Various mathematical aspects of Φ^4 quantum field theory (QFT) on the Moyal space

ADRIAN TANASĂ

in collaboration with: Vincent Rivasseau, Jacques Magnen, Dirk Kreimer, Răzvan Gurău, Axel de Goursac, Thomas Krajewski, Fabien Vignes-Toureneret, Jean-Christophe Wallet, Zhituo Wang)

Bucharest, April 2011

Plan

- Φ⁴ theory on the Moyal space; ribbon graphs
- Renormalizability on the Moyal space (UV/IR mixing)
- Parametric representation
- Conclusions and perspectives

Scalar field theory on the Moyal space

 Φ^4 model:

$$\mathcal{S} = \int d^4x \, [\frac{1}{2} \partial_\mu \Phi \star \partial^\mu \Phi + \frac{1}{2} m^2 \Phi \star \Phi + \frac{\lambda}{4!} \Phi \star \Phi \star \Phi \star \Phi],$$

$$\int d^4x \, (\Phi \star \Phi)(x) = \int d^4x \, \Phi(x) \, \Phi(x)$$
 (same propagation)

Implications of the use of the Moyal product in QFT

interaction (in position space)

$$\int d^{D}x \Phi^{\star 4}(x) \propto \int \prod_{i=1}^{4} d^{D}x_{i} \Phi(x_{i}) \delta(x_{1} - x_{2} + x_{3} - x_{4})$$

$$e^{2i \sum_{1 \leq i < j \leq 4} (-1)^{i+j+1} x_{i} \Theta^{-1} x_{j}}$$

- \hookrightarrow non-locality (oscillation \propto area of parallelogram)
- → restricted invariance: only under cyclic permutation
- → ribbon graphs (relation with matrix models)

Feynman graphs in NCQFT

- ightarrow clear distinction between planar and non-planar graphs
- n number of vertices,
- L number of internal lignes,
- F number of faces,

$$2-2g=n-L+F$$

 $g \in \mathbb{N}$ - genus g = 0 - planar graph example:

$$n = 2$$
, $L = 3$, $F = 3$, $g = 0$

 $g \ge 1$ - non-planar graph example:

$$n = 2$$
, $L = 3$, $F = 1$, $g = 1$

Renormalization on the Moyal space

UV/IR mixing (S. Minwalla et. al., JHEP, 2000, J. Magnen et. al., Europhys. Lett., 2009)

$$B = 2$$

B - number of faces broken by external lignes B > 1, planar irregular graph

$$\lambda \int d^4k \frac{e^{ik_\mu \Theta^{\mu\nu}p_\nu}}{k^2 + m^2} \rightarrow_{|p| \to 0} \frac{1}{\theta^2 p^2}$$

→ non-renormalizability!

A first solution to this problem - the Grosse-Wulkenhaar model

additional harmonic term

(H. Grosse and R. Wulkenhaar, Comm. Math. Phys., 2005)

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi + \frac{\Omega^{2}}{2} (\tilde{x}_{\mu} \phi) \star (\tilde{x}^{\mu} \phi) + \frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi,$$

$$\tilde{x}_{\mu}=2(\Theta^{-1})_{\mu\nu}x^{\nu}.$$

modification of the propagator - the model becomes renormalizable

- → various proofs (Polchinski flow equation method, BPHZ multi-scale analysis, dimensional regularization)
- → combinatorial Hopf algebra structure of non-commutative renormalization

(A. T. and F. Vignes-Tourneret, J. Noncomm. Geom., 2008)

Translation-invariant renormalizable scalar model

(R. Gurău, J. Magen, V. Rivasseau and A. T., Commun. Math. Phys. (in press))

the Grosse-Wulkenhaar model break translation-invariance!

the complete propagator:

$$C(p, m, \theta) = \frac{1}{p^2 + a \frac{1}{\theta^2 p^2} + \mu^2}$$

arbitrary planar irregular 2-point function: same type of $\frac{1}{n^2}$ behavior!

- J. Magnen et. al., Europhys. Lett., 2009
- → other modification of the action:

$$S = \int d^4p \, [\frac{1}{2}p_\mu\phi\star p^\mu\phi + \frac{1}{2}a\frac{1}{\theta^2p^2}\phi\star\phi + \frac{1}{2}m^2\phi\star\phi + \frac{\lambda}{4!}\phi\star\phi\star\phi\star\phi].$$

renormalizability at any order in perturbation theory!

Scales - renormalization group

definition of the RG scales:

- locus where $C^{-1}(p)$ is big
- locus where $C^{-1}(p)$ is low

$$C_{\mathrm{comm}}^{-1}(p)=p^2$$

$$C_{GW}^{-1} = p^2 + \Omega^2 x^2$$

$$C^{-1}(p) = p^2 + \frac{a}{\theta^2 p^2}$$

mixing of the UV and IR scales - key of the renormalization

Renormalizability of NCQFT: locality → "Moyality"

The principle of "Moyality" - Feynman graph level

→ study of the non-commutative combinatorial Dyson-Schwinger equations (*i. e.* the Hochschild cohomolgy of the non-commutative Connes-Kreimer Hopf algebra)

(A. T. and D. Kreimer, J. Noncomm. Geom. (in press)

Parametric representation for commutative QFT

introduction of the Schwinger parameters α :

$$\frac{1}{p^2+m^2}=\int d\alpha\,e^{-\alpha(p^2+m^2)}.$$

$$\mathcal{A}(p) = \int_0^\infty \frac{e^{-V(p,\alpha)/U(\alpha)}}{U(\alpha)^{\frac{D}{2}}} \prod_{\ell=1}^L (e^{-m^2\alpha_\ell} d\alpha_\ell)$$

 $\it U$, $\it V$ - polynomials in the parameters $lpha_\ell$

$$U = \sum_{\mathcal{T}} \prod_{\ell \notin \mathcal{T}} \alpha_{\ell} ,$$

 \mathcal{T} - a (spanning) tree of the graph

Parametric representation of the noncommutative model

((A. T., J. Phys. A (2009), T. Krajewski et. al. J. Noncomm. Geom. (2010))

$$\mathcal{A}^{\star}(p) = \int_{0}^{\infty} \frac{e^{-V^{\star}(p,\alpha)/U^{\star}(\alpha)}}{U^{\star}(\alpha)^{\frac{D}{2}}} \prod_{\ell=1}^{L} (e^{-m^{2}\alpha_{\ell}} d\alpha_{\ell})$$

Définition:

 $A \star - tree$ (or quasi-trees) \mathcal{T}^{\star} is a subgraph with only one face.

$$U^{\star}(\alpha) = \left(\frac{\theta}{2}\right)^{b} \sum_{\mathcal{T}^{\star}} \prod_{\ell \notin \mathcal{T}^{\star}} 2\frac{\alpha_{\ell}}{\theta}$$

$$b = F - 1 + 2g$$
.

 \hookrightarrow similar formula for the V^* polynomial

A simple example

the \star -trees: {1}, {2}, {3} and {1,2,3}

$$U^{\star}(\alpha_1, \alpha_2, \alpha_3) = \alpha_1 \alpha_2 + \alpha_1 \alpha_3 + \alpha_2 \alpha_3 + \frac{\theta^2}{4}.$$

Conclusion and perspectives

- applications of these techniques for the renormalizability study of loop quantum gravity models (A. T., Class. Quant. Grav. 2010)
- generalization to tensor models (appearing in recent approaches (group field theory) for a theory of quantum gravity)

various non-trivial topological and combinatorial structures:

- topological graph polynomials
 (R. Gurău, Annales Henri Poincaré, A. T., arXiv:1012.1798)
- combinatorial Hopf algebras structures

Thank you for your attention!

Glimpse of the mathematical setup

the Moyal space

The *Moyal algebra* is the linear space of smooth and rapidly decreasing functions $\mathcal{S}(\mathbb{R}^{\mathcal{D}})$ equipped with the

$$(f \star g)(x) = \int \frac{d^D k}{(2\pi)^D} d^D y f(x + \frac{1}{2}\Theta \cdot k) g(x + y) e^{ik \cdot y}.$$

* - Moyal product (non-local, noncommutative product)

$$[x^{\mu}, x^{\nu}] = i\Theta^{\mu\nu}, \tag{2}$$

$$\Theta = \begin{pmatrix} \Theta_2 & 0 \\ 0 & \Theta_2 \end{pmatrix}, \ \Theta_2 = \begin{pmatrix} 0 & -\theta \\ \theta & 0 \end{pmatrix}.$$

BPHZ renormalization scheme renormalization conditions

$$\Gamma^4(0,0,0,0) = -\lambda_r, \ G^2(0,0) = \frac{1}{m^2}, \ \frac{\partial}{\partial p^2} G^2(p,-p)|_{p=0} = -\frac{1}{m^4}.$$
 (3)

where Γ^4 and G^2 are the connected functions and $0 \to p_m$ (the minimum of $p^2 + \frac{a}{\theta^2 p^2}$)

power counting theorem:

 \hookrightarrow 2- and 4-point planar functions (primitively divergent)

- planar regular 2—point function: wave function and mass renormalization
- planar regular 4—point function: coupling constant renormalization
- planar irregular 2—point function: renormalization of the constant a
- planar irregular 4—point function: convergent

non-planar tadpole graphs insertions - IR convergence (equivalent proof for these particular graphs

D. Blaschke, F. Gieres, E. Kronberger, T. Reis, M. Schweda, R. I.P. Sedmik et. al., JHEP '08)

Comparison with other models

	the "naive" model		GW model		model (1)	
	2P	4P	2P	4P	2P	4P
planar regular	ren.	ren.	ren.	ren.	ren.	ren.
planar irregular	UV/IR	log UV/IR	conv.	conv.	finite ren.	conv.
non-planar	IR div.	IR div.	conv.	conv.	conv.	conv.

Decomposition of the propagator

(J. Ben Geloun and A. T., Lett. Math. Phys. '08, 0806.3886 [math-ph])

$$C(p, m, \theta) = \frac{1}{p^2 + m^2 + \frac{a}{\theta^2 p^2}}.$$
$$\frac{1}{A+B} = \frac{1}{A} - \frac{1}{A}B\frac{1}{A+B},$$
$$A = p^2 + m^2, \quad B = \frac{a}{\theta^2 p^2}.$$

$$\Rightarrow C(p, m, \theta) = \frac{1}{p^2 + m^2} - \frac{a}{\theta^2} \frac{1}{p^2 + m^2} \frac{1}{p^2 + m_1^2} \frac{1}{p^2 + m_2^2}$$

Renormalization group flow

Wave function renormalization - γ function

$$\Sigma(p) = \Sigma_{
m plr}(p) + \Sigma_{
m pli}(p)$$

 $\Sigma(p)$ - self-energy

$$Z = 1 - \frac{\partial}{\partial p^2} \Sigma_{\rm plr}(p)$$

the noncommutative correction is irrelevant

(it leads to a convergent integral)

$$\begin{split} \Sigma_{\rm plr}(p) &= \int d^4k \left(\frac{1}{k^2 + m^2} - \frac{a}{\theta^2} \frac{1}{k^2 + m^2} \frac{1}{k^2 + m_1^2} \frac{1}{k^2 + m_2^2} \right). \\ \Rightarrow Z &= 1 + \mathcal{O}(\lambda^2) \\ \Rightarrow \gamma &= 0 + \mathcal{O}(\lambda^2) \end{split}$$

mass renormalization:

$$-\frac{\Sigma_{\rm plr}}{Z}, \ \beta_m \propto \beta_m^{\rm comutativ}.$$

renormalization of the parameter a:

$$\beta_a = 0.$$

coupling constant renormalization:

$$-\frac{\Gamma^4}{Z^2}$$
,

 Γ^4 - 4—point funtion

the noncommutative correction is irrelevant

(it leads to a convergent integral)

$$\lambda^2 \int d^4k \left(\frac{1}{k^2 + m^2} - \frac{a}{\theta^2} \frac{1}{k^2 + m^2} \frac{1}{k^2 + m_1^2} \frac{1}{k^2 + m_2^2} \right)^2.$$

$$\beta_{\lambda} \propto \beta_{\lambda}^{\text{comutativ}}$$
.

the noncommutative corrections of the propagators \rightarrow irrelevant contribution to the RG flow at any order in perturbation theory

explicit quantum corrections at 1—loop level - use of Bessel functions (D. Blaschke *et. al.*, *JHEP* '08, 0807.3270 [hep-th])

Commutative limit

- (J. Magnen, V. Rivasseau and A. T., submitted to J. High Energy Phys., 0807.4093 [hep-th])

"non-planar" tadpole behavior:

$$\int d^4k \frac{e^{ik_\mu\Theta^{\mu\nu}p_\nu}}{k^2+m^2}$$

- if heta
 eq 0, $frac{1}{ heta^2 extbf{p}^2}$ (for | heta| o 0)
- if $\theta \to 0$, $\int d^4k \frac{1}{k^2+m^2}$ (the usual wave function and mass renormalization)

arbitrary planar irregular 2-point function: same type of behavior!

$$\delta_m = \delta_{m'} + \delta_{m''} + \delta_{m'''}.$$

"The amount of theoretical work one has to cover before being able to solve problems of real practical value is rather large, but this circumstance is [...] likely to become more pronounced in the theoretical physics of the future."

P.A.M. Dirac, "The principles of Quantum Mechanics", 1930

Thank you for your attention

The *Moyal algebra* is the linear space of smooth and rapidly decreasing functions $\mathcal{S}(\mathbb{R}^{\mathcal{D}})$ equipped with the *Moyal product*:

$$(f \star g)(x) = \int \frac{d^D k}{(2\pi)^D} d^D y f(x + \frac{1}{2}\Theta \cdot k) g(x + y) e^{ik \cdot y}$$

power counting:

$$\omega = 4g + \frac{N-4}{2} + (B-1)$$

B - number of broken faces

improved factor in the broken faces example:

