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Summary of the talk

1. Introduction of the Wulkenhaar-Grosse model via

spectral triple.

2. Introduction of the discretization scheme and nu-

merical simulation.

3. Presentation of some results of simulation
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The firsts attempts to obtain a non-commutative field

theory were consisted in the direct replace of the

point-wise product

(f⋆g)(x) =
∫ ∫

d4y
d4k

(2π)4
f(x+

1

2
Θ·k)g(x+y)ei〈k,y〉 , f, g ∈ L2(R4)

This kind of models are ill-behaved they are not

renormalizable due the so called UV/IR-mixing

Grosse,Wulkenhaar(2004) in renormalization as

formal power series in λ, found a NC ϕ4-theory

renormalizable action which develops additional

marginal coupling action functional for real-valued

field ϕ on R4 :

S[ϕ] =
∫

d4x

(

1

2
ϕ ⋆ (−∆+Ω2x̃2 + µ2) ⋆ ϕ+

λ

4
ϕ ⋆ ϕ ⋆ ϕ ⋆ ϕ

)

(x)

Where x̃ = 2Θ−1 · x, λ ∈ R, Ω ∈ [0,1], and µ is a real

parameter
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Does this model arise from a spectral triple?



Spectral triple (A,H,D)

A collection of a Hilbert space H, a involution unital algebra A
represented on H, and a selfadjoint operator D in H with
compact resolvent, which satisfy the flowing requirements:

1. Dimension: n-th eigenvalue of resolvent of D is O(n−1

p) (p is
called spectral dimension of the triple)

2. Order one: [[D, f ], g] = 0

3. Regularity: f and [D, f ] belong to the domain of δk , for any
f ∈ A and k ∈ Z, where δT = [|D|, T ]

4. Orientability: ∃ Hochschild p-cycle c ∈ Zp(A,A) πD(c) = 1 for
p odd,πD(c) = γ for p even with γ = γ∗, γ2 = 1, γD = −Dγ

5. Finiteness and absolute continuity: H∞ :=
⋂

k dom(Dk) ⊂ H is
finitely generated projective A-module,H∞ = eAn , with e =
e∗ = e2 ∈ Mm(A). Hermitian structure (ξ|aη) =

∑n
i=1 aξ

∗
i ηi ∈ A

satisfies 〈ξ, η〉 =
∫

(ξ|η)|D|−p∀f, g ∈ A
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Theorem(Connes)
Let (A,H,D) be a commutative spectral triple and assume that
all endomorphisms T ∈ EndA(H∞) are regular, the Hochschild
cycle c is antisymmetric. Then there exists a compact oriented

smooth manifold X such that A = C∞(X) is the algebra of
smooth functions on X , and every compact oriented smooth

manifold appears in this manner.

Spectral action principle (Chamseddine,Connes)
As an automorphism-invariant object, the (bosonic) action

functional of physics has to be a function of the spectrum of DA

, S(DA) = Tr(χ(DA)) Where inner fluctuations can be defined as:

D → DA = D +A, A = f [D, g]
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Proposed spectral triple.

The Dirac operator is constructed using d-dimensional bosonic
and fermionic creation and annihilation operators:

[aµ, aν] = [a†µ, a
†
ν] = 0, [aµ, a

†
ν] = δµν

{bµ, bν} = {b†µ, b†ν} = 0, {bµ, b†ν} = δµν

µ, ν = 1, · · · , d. Where aµ = 1√
2ω

(ωxµ + ∂µ), a
†
µ = 1√

2ω
(ωxµ − ∂µ)

1. Dirac operator for the 4 dimensional case

D4 = −i
√
2ωδµνa†µ⊗bν+i

√
2ωδµνaµ⊗b†ν = i

d

dxµ
⊗(bµ+b

†
µ)+iωx

µ⊗(bµ−b†µ)

2. The algebra A = S(R4) is determined by smoothness

3. Hilbert space for the fermionic side is defined starting from the
vacuum state, by subsequent action of the fermionic creation
operators b

†
ν on vacuum state b|0〉 = 0, (b†1)

n1 · · · (b†d)sd|0〉 :

nµ ∈ N, sµ ∈ {0,1} We call this space Λ(Cd) and therefore the
complete Hilbert space is Hd = S(Rd)⊗ Λ(Cd).
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Can be proved that all axiom of spectral triple are satisfy with
minor adaptation. Flowing the Connes-Lott models, in order to
implement the Higgs mechanism we consider the total spectral

triple as the tensor product of the previous spectral triple
(A4,H4,D4) with the two point Connes-Lott like spectral triple

(C⊗ C,C2,Mσ1).The total Dirac operator of the product triple is:

DT = D4 ⊗ 1+ 1⊗Mσ1 =

(

D4 M
M −D4

)

,

(

f 0
0 g

)

∈ A

Applying the spectral action principle to the previous spectral
triple after same calculation we obtain for the commutative case:

S(DA) =

∫

d4x(DµϕDµϕ+
5

12
(FA

µνF
µν
A + FB

µνF
µν
B )

+

(

(|ϕ|2)2 − 2χ−1

χ0

|ϕ|2 +2ω2||x||2|ϕ|2
)

+O(χ1)

where

Dµϕ = ∂µϕ+ i(Aµ −Bµ)ϕ
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1. spectral action is finite.

2. Additional harmonic oscillator potential for the Higgs.

3. vacuum is at Aµ = Bµ = 0 .
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Spectral action for noncommutative case

S(DA) =
∫

d4z

{

(

(1−Ω2)2

2
− (1−Ω2)4

6(1 +Ω2)2

)

(FA
µν ⋆ F

µν
A + FB

µν ⋆ F
µν
B )

+

(

φ̄ ⋆ φ+
4Ω2

1+Ω2
XA
µ ⋆ X

µ
A − χ−1

χ0

)2

+

(

φ ⋆ φ̄+
4Ω2

1+Ω2
XB
µ ⋆ X

µ
B − χ−1

χ0

)2

+

(

4Ω2

1+Ω2
X
µ
0 ⋆ X

0
µ − χ−1

χ0

)2

+2(1+Ω2)Dµφ ⋆ Dµφ

}

+O(χ1)

Dµφ = ∂µφ− iAµ ⋆ φ+ iφ ⋆ Bµ =
(

φ ⋆ XBµ −XAµ ⋆ φ
)

FA
µν = ∂µAν − ∂νAµ − i(Aµ ⋆ Aν −Aν ⋆ Aµ)

X0
µ =

z̃

2

Here the covariant coordinate XA
µ (x) = (Θ−1)µνxν +Aµ(x)appear

with Higgs field φ in unified potential; potential cannot be
restricted to Higgs and vacuum is non-trivial.
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An other important property of the action, considering the Xµ as
independent, are invariant under the translations:

φ(x) → φ(x+a), Xµ
A(x) → X

µ
A(x+a), X

µ
B(x) → X

µ
B(x+a), X

µ
0(x) → X

µ
0(x+a)

Which in standard φ4-renormalizable theory is broken. Beside the
action is invariant under U(1)× U(1) transformation:

φ→ uA ⋆ φ ⋆ uB, X → uA ⋆ X
µ
A ⋆ uA, X

µ
B → uB ⋆ X

µ
B ⋆ uB
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At this point we have to choose the way of discretization: Moyal
matrix base in two dimensions. Our fields can be expanded in

this base as:

Xµ(x) =
∑

mi,ni∈N
X
µ
m1n1
m2n2

fm1n1
(x0, x1)fm2n2

(x2, x3)

and

φ(x) =
∑

mi,ni∈N
φm1n1

m2n2

fm1n1
(x0, x1)fm2n2

(x2, x3)

fnm can be expressed with the help of Laguerre functions :

fmn(ρ, ϕ) = 2(−1)m
√

m!

n!
eiϕ(n−m)

(

√

2

θ
ρ

)n−m

e
ρ2

θ Ln−mm

(

2

θ
ρ2
)
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This base has the nice properties:

(fmn ⋆ fkl)(x) = δnkfml(x)
∫

d2xfmn(x) = 2πθδmn

Using this base we can forget the Moyal product in this way the
model becomes to 9-matrix model. The ⋆-product between two

fields using the previous properties can be written as

Ψ(x) ⋆Φ(x) =
∑

mi,ni,k1,l1∈N
Ψm1n1

m2n2

Φ k1l1
k2l2

fm1n1
(x0, x1) ⋆ fk1l1(x0, x1)

× fm2n2
(x2, x3) ⋆ fk2l2(x2, x3)

=
∑

mi,l1∈N
ΨΦm1l1

m2l2

fm1l1(x0, x1)fm2l2(x2, x3)

where

ΨΦm1l1
m2l2

=
∑

n1,n2∈N
Ψm1n1

m2n2

Φm1l1
m2l2
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So the star product became a ”double” matrix multiplication, the
action and all treatment can be conducted on the infinite

matrices instead directly on the continues field. Beside, due the
nature of star product, there is another great simplification; the

double matrix can be separated as a tensor product of two
matrices or

Φ(x) =
∑

mi,ni∈N
Φ′
m1n1

⊗Φ′′
m2n2

fm1n1
(x0, x1)fm2n2

(x2, x3)

So we can split the model in 2+2 dimensions in this way the
calculus will be performed just on a standard matrix instead a
double one. Using this base now our problem is reduced to a

infinite matrix problem but in not enough to be handled
numerically we have to perform a truncation in order to obtain a

finite matrices, this truncation will consist in a maximum
m,n < N in the expansion.
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Summarizing, to operate the discretization we have the flowing

rules:

φ(x) ∈ R
4
Θ → φ̂ ∈ MN

Y Aµ (x) ∈ R
4
Θ → Ŷ Aµ ∈ MN

Y Bµ (x) ∈ R
4
Θ → Ŷ Bµ ∈ MN

∫

a(x)dx → Tr(â)
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As a first approach to the numerical simulation, and forced by
limited computation resource, we will consider the Monte Carlo
simulation of the previous action around the its minimum, we
translate the fields φ,XA

µ , X
B
µ using the following substitution:

φ = ψ+

√

χ3

χ4

cosα

XAµ = YAµ +
1

2

√

χ3

χ4

√

2Ω2

(1 +Ω2)
1µ sinα

XBµ = YBµ +
1

2

√

χ3

χ4

√

2Ω2

(1 +Ω2)
1µ sinα

Now after truncating the representative matrices is convenient to
operate an another substitution:

Z0 = Ŷ A
0 + iŶ A

1 , Z̄0 = Ŷ A
0 − iŶ A

1

Z1 = Ŷ B
0 + iŶ B

1 , Z̄1 = Ŷ B
0 − iŶ B

1

Z2 = Ŷ A
2 + iŶ A

2 , Z̄2 = Ŷ A
2 − iŶ A

3

Z3 = Ŷ B
2 + iŶ B

3 , Z̄3 = Ŷ B
2 − iŶ B

3
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For simplicity we put:

C =
1+Ω2

4Ω2
, D = (1−Ω2)

2

2
− (1−Ω2)

4

6(1+Ω2)
2 ,

χ3

χ4

= µ2

Implementing the previous replacements:

Ŝ4 = Tr
(

LF + LV0
+ LV1

+ LD0
L̄D0

+ LD1
L̄D1

+ LD2
L̄D2

+ LD3
L̄D3

)
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L4F =
D

2

(

[

Z̄0, Z0

]2

⋆
+
[

Z̄1, Z1

]2

⋆
+

1

4

(

[

Z0 + Z̄0, Z2 − Z̄2

]2

⋆
−
[

Z0 + Z̄0, Z2 + Z̄2

]2

⋆

+
[

Z0 − Z̄0, Z2 + Z̄2

]2

⋆
−
[

Z0 − Z̄0, Z2 − Z̄2

]2

⋆
−
[

Z1 + Z̄1, Z3 + Z̄3

]2

⋆

+
[

Z1 + Z̄1, Z3 − Z̄3

]2

⋆
+
[

Z1 − Z̄1, Z3 + Z̄3

]2

⋆
−
[

Z1 − Z̄1, Z3 − Z̄3

]2

⋆

))

L4V0 =
(

ψ ⋆ ψ̄+ µ cosα(ψ+ ψ̄) +
1

2

({

Z̄0, Z0

}

⋆
+
{

Z̄2, Z2

}

⋆

)

+
µ sinα

2
√
C

((−1+ i)(Z0 + Z2) + (1+ i)(Z̄0 + Z̄2))
)2

L4V1 =
(

ψ ⋆ ψ̄+ µ cosα(ψ+ ψ̄) +
1

2

({

Z̄1, Z1

}

⋆
+
{

Z̄3, Z3

}

⋆

)

+
µ sinα

2
√
C

((−1+ i)(Z1 + Z3) + (1+ i)(Z̄1 + Z̄3))
)2

L4D0 =
√

2(1 +Ω2)
(

µ cosα(Z1 + Z̄1 − Z0 − Z̄0) + ψ ⋆ (Z1 + Z̄1)− (Z0 + Z̄0) ⋆ ψ
)

L4D1 =
√

2(1 +Ω2)
(

µ cosα(Z1 − Z̄1 − Z0 + Z̄0) + ψ ⋆ (Z1 − Z̄1)− (Z0 − Z̄0) ⋆ ψ
)

L4D2 =
√

2(1 +Ω2)
(

µ cosα(Z3 + Z̄3 − Z2 − Z̄2) + ψ ⋆ (Z3 + Z̄3)− (Z2 + Z̄2) ⋆ ψ
)

L4D3 =
√

2(1 +Ω2)
(

µ cosα(Z3 − Z̄1 − Z2 + Z̄2) + ψ ⋆ (Z3 − Z̄3)− (Z2 − Z̄2) ⋆ ψ
)



Calling (ψ,Zi) a configuration of the fields i = 1, · · · ,4, the
probability to encounter this configuration is given by

P [(ψ,Zi)] =
e−S[(ψ,Zi)]

Z
Z is the partition function:

Z = D[(ψ,Zi)]e
−S[(ψ,Zi)]

Average value of the observable O is define by the expression:

〈O〉 =
∫

D[(ψ,Zi)]
e−S[(ψ,Zi)]O[(ψ,Zi)]

Z
Following Monte Carlo method will be produced a sequence of
configurations {(ψ,Zi)j}, j = 1,2, · · · , TMC and evaluated the

average of the observables over that set of configurations. The
expectation value is approximated as

〈O〉 ≈ 1

TMC

TMC
∑

j=1

Oj
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The internal energy is defined as:

E(Ω, µ, α) = 〈S〉
and the specific heat takes the form

C(Ω, µ, α) = 〈S2〉 − 〈S〉2

It is very useful to compute separately the average values four
contributions:

SF(ψ,Zi) = TrLF
SV0

(ψ,Zi) = TrLV0

SV1
(ψ,Zi) = TrLV1

SD(ψ,Zi) = Tr
(

LDj
L̄Dj

)

The corresponding expectation values are:

EF(Ω, µ, α) = 〈SF 〉
EV0

(Ω, µ, α) = 〈SV1
〉

EV1
(Ω, µ, α) = 〈SV1

〉
ED(Ω, µ, α) = 〈SD〉
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Now in order to measure the contributions of different modes to
the configuration φ we need a control parameter. This turns out
to be the sums on l and m of |ψlm| , |Zilm|2, this quantity is called

the full power of the field and it represents the norm of the
field,it can be calculate as:

ϕ2
a = Tr(|ψ|2)

Z2
ia = Tr(|Zi|2)

To distinguish the contributions from the different modes we
define the quantity:

ϕ2
0 =

N
∑

n=0

|ann|2

Z2
i0 =

N
∑

n=0

|zinn|2

Referring to the radial base it is easy to see that a such
parameters are connected to the pure spherical contribution.
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We can generalize the previous quantity defining some
parameters ϕl in such a way they form a decomposition of the

full power of the fields.

ϕ2
a = ϕ2

0 +
∑

l

ϕ2
l , Z

2
ia = Z2

i0 +
∑

l

Z2
il

Higher modes are defined by the quantity:

ϕl :=

√

√

√

√

l
∑

n,m=0

|anm(1− δnm)|2

In the simulations are used the quantities related to l = 0 and the
for l = 1 as representative of those contribution where the

rotational symmetry is broken.
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Energy density, ϕ2
a, Z

2
0a (from the left to right) for µ = 0,Ω = 1

and varying α from 0 to 2π.
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Energy density for µ = 0,1,3 (from the left to right) and α = 0
varying Ω from 0 to 1.
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ϕ2
a, ϕ

2
0, ϕ

2
1 density for µ = 1 and α = 0 varying Ω from 0 to 1.
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01 density for µ = 1 and α = 0 varying Ω from 0 to 1.
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Z2
00 for µ = 1, α = 0 and N = 15 varying Ω from 0 to 1.
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Specific heat density for µ = 0,1,3 (from the left to right) and
α = 0 varying Ω from 0 to 1.
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Energy density for Ω = 0,0.5,1 (from the left to right) and α = 0
varying µ from 0 to 3.
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ϕ2
a, ϕ

2
0, ϕ

2
1 density for Ω = 0.5 and α = 0 varying µ from 0 to 3.
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01 density for Ω = 0.5 and α = 0 varying µ from 0 to 3.
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Z0a, Z00, Z01 density (from the left to right) for Ω = 0 and α = 0
varying µ from 0 to 3.
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Specific heat density for Ω = 0,0.5,1 (from the left to right) and
α = 0 varying µ from 0 to 3.
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Conclusions

1. Monte Carlo simulation of such model seams feasible .

2. Peaks in specific heat appears increasing the matrix size →
phases transitions.

3. The defined order parameters crucially depends on Ω .

Prospectives

1. Characterization of the phase transitions (transitions order).

2. Computation of transition curve and characterization of the
phases regions.

3. Extension of the parameters space µ2 < 0, Ω > 1.
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