of O∗n for other groups than Un ?
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