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Introduction: KMS states

A: C*-algebra. “algebra of observables”.

αt : one-parameter automorphism group of A. “time-translation”.
We want to study thermal equilibrium states.

KMS state on C*-algebra

A β-KMS state ϕ on A with respect to αt is a state with the following
condition: for any x , y ∈ A there is an analytic function f such that

fx ,y (t) = ϕ(xαt(y)), fx ,y (t + i β) = ϕ(αt(y)x).

T = 1
β is called the temperature of ϕ.
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Introduction: examples of KMS states

Example (matrix algebra)

A = Mn(C), αt = Ad(e itH), H: positive.

The state ϕ(x) = Tr(e−βHx)
Tr(e−βH ) is a

β-KMS state.

The Gibbs state in grand canonical ensemble.

Remark

For finite dimensional systems, the KMS condition characterizes the
Gibbs state.

For infinite dimensional A, the Hamiltonian H is typically not trace-class.

Example (modular automorphism group)

A = M, a von Neumann algebra,ϕ: a faithful normal state, σϕ: the
modular automorphism. ϕ is a β-KMS state with β = −1.
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Introduction: conformal nets

Spacetime: the circle S1 = R∪ {∞}.

Möbius symmetry PSL(2, R): translation τs : t 7→ t + s, dilation
δs : t 7→ est, rotation ρs : z 7→ e isz .

Diffeomorphism covariance.

Conformal net

A conformal net A is an assignment of von Neumann algebra A(I ) to
each interval I ⊂ S1 such that

I ⊂ J ⇒ A(I ) ⊂ A(J)
I ∩ J = ∅⇒ [A(I ),A(J)] = 0.

There is a projective representation U : Diff(S1)→ U (H) such that
U(g)A(I )U(g)∗ = A(gI ), with positive generator of rotation.

There is a vector Ω invariant under PSL(2, R) ⊂ Diff(S1).
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KMS states on conformal nets

Translation on S1 = R∪ {∞} corresponds to the translation in lightlike
direction in two-dimension.

Main objects:

A =
⋃
IbR

A(I )
‖·‖

, the quasilocal algebra.

αt = AdU(τt), where τt is translation.

Uniformity of the phase structure

Dilation covariance: correspondence between KMS states in different
temperatures.

ϕ is a β-KMS state ⇐⇒ ϕ ◦AdU(δs) is a βes -KMS state.

We consider always β = 1.
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Geometric KMS state

Fact: Bisognano-Wichmann property

The vacuum state ω is a KMS state for A(R+) with respect to dilation.

Fact: the exponential map

The exponential map
t 7−→ et

is a diffeomorphism between R and R+, and this intertwines translation
and dilation.
This diffeomorphism Exp is implemented locally by a unitary U.

Theorem (The geometric KMS state)

The state ω ◦ Exp is well defined and a KMS state with respect to
translation.
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Complete rationality

Complete rationality

A conformal net A is said to be completely rational if it satisfies the
following:

Split property: for I b J,∃F type I factor s.t A(I ) ⊂ F ⊂ A(J).

Strong additivity: A(I ) = A(I1) ∨A(I2) if I1 ∪ I2 = I \ {p}.
The index of A(I1 ∪ I3) ⊂ A(I2 ∪ I4)′ is finite (S1 = I1 ∪ I2 ∪ I3 ∪ I4).

Examples of complete rational nets

Loop group nets (current algebras with compact group G ).

Virasoro nets with c < 1 (the algebras of stress-energy tensor).

Finite index inclusions and extensions.

Theorem (Uniqueness of KMS state)

Any completely rational net admits only the geometric KMS state.
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Virasoro nets with c < 1 (the algebras of stress-energy tensor).

Finite index inclusions and extensions.

Theorem (Uniqueness of KMS state)

Any completely rational net admits only the geometric KMS state.
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Thermal completion

Thermal completion

ϕ: a primary KMS state on a net A.

πϕ: the GNS representation with respect to ϕ.

Φ: the corresponding GNS vector.

The inclusion (πϕ(A(R+)) ⊂ πϕ(A(R)), Φ) is a standard half-sided
modular inclusion.
We can construct a conformal net called the thermal completion of A
with respect to ϕ.

In completely rational case, the thermal completion is an irreducible
conformal extension of the original net with finite index.
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Complete rationality: finiteness of sectors and extensions

Fact

A completely rational net admits only finitely many inequivalent DHR
representations.

A completely rational net admits only “finite charges”.

A thermal state should contain “infinite charges” (Contradiction?).

A completely rational net admits only finitely many extensions of net.
Among extensions, there are maximal extensions.

Lemma

The thermal completion of the geometric KMS state ϕgeo is the original
net.

Lemma

Any KMS state ϕ on a completely rational maximal net A is ϕ = ϕgeo ◦ γ
where γ = πϕ ◦ π−1

ϕgeo
is an automorphism of A|R+ .
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Proof of uniqueness

Lemma

If γ is an automorphism which does not preserve ϕgeo, then {δs ◦ γ ◦ δ−s}
are unitarily inequivalent.

Theorem

A maximal completely rational net admits only ϕgeo.

Proof:
ϕ = ϕgeo ◦ γ and there would be infinitely many sectors {δs ◦ γ ◦ δ−s}
(contradiction).

Theorem

Any completely rational net admits only ϕgeo.
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Further results

Theorem

For non-completely rational nets, we have classified KMS states on:

the U(1)-current net: ϕq, q ∈ R

the Virasoro net Virc with c = 1: ϕq
1 , q ∈ R+,

and constructed KMS states ϕq
c , q ∈ R+ on Virc , c > 1.

Theorem

Any two-dimensional completely rational conformal net admits only the
geometric state.
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