Inductive limits of projective C^* -algebras.

Hannes Thiel

University of Copenhagen, Denmark

26. April 2011 EU-NCG 4th annual meeting "Simion Stoilow" Institute of Mathematics Bucharest, Romania

Introduction I

Shape theory:

- a tool to study global properties of spaces
- better than homotopy theory if a space has singularities Idea:
 - approximate a space by nicer spaces (building blocks)
 - study approximating system instead of original space

	commutative world	noncommutative world
object:	metric space X	separable C*-algebra A
building blocks:	absolute neighborhood retracts X_k	semiprojective C^* -algebras A_k
approx- imation:	limit (= inverse limit)	colimit (=inductive limit)
	$X \cong \varprojlim (\ldots \to X_2 \to X_1)$	$A\cong \varinjlim(A_1\to A_2\to\ldots)$

Introduction II

- problem: Are there enough building blocks in order to approximate every space?
- commutative world: Yes. (every metric spaces is an inverse limit of ANRs)
- noncommutative world: We don't know.

Question 1.1 (Blackadar)

Which C^* -algebras are inductive limits of semiprojectives?

Theorem 1.2 (Sørensen, T)

C(X) is semiprojective $\Leftrightarrow X$ is an ANR with dim $(X) \leq 1$.

Theorem 1.3 (Loring, Shulman)

For every C^{*}-algebra A, the cone $CA = C_0((0, 1]) \otimes A$ is an inductive limit of projective C^{*}-algebras.

Noncommutative shape theory I

- Blackadar developed noncommutative shape theory for all separable C*-algebras
- to avoid possible problems with too few building blocks, change notion of approximation:

Definition 2.1

A morphism $\varphi : A \rightarrow B$ is called (weakly) semiprojective, abbreviated by (W)SP, if:

- ∀ C with increasing sequence of ideals J₁ ⊲ J₂ ⊲ ... ⊲ C,
 σ: B → C/∪_k J_k (and ε > 0 and finite subset F ⊂ A)
- ∃ k and ψ: A → C/J_k such that the diagram commutes (up to ε on F):

Definition 2.2

If in the above definition, there is always a lift $\sigma : A \to C$, then the morphism is called **(weakly) projective**. A C^{*}-algebra A is called (weakly) (semi-)projective, if the morphisms id_A: $A \to A$ is.

Theorem 2.3 (Blackadar)

Every C* -algebras is the inductive limit of an inductive system with semiprojective connecting maps. Such a system is called **shape system**.

Definition 2.4

A and B are **shape equivalent**, denoted $A \sim_{Sh} B$, if they have shape systems with intertwinings that make the following diagram commute up to homotopy:

If only upper triangles commute, say A is **homotopy dominated** by B, denoted $A \preceq_{Sh} B$.

Remark 2.5

Shape theory extends homotopy theory: $A \simeq B \Rightarrow A \sim_{Sh} B; \quad A \preceq B \Rightarrow A \preceq_{Sh} B$ converses hold if A, B are SP For X a compact, connected, metric space, and $x \in X$, set:

 $C_0(X_0) := C_0(X \setminus \{x\})$

Example 2.6 (Dadarlat)

If X, Y are compact, connected, metric spaces, then:

$$C_0(X_0) \sim_{Sh} C_0(Y_0) \quad \Leftrightarrow \quad (X,x) \sim_{Sh} (Y,y)$$

This means: noncommutative shape theory = classical shape theory for commutative C^* -algebras. However:

 $C_0(X_0)\otimes \mathbb{K}\sim_{Sh} C_0(Y_0)\otimes \mathbb{K} \quad \Leftrightarrow \quad K^*(X,x)\cong K^*(Y,y)$

Inductive limits of projective C*-algebras I

Need criterion to decompose a C^* -algebra as inductive limit. For example: Given $A = \varinjlim A_k$ and $A_k = \varinjlim_I A'_k$. When is A an inductive limit of some algebras A'_k ?

Theorem (Dadarlat, Eilers: $AAH \neq AH$)

There exists $A = \varinjlim A_k$ such that each A_k is AH (an inductive limit of homogeneous algebras), but A is not AH.

Proposition 3.1 (T)

 $A = \varinjlim_{k} A_{k}$, each $A_{k} = \varinjlim_{l} A_{k}^{l}$ inductive limit of f.g. WSP algebras $A_{k}^{l} \Rightarrow A$ is inductive limit of some algebras A_{k}^{l} .

Notation

AP := class of inductive limits of *f.g.* projective algebras

Theorem 3.2 (Loring, Shulman)

A is f.g. \Rightarrow the cone $CA = C_0((0, 1]) \otimes A$ lies in $A\mathcal{P}$

Inductive limits of projective C*-algebras II

Theorem 3.3 (T)

Let A be a C*-algebra. Then the following are equivalent:

- A lies in AP
- 2 $A \sim_{Sh} 0$ (A has trivial shape)
- A is inductive limit of (f.g.) cones
- A is inductive limit of (f.g.) contractible C*-algebras

Remark 3.4

This generalizes Loring, Shulman, since $C_0((0, 1]) \otimes A \simeq 0$

Corollary 3.5 (Closure properties of AP)

 $A\mathcal{P}$ is closed under countable direct sums, inductive limits, approximation by sub-C*-algebras and maximal tensor products with any other C*-algebra, i.e., $A \otimes_{max} B \in A\mathcal{P}$ as soon as $A \in A\mathcal{P}$

Inductive limits of projective C*-algebras III

sketch of proof.

"(2) \Rightarrow (1)": $A \sim_{Sh} 0$ means:

 $\Rightarrow \gamma_k \simeq 0$, which corresponds naturally to a morphism $\Gamma_k : A_k \to CA_{k+1}$ such that $\gamma_k = ev_1 \circ \Gamma_k$

each $CA_k \in A\mathcal{P} \Rightarrow A \in A\mathcal{P}$ [by criterion for inductive limit]

Inductive limits of projective C*-algebras IV

Corollary 3.6

Every contractible C^* -algebra is an inductive limit of projective C^* -algebras.

Remark 3.7

This is the non-commutative analogue of the following classical result: Every contractible space is an inverse limit of ARs.

Example 3.8

 $egin{aligned} X &:= \{0\} imes [-1,1] \cup \{(x, \sin(1/x)) \in \mathbb{R}^2 \mid 0 < x \leq 1/\pi\} \ X_0 &:= X \setminus \{(1/\pi, 0)\} \end{aligned}$

Then $C_0(X_0) \sim_{Sh} 0$, while $C_0(X_0) \not\simeq 0$. For every algebra *A*, $C_0(X_0, A)$ is inductive limit of projectives.

Inductive limits of projective C*-algebras V

Example 3.9 (Dadarlat)

There exists a commutative C^* -algebra $A = C_0(X, x_0)$ such that $A \otimes \mathbb{K} \simeq 0$ (in particular $A \otimes \mathbb{K} \sim_{Sh} 0$), while $A \approx_{Sh} 0$.

Corollary 3.10

Trivial shape does not pass to full hereditary sub-C*-algebras.

Proposition 3.11 (T)

Let (A_k, γ_k) be an inductive system. Then there exists an inductive system (B_k, δ_K) with surjective connecting morphisms and such that $\varinjlim A_k \cong \varinjlim B_k$. Moreover, we may assume $B_k = A_k * \mathcal{F}_\infty$, where $\mathcal{F}_\infty := C^*(x_1, x_2, \dots | ||x_i|| \le 1)$ is the universal C^* -algebra generated by a countable number of contractive generators. If A_k is (semi-)projective, then so is $A_k * \mathcal{F}_\infty$.

Corollary 3.12

 $A \sim_{Sh} 0 \Rightarrow A$ is inductive limit of projective C^{*}-algebra with surjective connecting morphisms.

Corollary 3.13

Projectivity does not pass to full hereditary sub-C*-algebras.

Proof.

Use example of Dadarlat: $A \otimes \mathbb{K} \simeq 0$ but $A \approx_{Sh} 0$ $A \otimes \mathbb{K} \cong \varinjlim P_k$ with P_k projective and surjective connecting morphisms $\gamma_k \colon P_k \to P_{k+1}$ Consider $Q_k := \gamma_{\infty,k}^{-1}(A) \subset P_k$. Then $A \cong \varinjlim Q_k$. $A \subset A \otimes \mathbb{K}$ full hereditary $\Rightarrow Q_k \subset P_k$ full hereditary. If all Q_k were projective, then A would have trivial shape, a contradiction. Thus, some algebras Q_k are not projective.

Relations between the different classes I

Lemma 4.1

Given $\alpha : A \rightarrow P$, $\beta : P \rightarrow A$ with $\beta \circ \alpha = id_A$ and P projective. \Rightarrow A projective.

Proof.

Given lifting problem $\varphi \colon A \to C/J$, need lift $\psi \colon A \to C$.

P projective \Rightarrow get lift $\omega : P \to C$ for $\varphi \circ \beta : P \to C/J$ Then $\psi := \omega \circ \alpha : A \to B$ is desired lift for φ

Theorem 4.2 (T)

A projective \Leftrightarrow A semiprojective and A \simeq 0.

Proof.

homotopy $id_A \simeq 0$ induces natural morphism $\varphi : A \to CA$ such that $id_A = ev_1 \circ \varphi$. $\Rightarrow CA \cong \varinjlim P_k$ for projectives P_k with surjective connecting maps [by L-S] Semiprojectivity of A gives lift $\alpha : A \to P_k$ (to some k) such that $(ev_1 \circ \gamma_k) \circ \alpha = id_A$. Lemma implies A is projective.

this verifies a conjecture of Loring

Proposition 4.3 (Loring)

A weakly projective C*-algebra has trivial shape.

WP also implies WSP. Other implication proved using that C^* -algebra with trivial shape is inductive limit of projectives:

Theorem 4.4

A weakly projective \Leftrightarrow A weakly semiprojective and A $\sim_{Sh} 0$.

The above theorems are exact analogues of results in classical shape theory:

commutative (for space *X*):

- X is AR
 - \Leftrightarrow X is ANR and X $\simeq *$
- X is AAR \Leftrightarrow X is AANR and X $\sim_{Sh} *$

noncommutative (for C*-algebra A):

• A is P $\Leftrightarrow A$ is SP and $A \simeq 0$

• A is WP $\Leftrightarrow A$ is WSP and $A \sim_{Sh} 0$

Inductive limits of semiprojectives I

Generalizing the above ideas, and using a mapping cylinder construction, one can prove the following:

Theorem 4.5 (T)

The class ASP is closed under shape domination: If $A \preceq_{Sh} B$ and B is an inductive limit of f.g. semiprojective C^* -algebras, then so is A.

If $A \sim_{Sh} C$ and $B \sim_{Sh} D$, then $A \otimes_{max} B \sim_{Sh} C \otimes_{max} D$. Assume $B \sim_{Sh} \mathbb{C}$. Then A lies in ASP if and only if $A \otimes_{max} B$ does.

Example 4.6

We have $C([0,1]^k) \simeq \mathbb{C}$. Thus $C([0,1]^k, A)$ is a limit of semiprojectives if and only if A is. For example, $C([0,1]^k, \mathcal{O}_n)$ is a limit of semiprojectives.

Open Problem 4.7 (Katsura)

Is $C([0, 1], \mathcal{O}_n)$ semiprojective?