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The idea of uncertainty relations between coordinate and
momentum plays crucial role in QM

[x , px ] = i~ <=> ∆x∆p ≥ ~
2

Dirac [1] was one of the first to realize that the above scheme
could be applied in attempt to quantize the space itself by
promoting the coordinates to some operators satisfying
commutator relations. One particular realization is given by
[2]. It replaces the coordinates on the sphere by the algebra
Mn of n × n su(2) generators

[Xa,Xb] = iεabcXc

A state in which the coordinates obey those commutation
relations is called Fuzzy sphere
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Overview of the model

A particular system that has Fuzzy sphere state as ground state is
defined by the action[3] :

S[X ] = NTr
(
− 1

4
[Xa,Xb]2 +

2iα

3
εabcXaXbXc

)
(1)

Where:

Xa are traceless hermitian N × N matrices

α is parameter of the model. If we make the substitution
Xa → αDa, we see that α4 could be interpreted as
dimensionless inverse temperature. It would be convenient to
use α̃ = α√

N

The system has two distinct phases separated by the critical

value α̃∗ =
(
8
3

) 3
4
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Between matrix phase and fuzzy sphere

Matrix phase

The ground state is
determined by mutually
commuting random matrices

Fuzzy sphere phase

The matrices have N distinct
eigenvalues
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Matrix phase

Occurs for α̃ < α̃∗. High temperature regime

In this phase YM term is more important and Xa are
commuting matrices

Expectation value of the action is

< S >=< YM >= 3(N2−1)
4 > 0

Eigenvalues of the matrices are even distributed around zero
inside the parabola f (x) = 3

4a3
(a2 − x2)

Specific heat Cv = <S2>−<S>2

N2 = <S>
N2 − α̃4 d

dα̃4

(
<S>
N2

)
= 3

4
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Fuzzy sphere phase

Occurs for α̃ > α̃∗. Low temperature phase

In this phase the ground state is realized by N-dimensional
su(2) generators

Xa ∼ αLa

Expectation value of the action is < S >= −α4Nc2c
adj
2

12 < 0

Eigenvalues of the matrices are
λ = {−αN−1

2 ,−αN−3
2 . . . αN−1

2 }
Specific heat Cv = 1
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As the ground state in the fuzzy sphere regime is proportional
to La. We can define a scaling field φ and make the ansatz

Xa = φαLa + Aa

We can now compute the effective free energy of the system
in terms of φ using the statistical mechanics relation
F = −T ln(Z )

F

N2
=

3

4
ln α̃4 +

α̃4

2

(φ4
4
− φ3

3

)
+ ln α̃φ

The equilibrium state of a system is characterized by a
minimum of the free energy. This could be used to compute
explicitly the values of some observables while the system is in
fuzzy sphere phase.
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Phase transition

Naturally rises the question what is the behavior of the system in
the border between those two completely different regimes. In
large N limit some of the properties of the system become
divergent in the point α̃∗

The theory of phase transitions suggests that near a phase
transition the divergent observables as function of
temperature behave like

A(T ) ∼ Ac +A±× |T −T ∗|−
α
4 ∼ Ac +A±× |α̃− α̃∗|−α (2)

Where α is called critical exponent and has specific value for
every phase transition
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By substitution of extremal values of φ near the critical point. For
the specific heat we get

Cv (α̃) =

{
29
36 + 1

2
11
8 3

7
8

1√
α̃−α̃∗ +O((α̃− α̃∗)

1
2 ) for α̃ > α̃∗

3
4 for α̃ < α̃∗

The above expressions tell us that the phase transition is rather
unusual as the critical exponents for the specific heat are different
when the temperature approaches the critical point from above or
from below

α =

{
0 or A− = 0 for α̃− α̃∗ → 0−

1
2 for α̃− α̃∗ → 0+
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Phase transition and finite systems

Martin Vachovski Critical exponents in matrix models



Overview
Non-commutative geometry

The Model
Phases

Phase transition and finite systems

Martin Vachovski Critical exponents in matrix models



Overview
Non-commutative geometry

The Model
Phases

Phase transition and finite systems

Martin Vachovski Critical exponents in matrix models



Overview
Non-commutative geometry

The Model
Phases

Phase transition and finite systems

Martin Vachovski Critical exponents in matrix models



Overview
Non-commutative geometry

The Model
Phases

Phase transition and finite systems

Martin Vachovski Critical exponents in matrix models



Overview
Non-commutative geometry

The Model
Phases

Phase transition and finite systems

Martin Vachovski Critical exponents in matrix models



Overview
Non-commutative geometry

The Model
Phases

The numerical results indicate some effects which are due to the
finite size of the system under consideration

The critical point is actually a function of the size of the
matrices α̃∗ → α̃m(N)

Specific heat is not divergent and rather has a maximum in
the critical point C ∗v → C ∗v (α̃m(N))

In order to evaluate those effects, following C.Domb and Lebowitz
[4] we introduce new critical exponents.

|α̃m(N)− α̃∗| ∼ Const × N−λ

C ∗v (α̃m(N)) ∼ Const × Nω
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All three exponents α, λ and ω characterize the phase transition of
the specific heat. Under the assumptions (which are known to be
true for lattice theories)

The size of the system scales with the size of the matrices

ξ(αm(N)) ∼ L ∼ Const × N (3)

The maximum correlation length for a system with finite size
is in the same order as the size of the system L.

The shift exponent λ could be related to the correlation
length exponent ν

λ =
1

ν
(4)
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The theory of finite size scaling predicts the relation

ω = α
1

ν
= αλ (5)
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We have numerically obtained values of λ and ω.

(α̃m(N)− α̃∗) as function of
N in double-logarithmic scale.

C ∗v (α̃m) as function of N in
double-logarithmic scale.

The coefficients in the linear functions represent respectively λ and
ω.
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The numerical calculations for the exponents are summarized in
the following table

Exponent value uncertainty method

λ 1.73 0.06 numerical
ω 0.65 0.03 numerical
α 0.5 Na theory

λα = 0.86± 0.03

ω = 0.65± 0.03

The numerically computed values for ω and λ don’t fulfill (5)
within the estimated error
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Possible explanations

The assumption that the size of the system (and the maximal
correlation length) is proportional to the matrix size (3) does
not hold. In order this to be verified one can study the
correlation matrix

< (Xa)ij(Xb)kl >

However the above quantity is relatively hard to compute
using numerical techniques as it is a matrix with 3N4 entries

Alternativelly one can try to modify relation (3) to

L ∼ Const × N → L ∼ Const × Nθ (6)
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Possible explanations

The assumption that the finite scaling depends only of the
correlation length (4) does not hold. Which is unlikely since it
is shown to be true for wide range of systems. Also RG
techniques support it.

α has a different value, which is due to higher order
corrections

Underestimating the errors in numerically computed quantities
ω and λ and/or undetected systematic error in the numerical
algorithm
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Thank you for your attention!
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”Simulations with the Hybrid Monte Carlo algorithm:
implementation and data analysis”
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