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®* theory on the Moyal space; ribbon graphs

Renormalizability on the Moyal space (UV/IR mixing)
Parametric representation

Conclusions and perspectives
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Scalar field theory on the Moyal space

®* model:
. 1 1, A
S = dx[§6“¢*8“¢+§m¢*¢+E¢*<D*d>*d>],

[ d*x (@ x D)(x) = [ d*x d(x) D(x)
(same propagat|on)
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Implications of the use of the Moyal product in QFT

X T Kg

interaction (in position space)

4
/dDX¢*4(x) x /H dPx;®(x))0(x1 — X0 + x3 — xa)

i=1

e2i 21§i<j§4(_1)i+j+lee_lxj

< non-locality (oscillation o area of parallelogram)
< restricted invariance: only under cyclic permutation
— ribbon graphs (relation with matrix models)
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Feynman graphs in NCQFT

— clear distinction between planar and non-planar graphs
n - number of vertices,

L - number of internal lignes,

F - number of faces,

2—2g=n—L+F

g € N - genus
g = 0 - planar graph g > 1 - non-planar graph
example: example:
1
“1ﬁ&'}
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Renormalization on the Moyal space

UV/IR miXing (S. Minwalla et. al., JHEP, 2000, J. Magnen et. al., Europhys. Lett., 2009)

B=2

B - number of faces broken by external lignes
B > 1, planar irregular graph

ik, O p,
4, €7 1
/\/d ka2 lelo 022

— non-renormalizability!
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A first solution to this problem - the Grosse-Wulkenhaar

model

additional harmonic term

(H. Grosse and R. Wulkenhaar, Comm. Math. Phys., 2005)

1 92
L= 5 #¢*8M¢+7

% =2(071)wx".

(5u8) % (%6) + 6% 6% 65

modification of the propagator - the model becomes renormalizable

< various proofs (Polchinski flow equation method, BPHZ
multi-scale analysis, dimensional regularization)

< combinatorial Hopf algebra structure of non-commutative
renormalization

(A. T. and F. Vignes-Tourneret, J. Noncomm. Geom., 2008)
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Translation-invariant renormalizable scalar model

(R. Gurdu, J. Magen, V. Rivasseau and A. T., Commun. Math. Phys. (in press))
the Grosse-Wulkenhaar model break translation-invariance !

the complete propagator:

1

C(p,m,0) =
P2+ ag s + 2

arbitrary planar irregular 2-point function: same type of -
behavior !

J. Magnen et. al., Europhys. Lett., 2009

— other modification of the action:

S = [ dpl5punp6+ pagazo b+ smPon ot ik de bl

renormalizability at any order in perturbation theory !
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Scales - renormalization group

definition of the RG scales:
e locus where C~%(p) is big

@ locus where C~%(p) is low

mixing of the UV and IR scales - key of the renormalization
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Renormalizability of NCQFT: locality — “Moyality”

QFT  — NCQFT

locality —  “Moyality”

>< —
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The principle of “Moyality” - Feynman graph level

< study of the non-commutative combinatorial Dyson-Schwinger
equations (/. e. the Hochschild cohomolgy of the non-commutative
Connes-Kreimer Hopf algebra)

(A. T. and D. Kreimer, J. Noncomm. Geom. (in press)
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Parametric representation for commutative QFT

introduction of the Schwinger parameters a:

; = /da e_a(p2+m2)'
p2 L m2

00 o= V(pa)/U(a) L o
A(p) :/0 U(a)l:[ day)

U, V - polynomials in the parameters ay

2 ]

T ZT

T - a (spanning) tree of the graph
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Parametric representation of the noncommutative model

((A. T., J. Phys. A (2009), T. Krajewski et. al. J. Noncomm. Geom. (2010))

%0 o= V*(p,a)/U*(a) L
.A*(P):/ e—DH(e_m2MdaZ)
0 U)oy

Définition:
A x—tree (or quasi-trees) T* is a subgraph with only one face.

0\° Qy
r@=(3) I 2%
T* g7
b=F—1+2g.

— similar formula for the V* polynomial
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A simple example

the x—trees: {1}, {2}, {3} and {1,2,3}

92
U*(a1, @z, a3) = aqan + agas + apas + T

— rich topological and combinatorial structures
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Conclusion and perspectives

@ applications of these techniques for the renormalizability study
of loop quantum gravity models (a T.. Class. Quant. Grav. 2010

@ generalization to tensor models (appearing in recent
approaches (group field theory) for a theory of quantum

gravity)

123

1
s

62 5

various non-trivial topological and combinatorial structures:
e topological graph polynomials
(R. Gurdu, Annales Henri Poincaré, A. T., arXiv:1012.1798)
e combinatorial Hopf algebras structures
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Thank you for your attention!
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Glimpse of the mathematical setup

the Moyal space

The Moyal algebra is the linear space of smooth and rapidly
decreasing functions S(R?”) equipped with the

D
(Fre)() = [ ord® flx-+ 30 Kiglx +Y)e* .

* - Moyal product (non-local, noncommutative product)

[x¥, x"] = iOH"] (2)

(e 0 (0 -0
@_<0 @2>’ 92_(0 0>‘

ADRIAN TANASA Various mathematical aspects of ®* QFT on the Moyal space



BPHZ renormalization scheme
renormalization conditions

1 0

r4(0307070) ==X G2(070) = ﬁ’ 87p2G2(p? _P)|P=0 T

where I* and G2 are the connected functions and
0 — pm (the minimum of p? + 7)
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power counting theorem:
< 2— and 4—point planar functions (primitively divergent)

@ planar regular 2—point function: wave function and mass
renormalization

@ planar regular 4—point function: coupling constant
renormalization

@ planar irregular 2—point function: renormalization of the
constant a

@ planar irregular 4—point function: convergent

non-planar tadpole graphs insertions - IR convergence
(equivalent proof for these particular graphs

D. Blaschke, F. Gieres, E. Kronberger, T. Reis, M. Schweda, R. I.P. Sedmik et. al., JHEP '08)
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Comparison with other models

the “naive” model GW model model (1)

2P 4P 2P 4P 2P 4P
planar regular ren. ren. ren. ren. ren. ren.
planar irregular | UV/IR | log UV/IR | conv. | conv. | finite ren. | conv.
non-planar IR div. IR div. conv. | conv. conv. conv.
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Decomposition of the propagator

(J. Ben Geloun and A. T., Lett. Math. Phys. '08, 0806.3886 [math-ph])

1
C(p,m,0) = .

( ) p2—|—m2+92‘;2

1 _1 1, 1
A+B A A A+B’

_ .2 2 _ 4
A=p +m-, B 25

1 a 1 1 1

= C(p,m,0) =

p2+m2_§p2+m2p2+m%p2+m§
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Renormalization group flow
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Wave function renormalization - ~ function

Z(p) = Zplr(p) + Zpli(p)
Y (p) - self-energy

0
T=1 szlr(p)

the noncommutative correction is irrelevant
(it leads to a convergent integral)

1 a 1 1 1
Youlp)= [ dk | —— - = :
pl(p) /d <k2+m2 02k2+m2k2+m%k2+m§>
=Z=1+0()?)

=v=0+0()?)
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mass renormalization:

Zplr
Z
renormalization of the parameter a:

, Bm o Bg?mutatiV.

ﬁa = 0.
coupling constant renormalization:
r4
vz
I - 4—point funtion

the noncommutative correction is irrelevant
(it leads to a convergent integral)

2 / s 1 a1 1 1 \?
k2+m?  02k>+m?k2+m3k2+m3)
B)\ x Bg\omuta‘civ'
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the noncommutative corrections of the propagators — irrelevant
contribution to the RG flow at any order in perturbation theory

explicit quantum corrections at 1—loop level - use of Bessel

functions (p. Blaschke et. al., JHEP '08, 0807.3270 [hep-th])
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Commutative limit

(J. Magnen, V. Rivasseau and A. T., submitted to J. High Energy Phys., 0807.4093 [hep-th])

< crucial issue in NCQFTs

“non-planar” tadpole behavior:

k? + m?
e if 0 #0, ﬁ (for |p| — 0)
0 if0 =0, [dkzie
(the usual wave function and mass renormalization)

arbitrary planar irregular 2-point function: same type of behavior !

(5m - 5m/ —|— 5m” —|— 6m”’-
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“The amount of theoretical work one has to cover before being
able to solve problems of real practical value is rather large, but
this circumstance is [...] likely to become more pronounced in the
theoretical physics of the future.”

P.A.M. Dirac, “The principles of Quantum Mechanics”, 1930
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Thank you for your attention
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The Moyal algebra is the linear space of smooth and rapidly
decreasing functions S(RP) equipped with the Moyal product:

D
(7)) = [ 5Py flx+ 50 Kl + Y)e”
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power counting:

N—4
w:4g—|—T+(B—1)
B - number of broken faces

improved factor in the broken faces
example:

n=21L=2 F=2B=1

x;/’ﬁ_‘—\\ ¥2
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