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Summary of the talk

. Introduction of the Wulkenhaar-Grosse model via
spectral triple.

. Introduction of the discretization scheme and nu-
merical simulation.

. Presentation of some results of simulation



The firsts attempts to obtain a non-commutative field
theory were consisted in the direct replace of the
point-wise product

d*k 1 -
(1)) = [ [ty Saf Gt 50 RaGetne ™ g € 12k

This kind of models are ill-behaved they are not
renormalizable due the so called UV/IR-mixing
Grosse,Wulkenhaar(2004) in renormalization as
formal power series in A\, found a NC @4—theory
renormalizable action which develops additional
marginal coupling action functional for real-valued
field o on R* :

Slel = [ d* ( ox (A + Q27+ 12 o + w*so*w*so)(w)

Where 2 =20"1.2, A€ R, Q€ [0,1], and p is a real
parameter



Does this model arise from a spectral triple?



Spectral triple (A, H,D)

A collection of a Hilbert space H, a involution unital algebra A
represented on H, and a selfadjoint operator D in ‘H with
compact resolvent, which satisfy the flowing requirements:

1. Dimension: n-th eigenvalue of resolvent of D is O(n_i) (p is
called spectral dimension of the triple)

2. Order one: [[D, f],g] =0

3. Regularity: f and [D, f] belong to the domain of §k , for any
feAand ke Z, where 6T = [|D|, T]

4. Orientability: 3 Hochschild p-cycle c € Z,(A, A) mp(c) =1 for
p odd,mp(c) =~ for p even with v = ~*,7v2 = 1,7yD = —Dx

5. Finiteness and absolute continuity: He =), dom(DF) C H is
finitely generated projective A-module,Ho = e A" , with e =
e* = e? € M,,(A). Hermitian structure (&lan) = > 0 a&in; € A
satisfies (¢,n) = [(&m)|D|™?Vf,g € A



Theorem(Connes)
Let (A, H,D) be a commutative spectral triple and assume that
all endomorphisms T € EndA(H*) are regular, the Hochschild
cycle c is antisymmetric. Then there exists a compact oriented
smooth manifold X such that A = C*°(X) is the algebra of
smooth functions on X , and every compact oriented smooth
manifold appears in this manner.

Spectral action principle (Chamseddine,Connes)
As an automorphism-invariant object, the (bosonic) action
functional of physics has to be a function of the spectrum of Dy
, S(Dy) = Tr(x(D4)) Where inner fluctuations can be defined as:

D—-Da=D+ A, A= f[D,g]



Proposed spectral triple.

The Dirac operator is constructed using d-dimensional bosonic
and fermionic creation and annihilation operators:

[CLM, al/] — [G’La af:r/] — Oa [a’ﬁba afl] — 5LLV
{bu, b} = {B],b)} =0, {by, b} = 6
p,v=1---,d. Where q, = ﬁ(wxu +9,), a, = ﬁ(wxu — 0y)

1. Dirac operator for the 4 dimensional case

d
Da = —iV 2w al,@b,+iv 2w a,Qb], = id—®(bﬂ—|—bL)—|—z’ww“®(bu—bL)
Ly

2. The algebra A = S(R*) is determined by smoothness

3. Hilbert space for the fermionic side is defined starting from the
vacuum state, by subsequent action of the fermionic creation
operators b}, on vacuum state b/0) = 0, (bi)”l---(b&)sd\m
n, € N,s, € {0,1} We call this space A(C%) and therefore the
complete Hilbert space is Hqy = S(R?) @ A(CY).



Can be proved that all axiom of spectral triple are satisfy with
minor adaptation. Flowing the Connes-Lott models, in order to
implement the Higgs mechanism we consider the total spectral
triple as the tensor product of the previous spectral triple
(A4, Ha,D4) with the two point Connes-Lott like spectral triple
(C® C,C?, Mo1).The total Dirac operator of the product triple is:

DT=D4®1—|—1®M01=(2]\>44 _%4), (f O)eA

Applying the spectral action principle to the previous spectral
triple after same calculation we obtain for the commutative case:

_ 5 v v
S(Dy) = / d*e(D"oDyp + o (FAFY + FLFE)
2 2X-1, o 2 21 |2
+ (62 = 22202 4 22 alPlol?) + 00
where
Dugp = augo—l-i(A'u—Bu)gO



1. spectral action is finite.
2. Additional harmonic oscillator potential for the Higgs.

3. vacuum is at Au= Bu =20 .



Spectral action for noncommutative case

S(Da) =
4 (1-9%)* (1-03)° A B
/dz{< 2 6(1 + Q2)2 (Fl % Fa™ ot B F)

_ 402 p X-1 ’ Y 4% 7
+(¢*¢+1+QQXM*XA—E> +<¢*¢+1+QQXN*XB_
A, xo 1)’ 2(1 4+ Q) D,o x Dl b + O
+1+QQ 0x u—; +2(1 +Q°)Dugx Drg p + O(x1)
Dyp = Oup—iAuxd+iopxBy= (¢p*Xpu— Xa*o)

Fl, = 044, —0,A—i(Au* Ay — Ay x Ay)
z

Here the covariant coordinate X;j‘(a:) = (@ a4+ A,(z)appear
with Higgs field ¢ in unified potential;, potential cannot be
restricted to Higgs and vacuum is non-trivial.

X-1
X0

:



An other important property of the action, considering the X, as
independent, are invariant under the translations:

¢(x) = ¢p(z4a), X)(z) - XY (z+a), X5(z) - X5(z+a), X§(x) - X§(z+a)

Which in standard ¢*-renormalizable theory is broken. Beside the
action is invariant under U(1) x U(1) transformation:

¢ —uaxpxup, X — uax Xl xua, X — up*x X5xup



At this point we have to choose the way of discretization: Moyal
matrix base in two dimensions. Our fields can be expanded in
this base as:

X'u(x) — Z X’l’fl"lfmlnl(ajoaxl)fm2n2(x27x3>

man2

m;,n; EN
and
$(x) = > b finun (20, 1) finums (22, 73)
m;,n; EN

fnm Can be expressed with the help of Laguerre functions :

! : 2 e 02 2
fmn(pa 90) - 2(—1)m ﬂew(n—m) —p e?L%_m —,02
n! O 0
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This base has the nice properties:

(frn * fr) () = Spp frru ()
/defmn(x) = 2700,

Using this base we can forget the Moyal product in this way the
model becomes to 9-matrix model. The x-product between two
fields using the previous properties can be written as

V(z)«P(z) = > W D fon, (20, 1) * fru, (20, 21)

mony  kyly
m;,n;,ki,l1EN
X fmons (€2, 23) * fio1,(x2, 3)

= Z \Iquml;l fmlll(w07 xl)fmzlg(x27 CE3)

mai2

m,;,ll GN
where
w¢mlll — Wmlnl ¢mlll
molo Z man2 maly
n1,mEN
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So the star product became a "double” matrix multiplication, the
action and all treatment can be conducted on the infinite
matrices instead directly on the continues field. Beside, due the
nature of star product, there is another great simplification; the
double matrix can be separated as a tensor product of two
matrices or

CD(;U) — Z cb;nlnl ® qD;vlfLQanmlnl (m07 ml)fmz"”LQ(mQ? 333)

m;,n;EN

So we can split the model in 242 dimensions in this way the
calculus will be performed just on a standard matrix instead a
double one. Using this base now our problem is reduced to a
infinite matrix problem but in not enough to be handled
numerically we have to perform a truncation in order to obtain a
finite matrices, this truncation will consist in a maximum
m,n < N in the expansion.
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Summarizing, to operate the discretization we have the flowing

rules:

o(z) e RE — ¢ € My
YiM(z) eRE — T e My
Y72 (z) eRG — VP eMy

/ a(z)dr — Tr(a)
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As a first approach to the numerical simulation, and forced by
limited computation resource, we will consider the Monte Carlo
simulation of the previous action around the its minimum, we
translate the fields o, X,j‘,X;LB using the following substitution:

o = Y+ ﬁCOSa
X4
1 [x3 222 ,
Yai,+ — 1,Sin«
' 2V><4\/<1+Q2> '

1 [x3 2022 _
Y, — 1,sin
T2y ><4\/(1+92> S

Now after truncating the representative matrices is convenient to
operate an another substitution:
Zo =Y +iY{, Zo=VY{ —ivP
Z1 =Yy +iV{P, Z1=YE —-iVP
Zo=Ys +iYs, Zo=Y —iv{
Z3 =YL 44V, Z3=YP — VP

X Au

XBu
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For simplicity we put:

O — 14 Q2 p— -9  (1-9)" X3 2

42 - 6T N,

Implementing the previous replacements:

5'4 = Tr (LF —|— £VO —|— ﬁ\/l —|— /:'Do/:’_Do + £D1£—D1 + LDQZDQ _I_ £D3£—D3)
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(s oo o8 o 2 2
(20~ 20,22+ 22)" — (20— 20,22~ 22| — [Z1+ 21,25 + Z5)

[Zl —I—Zl,Z3—Z3}2+ [Zl —Z1,Zs+23]2 — [Z1 —Z1,Z3_Z3K))

(

Y+ pcosa(y +¢) + - ({Zo Zo}, + {22 22} )
[Sin o

— (-1 4D(Zo+ Z2) + 1+ D)(Zo + 7))

(w*¢+ucosa(¢+¢>+ ({2v 21}, + {2, 25}))

L Sin o

— (14D + 22 + A+ D)7 + 7Zs)))”

mwsam + 21— Zo— Z0) + wx (Zi+ 1) — (Zo + Zo) #¥)
\/Q(TQQ)QLCOS@(Zl — 71— Zo+ Zo) + b+ (Z1 — Z1) — (Zo — Zo) x )
V201 + Q%) (ncosa(Zs + Zs — 22— o) + ¥+ (Zs + Zs) — (Zo + Z2) # )
\/W(MCOSCX(%—Z — Zo+ Z2) + ¢ x (Z3 — Z3) — (22 —Zz)*¢)



Calling (v, Z;) a configuration of the fieldsi=1,---,4, the
probability to encounter this configuration is given by

o—S[($,2)]
PI(, 2] = “———

Z is the partition function:
Z = D[4, Z)]e 102
Average value of the observable O is define by the expression:

o—5106.2)] 2.
0) = [ Dl zn 22

Following Monte Carlo method will be produced a sequence of
configurations {(v, Z;),;},7 = 1,2,--- ,Tyc and evaluated the
average of the observables over that set of configurations. The
expectation value is approximated as

1 T]\[ C

<O> ~ — Oj

Tyve =
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The internal energy is defined as:
E(S2, u, ) = (S)
and the specific heat takes the form
C(, p, o) = (5%) — (S)?

It is very useful to compute separately the average values four
contributions:

SF(w, Zi) = Tr LF
Sv, (¥, Z;) Tr Ly,
Sv, (Y, Zi) Tr Ly,
SD(¢, Zi) Tr ([,Dj[,_pj)

The corresponding expectation values are:

EF(Qv Hy Oé) — <S
Ev,(£2, p, ) (S
Ev,(£2, p, o) (S
ED(Qa My Oé) <S

&

<

=~

)
)
)
)

.
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Now in order to measure the contributions of different modes to
the configuration ¢ we need a control parameter. This turns out
to be the sums on [ and m of |y, |Zz-lm|2, this quantity is called
the full power of the field and it represents the norm of the
field,it can be calculate as:

wo = Tr(|v|?)
zz2 = Tr(|Zi?)

To distinguish the contributions from the different modes we
define the quantity:

N

05 = > lanl’
n=0
N

Zz‘20 — Z|Zinn|2
n=0

Referring to the radial base it is easy to see that a such
parameters are connected to the pure spherical contribution.
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We can generalize the previous quantity defining some
parameters ¢; in such a way they form a decomposition of the
full power of the fields.

e =w0+ Y i Zo =72+ ) Z;
l l

Higher modes are defined by the quantity:

l

pr = Z |anm (1 — 5nm)|2

n,m=0

In the simulations are used the quantities related to | = 0 and the
for [ = 1 as representative of those contribution where the
rotational symmetry is broken.
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Energy density, ¢2, Z2, (from the left to right) for x=0,Q2 =1
and varying o« from 0O to 2.
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Energy density for p = 0,1,3 (from the left to right) and aa =0
varying €2 from O to 1.
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@2, p3, p2 density for y =1 and a = 0 varying 2 from 0 to 1.
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Zg., Z8,, Z5, density for p =1 and a = 0 varying  from 0 to 1.
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Zg, for y=1, a=0 and N = 15 varying  from 0 to 1.
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Specific heat density for u = 0,1,3 (from the left to right) and
o = 0 varying 2 from O to 1.
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Energy density for 2 = 0,0.5,1 (from the left to right) and aa =0
varying pu from O to 3.
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@2, p3, p2 density for 2 = 0.5 and a = 0 varying p from 0 to 3.
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Z0a, Z00, Zo1 density (from the left to right) for Q =0 and a =0
varying pu from O to 3.
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Specific heat density for 2 = 0,0.5,1 (from the left to right) and
a = 0 varying p from 0 to 3.
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Conclusions

. Monte Carlo simulation of such model seams feasible .

. Peaks in specific heat appears increasing the matrix size —
phases transitions.

. The defined order parameters crucially depends on €2 .

Prospectives
. Characterization of the phase transitions (transitions order).

. Computation of transition curve and characterization of the
phases regions.

. Extension of the parameters space Mz <0, 2>1.
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