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Two-plectic Manifolds

Multisymplectic manifolds are a natural generalization of symplectic manifolds.

Symplectic manifolds

Manifold M with closed 2-form w such that (,w =0 < v = 0.

@ Poisson structure — Phase spaces in Hamiltonian dynamics.

@ Starting point for quantization.

V.

p-plectic manifolds

Manifold M with closed p + 1-form w such that c,w =0 < v = 0.

@ 1-plectic: symplectic, 2-plectic: 3-form w

@ (Often) Nambu-Poisson structure — multiphase spaces in
Nambu mechanics.

Might be starting point for higher quantization?

Why should we be interested in such manifolds?

Why should we quantize them?
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1-D3-Branes and the Nahm Equation

D1-branes ending on D3-branes:

dm 0 1 2 3 ... 6 A Monopole appears.
D1 x X )
D3 x x X x X" € u(N): transverse fluctuations

Nahm equation: (s = z9)

iy eIRXI XM =0

ds ’

Note SO(3)-invariance.

Solution: X = r(s)G? with
r(s)=~, G'=c9FGIGR

Nahm, Diaconescu, Tsimpis
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D1-D3-Branes and the Nahm Equation

The D1-branes end on the D3-branes by forming a fuzzy funnel.

dim 0 1 2 3 ... 6 . . .

D1 x y Solution: X* = r(s)G"

D3 x x x X 1 4 B ,
71(8) = g ) G' = EZ]k[G]7Gk]

Matches profile from SUGRA analysis
The D1-branes form a fuzzy funnel:
G" form irrep of su(2):

coordinates on fuzzy sphere S%

D1-worldvolume polarizes: 2d — 4d
Myers
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Lifting D1-D3-Branes to M2-M5-Branes

The lift to M-theory is performed by a T-duality and an M-theory lift

B 0 1 2 3 4 5 6
D1 x X
D3 x x x X

T-dualize along x°:
A~ 0 1 2 3 4 5 6
D2 x X X
D4 x x x X X
Interpret 2 as M-theory direction:

M 0 1 2 3 4 5 6

M2 x X X
M x X X X X X
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The Basu-Harvey lift of the Nahm Equation

M2-branes ending on M5-branes yield a Nahm equation with a cubic term.

M 0 1 2 3 4 5 6 A Self-Dual String appears.
M2 x X x ' .
M5 X x x X x % Substitute SO(3)-inv. Nahm eqn.
d i ijkiyvi yk
X' 4 R X7 X*) =0
ds
-/_ by the SO(4)-invariant equation

d
o XH XY XA, X = 0
S

Solution: X* = r(s)G* with

1
_ n __ _pVpo p o
Basu, Harvey, hep-th/0412310 r(s) = Vs Gl=e GY,GP,G7]
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The Basu-Harvey lift of the Nahm Equation

Also M2-branes end on M5-branes by forming a fuzzy funnel.

Solution: X* =r(s)GH

M 0 1 2 3 4 5 6 1
M2 X X X 7‘(5) = —
M5 x x X X X X \/g

, GH = ghvpo [GV’ Gp’ GO’]

Matches profile from SUGRA analysis
The M2-branes form a fuzzy funnel:

GH form a rep of s0(4):
coordinates on fuzzy sphere 5%

’ M2-worldvolume polarizes: 3d — 6d

@ 3-form structure appears
@ quantization of S? required.
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Further Motivation

There are more appearances of 2-plectic manifolds in string-/M-theory.

@ Mb5-brane perspective: Turning on 3-form background,
C = 0da” Ada' Ada? + 60'da® A da! A da?
the self-dual strings move in ]R}\’2 x R3, with
(20,21, 2%] =X and [23, 21,25 =\ .

Chu, Smith, 0901.1847

@ Using T-duality, Liist, 1010.1361, conjectured that closed
strings on 7% in 3-form background lead to:

Note that here, the Jacobi identity is not satisfied.
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@ Quantization axioms for 2-plectic manifolds
@ Quantized 2-plectic manifolds as vacua of 3-algebra models

@ Another approach: Quantization via Groupoids
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Axioms of Quantization

Quantization is nontrivial and far from being fully understood.

Classical level: states are points on a Poisson manifold M.
observables are functions on M.

Quantum level: states are rays in a complex Hilbert space 7.
observables are hermitian operators on J7.

A full quantization is a map — : C*°(M) — End (#) satisfying
Q [+ fislinear over C, f = f* = f = fI.
@ the constant function f = 1 is mapped to the identity on 7.
© Correspondence principle: {f1, fa} =g = [fl, fQ] =g.
@ The quantized coordinate functions act irreducibly on 7.

Problem:
Groenewold-van Howe: no full quant. for T*R" or S? (T2 OK)
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Loopholes to the obstructions to full quantizations

There are three possible weakenings to the set of axioms for quantization.

Three approaches to weaken the axioms of a full quantization:
@ Drop irreducibility condition
e Quantize a subset of C*°(M)
@ Correspondence principle applies only to O(h)

The first two yield prequantization and geometric quantization.
The last approach leads eventually to deformation quantization.

My favorite method for this talk:
Berezin quantization (or fuzzy geometry for physicists),
a hybrid of geometric and deformation quantization.
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Berezin Quantization of CP! ~ 52

The fuzzy sphere is the Berezin quantization of CP*.

Hilbert space

A is the space of global holomorphic sections of a certain line
bundle: % = H°(M, L). For M = CP': L := O(k).

S, = span(zqg, -.-2a,) = span(&Ll...&Lk 10))

Coherent states

For any z € M: coherent st. |z) € J#. Here: |z) = %(zaag)k\oy

Quantization

Quantization is the inverse map on the image ¥ = o(C*°(M)) of

f(z)= U(f) = tr (2,1? f) , Bridge: P :=
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Axioms of Generalized Quantization

We propose a generalization of the quantization axioms to p-plectic manifolds.

Problem is notoriously difficult, and many people tried to extend
geometric quantization. Berezin quantization should be easier.
Keep: a complex Hilbert space .7 and End (%) as observables.

Generalized quantization axioms

A full quantization is a map — : X — End (J7), ¥ C C®(M)
satisfying

o f|—>fis|inearover(D,f:f*:>f:fT.

@ the constant function f = 1 is mapped to the identity on 7.

© Correspondence principle:

=0
L2

%1_1)% H%J([fh,fn]) - {flvvfn}‘

If M is a Poisson manifold, this holds for Berezin quantization.

Christian Sdmann Quantization of 2-plectic Manifolds



Quantization of R?

The quantized Nambu-Heisenberg algebra corresponds to the space R3.

We start from R? with w = Eijkdl’i Adz? A dzF.

We find {f,g,h} = €ijkazifw9@h-

What is the geometry of [z,9, 2] = -1k 17

One possible interpretation as R3:
Take a fuzzy sphere with Hilbert space H°(C P, O(k)). Define:

3

1 A2 A3 ik 2 6R

[z E gk zizd 3k o 1,
1,5,k

Radius of this fuzzy sphere: Ry = /1 + % Y %.
Now “discretely foliate” R? by fuzzy spheres. = RR3.
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Brief Review: The IKKT model

Noncommutative geometries arise as stable solutions of the IKKT matrix model.

Fully dimensionally reduce maximally SUSY Yang-Mills theory:
S = tr ([ X7, X7)[ X7, X g 4pur (X2 +Crye X[ X7, X ]4-fermions)
where X1 € u(N), I =0,...,9. Stable classical solutions:
Moyal spaces pi = Cijr, =0 (X%, X7 ~ 091
Fuzzy sphere Croz =1 (X XT] ~ ek Xy,
NC Hpp-waves Craz =1, u1 =po=p [X' X2 ~ 6121
(X3, XY ~ 09 X
First two: BPS. The third: Nappi-Witten algebra.

Hpp-waves: 4d Cahen-Wallach symm. space in Brinkman coords.:
dsj =2aBdrt da™ + 2 |dz|® — 1 B2 (v*|2])* — b) (dz™T)?
Identification:

X' 1ix?~z, X3~J, Xt~1.
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The dimensionally reduced BLG model

The theory corresponding to SYM is the BLG model, which we dimensionally reduce.

Basu-Harvey — Bagger, Lambert and Gustavsson developed a
Chern-Simons matter theory for M2-branes. Reduced form:

S=-1(A.Xx"AXxT)+1(0,T"A,0) ZM” (X', X

+ 3o (U, Tgus60) + CT7RE (X7, X7 XK] XL)
+1 (0, Ty XL X70) - & (X X7, x5, XL X7 X))
1

6 @ (A A0, AN) + 5 (A, A 147, A7)

+

4 A~N2

Matter fields X!, W in vector space forming an orth. rep. of the
gauge algebra in which A, lives. (“3-Lie algebra”)

This model should take over the role of the IKKT modell
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Solutions in the 3-Lie algebra model

Stable solutions of the IKKT model have a 3-Lie algebra analogue.

Stable classical solutions:

R} pr =Crijkr =0 (X XTI XF] ~ ik
Fuzzy S° Croza =1 (X, XTI, XF] ~ gkl x1
NC Hpp-waves Clozg =1, uy =pe =p [ X1, X2 X3] ~ 0231
[X47Xi’Xj] ~ Q1R Xk

First two solutions again BPS. The third: 5d Hpp-wave backgrnd.:
ds? = 2a Bdzt da™ + 2 |dz> - 1 62 (42 |2 — b) (da)?
Identification:
X'4ix?~z, X3~ XU, X°~1.

Also: IKKT expanded around solution: NC YM theory on solution.
3-algebra model expanded around solutions: expected part + ...
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The groupoid approach to quantization

The elements of geometric quantization can be written in a groupoid language.

Groupoids: Objects + composable, invertible arrows between them.

Why groupoids?
e Quantization of the dual of a Lie algebra:
Twisted convolution algebra of integrating group

@ Poisson struct. — Lie algebroid — Conv. alg. on Lie groupoid

@ Construction avoids Hilbert spaces, useful for 2-plectic case

Procedure (Eli Hawkins, math/0612363, Weinstein, Renault, ...)
© Integrating groupoid s,t: 3 = M, w, 0*w = 0, t Poisson
@ Construct a prequantization of ¥ with data (L, V)
© Endow X with a groupoid polarization
@ Construct a twist element

© Obtain twisted polarized convolution algebra of >,
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Example: Groupoid quantization of R?

The Moyal plane is conveniently reproduced in groupoid language.

Starting point: M = R?, Poisson structure 7%/, i,j = 1,2,

© 00O

Lie groupoid: ¥ = M x M*, coords. (2%, y;), w = da® A dy;
s(a’,yi) = (¢ + 377y;) and (2’ yi) = (2’ — g7Vy;)

Note: t is indeed a Poisson map: {t*f,t*g}, = t*{f, g9}~

o' (g yp) — 2wy - yp) — =7 (g + )

From this: pri, pro and m. 0*w = pjw — m*w + psw =0

Prequantization: L trivial line bundle over X, F = —i27w
Polarization: Induced by symplectic prepotential # = —z'dy;
Twist element: 9*0 = o, 'dog = d(—%wijyiy;)

Twisted polarized convolution algebra: Moyal product on M

Hawkins
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Groupoid quantization of R?

The groupoid approach can be extended to higher structures using loop space.

Starting point: M = R?, Poisson structure 7%/

o

© 00O

Fig, i,j=1,2.
Lie groupoid: ¥ = LM x LM*, coords. (z*,y;), w = dz’ A y;
s(@',yi) = (@' +5n P ysin)  and (@, i) = (@' =57y )
Note: ¢ is indeed a Poisson map: {t*f,t*g}, = t*{f, 9}

a7 (y+yf) b — l'i-i-ﬂijk(yj—y;)fk — wi—ﬂijk(yj—i‘y;)fk

From this: pry, pro and m. 0*w = pjw — m*w + psw =0

Prequantization: L trivial line bundle over ¥, F' = —i27w
Polarization: Induced by symplectic prepotential # = —z'dy;
Twist element: 8*0 = o 'dog = d(— 7%y} i)

Twisted polar. conv. alg.: [z%(7),27(0)] = 6(1 — o)nT* iy (T)
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Conclusions
Summary and Outlook.

Summary:
v Naive approach to quantizing 2-plectic manifolds works OK
v IKKT-like model can be written down, has expected features.
v Groupoids offer a more general approach to quantization
Future directions:
> Extend groupoid constructions to other spaces.
> Unify picture: Higher Poisson structures? Courant algebroids?

> Rewrite BLG model using the new function algebras.

Christian Sdmann Quantization of 2-plectic Manifolds



Quantization of 2-plectic Manifolds

Christian Sadmann

HERIOT
WATT

UNIVERSITY

School of Mathematical and Computer Sciences
Heriot Watt University, Edinburgh

EU-NCG 4th Annual Meeting, 29.4.2011

Christian Sdmann Quantization of 2-plectic Manifolds



