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Introduction I

Shape theory:
a tool to study global properties of spaces
better than homotopy theory if a space has singularities

Idea:
approximate a space by nicer spaces (building blocks)
study approximating system instead of original space

commutative world noncommutative world

object:
metric space X separable C∗-algebra A

building
blocks:

absolute neighborhood
retracts Xk

semiprojective
C∗-algebras Ak

approx-
imation:

limit (= inverse limit) colimit (=inductive limit)

X ∼= lim
←−

(. . .→ X2 → X1} A ∼= lim
−→

(A1 → A2 → . . .}
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Introduction II

problem: Are there enough building blocks in order to
approximate every space?

commutative world: Yes.
(every metric spaces is an inverse limit of ANRs)

noncommutative world: We don’t know.

Question 1.1 (Blackadar)

Which C∗-algebras are inductive limits of semiprojectives?

Theorem 1.2 (Sørensen, T)

C(X ) is semiprojective⇔ X is an ANR with dim(X ) ≤ 1.

Theorem 1.3 (Loring, Shulman)

For every C∗-algebra A, the cone CA = C0((0,1])⊗ A is an
inductive limit of projective C∗-algebras.
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Noncommutative shape theory I

Blackadar developed noncommutative shape theory for all
separable C∗-algebras
to avoid possible problems with too few building blocks,
change notion of approximation:

Definition 2.1

A morphism ϕ : A→ B is called (weakly) semiprojective,
abbreviated by (W)SP, if:

∀ C with increasing sequence of
ideals J1 � J2 � . . .� C,
σ : B → C/

⋃
k Jk (and ε > 0 and

finite subset F ⊂ A)

∃ k and ψ : A→ C/Jk such that
the diagram commutes (up to ε
on F):

C

C/Jk

A ϕ

ψ

B σ C/
⋃

k Jk
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Noncommutative shape theory II

Definition 2.2

If in the above definition, there is always a lift σ : A→ C, then
the morphism is called (weakly) projective.
A C∗-algebra A is called (weakly) (semi-)projective, if the
morphisms idA : A→ A is.

A semiprojective:

C/Jk

A
σ

ψ

C/
⋃

k Jk

A projective:

C

A σ

ψ

C/J

Theorem 2.3 (Blackadar)

Every C∗-algebras is the inductive limit of an inductive system
with semiprojective connecting maps. Such a system is called
shape system.
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Noncommutative shape theory III

Definition 2.4

A and B are shape equivalent, denoted A ∼Sh B, if they have
shape systems with intertwinings that make the following
diagram commute up to homotopy:

A1
γ1

α1

A2
γ2

α2

A3 . . . A

B1
θ1

β1

B2

β2

. . . B

If only upper triangles commute, say A is homotopy
dominated by B, denoted A -Sh B.

Remark 2.5

Shape theory extends homotopy theory:
A ≃ B ⇒ A ∼Sh B; A � B ⇒ A -Sh B
converses hold if A,B are SP
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Noncommutative shape theory IV

For X a compact, connected, metric space, and x ∈ X , set:

C0(X0) := C0(X \ {x})

Example 2.6 (Dadarlat)

If X ,Y are compact, connected, metric spaces, then:

C0(X0) ∼Sh C0(Y0) ⇔ (X , x) ∼Sh (Y , y)

This means: noncommutative shape theory = classical shape
theory for commutative C∗-algebras. However:

C0(X0)⊗K ∼Sh C0(Y0)⊗K ⇔ K ∗(X , x) ∼= K ∗(Y , y)
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Inductive limits of projective C∗-algebras I

Need criterion to decompose a C∗-algebra as inductive limit.
For example: Given A = lim

−→
Ak and Ak = lim

−→l
Al

k . When is A an
inductive limit of some algebras Al

k ?

Theorem (Dadarlat, Eilers: AAH 6= AH)

There exists A = lim
−→

Ak such that each Ak is AH (an inductive
limit of homogeneous algebras), but A is not AH.

Proposition 3.1 (T)

A = lim
−→

Ak , each Ak = lim
−→l

Al
k inductive limit of f.g. WSP

algebras Al
k ⇒ A is inductive limit of some algebras Al

k .

Notation

AP := class of inductive limits of f.g. projective algebras

Theorem 3.2 (Loring, Shulman)

A is f.g. ⇒ the cone CA = C0((0,1])⊗ A lies in AP
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Inductive limits of projective C∗-algebras II

Theorem 3.3 (T)

Let A be a C∗-algebra. Then the following are equivalent:
1 A lies in AP
2 A ∼Sh 0 (A has trivial shape)
3 A is inductive limit of (f.g.) cones
4 A is inductive limit of (f.g.) contractible C∗-algebras

Remark 3.4

This generalizes Loring, Shulman, since C0((0,1])⊗ A ≃ 0

Corollary 3.5 (Closure properties of AP)

AP is closed under countable direct sums, inductive limits,
approximation by sub-C∗-algebras and maximal tensor
products with any other C∗-algebra,
i.e., A⊗max B ∈ AP as soon as A ∈ AP
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Inductive limits of projective C∗-algebras III

sketch of proof.

”(2)⇒(1)”: A ∼Sh 0 means:

A1
γ1 A2

γ2
. . . A

0 0 . . . 0

⇒ γk ≃ 0, which corresponds naturally to a morphism
Γk : Ak → CAk+1 such that γk = ev1 ◦Γk

A1

Γ1

γ1 A2

Γ2

γ2
. . . A = lim

−→
Ak

∼=

CA2

ev1

CA3 . . . A = lim
−→

CAk

∼=

each CAk ∈ AP ⇒ A ∈ AP [by criterion for inductive limit]
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Inductive limits of projective C∗-algebras IV

Corollary 3.6

Every contractible C∗-algebra is an inductive limit of projective
C∗-algebras.

Remark 3.7

This is the non-commutative analogue of the following classical
result: Every contractible space is an inverse limit of ARs.

Example 3.8

X := {0} × [−1,1] ∪ {(x , sin(1/x)) ∈ R
2 | 0 < x ≤ 1/π}

X0 := X \ {(1/π,0)}

Then C0(X0) ∼Sh 0, while C0(X0) 6≃ 0.
For every algebra A, C0(X0,A) is inductive limit of projectives.
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Inductive limits of projective C∗-algebras V

Example 3.9 (Dadarlat)

There exists a commutative C∗-algebra A = C0(X , x0) such that
A⊗K ≃ 0 (in particular A⊗K ∼Sh 0), while A ≁Sh 0.

Corollary 3.10

Trivial shape does not pass to full hereditary sub-C∗-algebras.

Proposition 3.11 (T)

Let (Ak , γk ) be an inductive system. Then there exists an
inductive system (Bk , δK ) with surjective connecting morphisms
and such that lim

−→
Ak
∼= lim
−→

Bk .
Moreover, we may assume Bk = Ak ∗ F∞, where
F∞ := C∗(x1, x2, . . . | ‖xi‖ ≤ 1) is the universal C∗-algebra
generated by a countable number of contractive generators.
If Ak is (semi-)projective, then so is Ak ∗ F∞.
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Inductive limits of projective C∗-algebras VI

Corollary 3.12

A ∼Sh 0⇒ A is inductive limit of projective C∗-algebra with
surjective connecting morphisms.

Corollary 3.13

Projectivity does not pass to full hereditary sub-C∗-algebras.

Proof.

Use example of Dadarlat: A⊗K ≃ 0 but A ≁Sh 0
A⊗K ∼= lim

−→
Pk with Pk projective and surjective connecting

morphisms γk : Pk → Pk+1

Consider Qk := γ−1
∞,k (A) ⊂ Pk . Then A ∼= lim

−→
Qk .

A ⊂ A⊗K full hereditary⇒ Qk ⊂ Pk full hereditary.
If all Qk were projective, then A would have trivial shape, a
contradiction. Thus, some algebras Qk are not projective.
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Relations between the different classes I

Lemma 4.1

Given α : A→ P, β : P → A with β ◦ α = idA and P projective.
⇒ A projective.

Proof.

Given lifting problem ϕ : A→ C/J, need lift ψ : A→ C.

C

π

A α

idA

P
β

ω

A
ϕ

C/J

P projective⇒ get lift ω : P → C for ϕ ◦ β : P → C/J
Then ψ := ω ◦ α : A→ B is desired lift for ϕ
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Relations between the different classes II

Theorem 4.2 (T)

A projective⇔ A semiprojective and A ≃ 0.

Proof.

homotopy idA ≃ 0 induces
natural morphism ϕ : A→ CA
such that idA = ev1 ◦ϕ.
⇒ CA ∼= lim

−→
Pk for projectives

Pk with surjective connecting
maps [by L-S]
Semiprojectivity of A gives lift
α : A→ Pk (to some k) such
that (ev1 ◦γk ) ◦ α = idA. Lemma
implies A is projective.

A
ϕ

α

idA

CA ev1
A

Pk

γk

this verifies a conjecture of Loring
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Relations between the different classes III

Proposition 4.3 (Loring)

A weakly projective C∗-algebra has trivial shape.

WP also implies WSP. Other implication proved using that
C∗-algebra with trivial shape is inductive limit of projectives:

Theorem 4.4

A weakly projective⇔ A weakly semiprojective and A ∼Sh 0.

The above theorems are exact analogues of results in classical
shape theory:

commutative
(for space X ):

X is AR
⇔ X is ANR and X ≃ ∗

X is AAR
⇔ X is AANR and X ∼Sh ∗

noncommutative
(for C∗-algebra A):

A is P
⇔ A is SP and A ≃ 0

A is WP
⇔ A is WSP and A ∼Sh 0
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Inductive limits of semiprojectives I

Generalizing the above ideas, and using a mapping cylinder
construction, one can prove the following:

Theorem 4.5 (T)

The class ASP is closed under shape domination:
If A -Sh B and B is an inductive limit of f.g. semiprojective
C∗-algebras, then so is A.

If A ∼Sh C and B ∼Sh D, then A⊗max B ∼Sh C ⊗max D. Assume
B ∼Sh C. Then A lies in ASP if and only if A⊗max B does.

Example 4.6

We have C([0,1]k ) ≃ C. Thus C([0,1]k ,A) is a limit of
semiprojectives if and only if A is.
For example, C([0,1]k ,On) is a limit of semiprojectives.

Open Problem 4.7 (Katsura)

Is C([0,1],On) semiprojective?
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