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Schatten classes

Let H be a finite dimensional Hilbert space. The Schatten p-class Lp(Tr) is
defined as

A ∈ Mn(C) : ‖A‖Lp (Tr) =
(
Tr|A|p

)1/p
<∞

A,B ∈ L2(Tr) are called Hilbert Schmidt operators. L2(Tr) is a Hilbert space
with inner product

(A,B)Tr = TrA
∗
B.

There holds the Hölder inequality:

|(A,B)Tr| ≤ ‖A‖Lp (Tr)‖B‖Lq (Tr) ,

for 1/p + 1/q = 1.
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Hölder inequality for Gibbs states

Now let Mn(C) ∋ ρ ≥ 0, Trρ = 1,

ωρ(A) = Tr ρA,

and
‖A‖Lp (ωρ) :=

(
Tr |ρ1/2pAρ1/2p |p

)1/p
.

The inner product in L2(ωρ) is given by

(A,B)ωρ = Tr ρ1/2A∗ρ1/2B .

Hölder inequality:
|(A,B)ωρ | ≤ ‖A‖Lp (ωρ)‖B‖Lq (ωρ)

for 1/p + 1/q = 1.
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Relative modular operators

Now for a second density matrix ν define the linear operator

∆ν,ρA = νAρ−1,

which fulfills
∆1/p

ν,ρA = ν1/pAρ−1/p.

Applying the Hölder inequality gives

|(A2∆
1/p
ν2,ρ,A1∆

1/q
ν1,ρ)ωρ | ≤ ‖A1‖ ‖A2‖ ‖∆

1/p
ν2,ρ‖Lp (ω) ‖∆

1/q
ν1,ρ‖Lq (ω)

= ‖A1‖ ‖A2‖ (Tr ν2)
1/p(Tr ν1)

1/q

= ‖A1‖ ‖A2‖ων2 (1l)
1/p ων1(1l)

1/q ,

for 1/p + 1/q = 1. This structure is preserved for general KMS states.
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Given objects

The starting point is a von Neumann algebra in standard form, i.e. let
(H,M, J,P♯) be given, where

H is a Hilbert space,

M ⊂ B(H) is a von Neumann algebra,

J is an anti-unitary involution on H and

P♯ is a self dual cone,

such that JMJ = M′, JΨ = Ψ for Ψ ∈ P♯; and the KMS state

ωβ(A) = (Ω,AΩ), A ∈ M,

Ω beeing a cyclic and separating vector for M. Furthermore there are the
Tomita Takesaki objects summarized by

SAΩ = J∆1/2
AΩ = A

∗Ω, A ∈ M.

Lastly we assume the existence of a generator L such that ∆1/2 = e−βL/2.
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Relative modular operators

For a second vector state φ = (ξ, · ξ), the operator defined by

Sξ,ΩAΩ = A
∗ξ

is also closable. The polar decomposition yields

Sξ,ΩAΩ = Jξ,Ω∆
1/2
ξ,ΩAΩ = A

∗ξ.

Jξ,Ω is an anti-linear involution. ∆ξ,Ω is positive self-adjoint. Note the
coincidences

S = SΩ,Ω, J = JΩ,Ω and ∆ = ∆Ω,Ω.

In the finite dimensional case ∆Ω1,Ω2 is precisely the matrix from the first part
of the talk.
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Araki’s generalisation

Theorem (Araki)

I
(n)
α := {(z1, . . . , zn) ∈ C

n :

n∑

j=1

ℜzj ≤ α, 0 ≤ ℜzj} ,

for α > 0. Let z ∈ I (n) ≡ I
(n)
1 and z ′m, z

′′
m ∈ C be such that ℜz ′m,ℜz

′′
m > 0,

z ′m + z ′′m = zm and

ℜz1 + . . .ℜzm−1 + ℜz ′′m ≤ 1/2 ,

ℜzn + . . .ℜzm+1 + ℜz ′m ≤ 1/2 .

Under these conditions, for φ1, . . . , φn ∈ M+
∗ , X0, . . . ,Xn ∈ M and

z0 = 1−
∑n

j=1 ℜzj

∣
∣
∣(∆

z̄′m
φm,ΩX

∗
m∆

z̄m+1

φm+1,Ω
. . .∆z̄n

φn,Ω
X

∗
n Ω,∆

z′′m
φm,ΩXm−1∆

zj−1

φm−1,Ω
. . .∆z1

φ1,Ω
X0Ω)

∣
∣
∣

≤
( n∏

j=0

‖Xj‖
)

(Ω, 1lΩ)z0
( n∏

j=1

φj(1l)
ℜzj

)

.
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Araki’s & Masuda’s non-commutative Lp spaces

Definition

For 2 ≤ p ≤ ∞,

Lp(M,Ω)
.
=

{
ζ ∈

⋂

ξ∈H

D
(
∆

1
2
− 1

p

ξ,Ω

)
| ‖ζ‖p <∞

}
,

where

‖ζ‖p = sup
‖ξ‖=1

‖∆
1
2
− 1

p

ξ,Ω ζ‖ .

For 1 ≤ p < 2, Lp(M,Ω) is defined as the completion of H with respect to the
norm

‖ζ‖p = inf{‖∆
1
2
− 1

p

ξ,Ω ζ‖ | ‖ξ‖ = 1, sM(ξ) ≥ sM(ζ)}.

Here sM(ξ) denotes the smallest projection in M, which leaves ξ invariant.

Remark

L2(M,Ω) = H, L∞(M,Ω) ∼= M and L1(M,Ω) = M∗.

|ωβ(A
∗B)| ≤ ‖A‖Lp (M,Ω) ‖B‖Lq (M,Ω) for 1/p + 1/q = 1.
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Hölder inequality for KMS states

For A ∈ M+,
|||A|||p

.
= ωβ

(
e
−βL/p

A · · · e−βL/p
A

︸ ︷︷ ︸

p times

)1/p
.

Theorem (J&R)

Consider a (τ, β)-KMS state ωβ over a C∗-dynamical system (A, τ ). Let
(z1, . . . , zn) ∈ C

n be such, that 0 ≤ ℜzj ,
∑m

j=1 ℜzj ≤ 1/2 and
∑n

j=m+1 ℜzj ≤ 1/2, and let pj be the smallest, positive integer such that
1
pj

≤ min{ℜzj+1,ℜzj}, with zn+1 = zn and z0 = z1. Then

∣
∣
∣ωβ

(
Ane

−znβL · · ·A1e
−z1βL

A0

)
∣
∣
∣ ≤ |||A0|||p0 · · · |||An|||pn (*)

for all A0, . . . ,An ∈ M+.
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Ideas of the proof I

More handy than the Lp(M,Ω) are the auxilliary spaces

Lp(M,Ω) := {u∆1/p
φ,Ω | u partial isometry, φ ∈ M+

∗ } and

L∗
p(M,Ω) := {A0∆

z1
φ1,Ω

A1 · · ·∆
zn
φn,Ω

An | Aj ∈ M, φj ∈ M+
∗ ,

∑

ℜzj ≤ 1− 1/p},

for 1 ≤ p <∞. The identification with Lp(M,Ω) is done via application to the
distinguished vector Ω. By the invariance of the distinguished vector,
∆αΩ = Ω, the following equivalence relation is in effect:

∆
1/q
Ω1,Ω

∆α ∼ ∆
1/q
Ω1,Ω

in Lp(M,Ω)∗ ,

where 1− 1/q + α ≤ 1/p. Apparently, for A ∈ M+ and 1/p + 1/p′ = 1

∆1/2p
A∆1/2p ∈ L∗

p′(M,Ω) .

Then, according to Araki and Masuda, there exists φ ∈ M+
∗ such that

∆1/2p
A∆1/2p ∼ ∆

1/p
φ,Ω in L∗

p′(M,Ω) .
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Ideas of the proof II

Thusly one makes sense of the left hand side of the desired inequality and
immediately can use Araki’s inequality. It is left to show, that φj (1l) = |||Aj |||p .

φj (1l) = (ξj , 1lξj) = (Jξj ,Ω∆
1/2
ξj ,Ω

Ω, Jξj ,Ω∆
1/2
ξj ,Ω

Ω)

≤
(
(∆

1/p
ξj ,Ω

)p/2Ω, (∆
1/p
ξj ,Ω

)p/2Ω
)
=

(
(∆1/2p

A∆1/2p)p/2Ω, (∆1/2p
Aj∆

1/2p)p/2Ω
)

= ωβ(Aje
−βL/p · · · e−βL/p

Aj ),

as J∗
ξj ,Ω

Jξj ,Ω is a projection.

Remark

(*) is uniform in ℑzj

||| · |||p norms are “better” than || · ||.
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The thermal P(φ)2 model

Define Q := S ′
R(Sβ × R) and for f , g ∈ S(Sβ × R)

C(f , g) := (f , (−∆+m
2)−1

g).

In this context the bidual embedding φ(f ) : Q → R, q 7→ 〈q, f 〉 is called the
Euclidean quantum field. For the free Gaussian measure there holds

∫

Q

φ(f )φ(g) dφC = C(f , g).

More interestingly, the interacting measure is defined by

µ := lim
l→∞

e

∫
Sβ×[−l,l ]:P(φ(α,x)):C dx dα

dφC ,

where P is a bounded below polynomial. µ is translation invariant.
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Interacting Schwinger functions

For 0 ≤ α1 < . . . < αn < β

Sβ(α1, x1, . . . , αn, xn) :=

∫

φ(δα1 ⊗ δx1 ) . . . φ(δαn ⊗ δxn ) dµ

=

∫

φ(δ
(2)
0 )U(α2 − α1, x2 − x1) · · ·φ(δ

(2)
0 )U(αn − αn−1, xn − xn1 )φ(δ

(2)
0 ) dµ,

where U(α, x) implements translations and rotations on the cylinder. The
second line above follows from translation invariance of µ. Sβ only depends on
the relative coordinates, so for the purpose of this talk we sloppily write

Sβ(α1, x1, . . . , αn−1, xn−1).
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Osterwalder Schrader reconstruction

The Osterwalder Schrader reconstruction for thermal fields is due to Klein &
Landau. Aim: Construct

Hilbert space Hβ ,

field operators φβ ,

a distinguished (vacuum) vector Ωβ ,

a generator of time translations (Liouvillean) L,

such that one can define for f ∈ S(Sβ × R)

Wβ(f1, . . . , fn) = (Ωβ, φβ(f1) . . . φβ(fn)Ωβ)

and there holds

Sβ(α1, x1, . . . , αn−1, xn−1) = Wβ(−iα1, x1, . . . ,−iαn−1, xn−1).
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Prametrize zylinder by
(α, x) for
α ∈ (−β/2, β/2],
x ∈ R and define the
reflection map R:

(Rφ)(α, x) := φ(−α, x)

For 0 ≤ γ ≤ β we denote by Σ[0,γ] the σ-algebra generated by the functions
φ(f ) with supp f ⊂ [0, γ] × R.
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Scalar product:

∀F ∈ L
2(Q,Σ[0,β/2],dµ) : (F ,F ) :=

∫

Q

R(F )Fdµ ≥ 0.

By factoring out the kernel N of (·, ·), we can define the physical Hilbert
space.

Hβ := L2(Q,Σ[0,β/2],dµ)/N .

Let V : L2(Q,Σ[0,β/2],dµ) → Hβ denote the canonical projection, then

Ωβ := V(1)

is called the distinguished (vacuum) vector. The field φβ, on Hβ acts as

φβ(δ ⊗ g)V(F ) = V(φ(δ ⊗ g)F ),

for F ∈ L2(Q,Σ[0,β/2], µ).
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Define Dγ := V(L2(Q,Σ[0,β/2−γ], µ)) ⊂ Hβ for 0 ≤ γ ≤ β/2. For 0 ≤ α ≤ γ
the operators P(α) on Dγ defined by

P(α)V(ψ) := V(U(α)ψ), ψ ∈ L
2(Q,Σ[0,β/2−γ] , µ),

form a local symmetric semigroup, i.e.

Dα2 ⊂ Dα1 for 0 ≤ α1 ≤ α2 ≤ β/2 and

⋃

0≤α≤β/2

Dα

is dense in Hβ ;

P(α) is linear;

P(0) = 1l, P(α)Dγ ⊂ Dγ−α for 0 ≤ α ≤ γ ≤ β/2, and

P(α)P(γ) = P(α+ γ);

P(α) is symmetric;

P(α) is weakly continuous.
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Theorem (Klein & Landau and independently Fröhlich)

For every local symmetric semigroup (P(α),Dα, β/2) on a Hilber space H,

there exists a generator L, which fulfills

P(α)ψ = e
−αLψ, ψ ∈ Dα.

Therefore it is possible to define

Wβ(t1 − iα1, x1, . . . , tn − iαn , xn)

= (Ωβ , φβ(δ)e
−it1Le

−α1Le
ix1Pφ(δ) . . . e−itnLe

−αnLe
ixnPφβ(δ)Ωβ)

for αj > 0 and
∑

j
αj ≤ β/2. Then there holds

Sβ(α1, x1, . . . , αn, xn) = Wβ(−iα1, x1, . . . ,−iαn, xn).
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Construction of the algebra M

L∞(Q,Σ{0}, µ) leaves L
2(Q,Σ[0,β/2], µ) and N invariant. Therefore one can

define a representation of L∞(Q,Σ{0}, µ) on Hβ by

πβ(A)V(F ) = V(AF ),

where A ∈ L∞(Q,Σ{0}, µ) and F ∈ L2(Q,Σ[0,β/2], µ). Then M is defined to
be the von Neumann algebra generated by

e
itLπβ(A)e

−itL.

Ωβ is cyclic and separating for M. Naturally,

ωβ(A) := (Ωβ,AΩβ), A ∈ M.

Remark

Same construction for L∞(Q,Σ{β/2}, µ) results in M′.
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Tomita Takesaki objects

The Tomita Takesaki objects can be constructed quite explicitly from
operations on L2(Q,Σ[0,β/2], µ).

Modular operator: ∆1/2 = e−βL/2.

Modular conjugation J: Induced action of j := (Rβ/4 ·) on Hβ.

Obviously JMJ = M′.

How can we see, that J∆1/2AΩβ = A∗Ωβ? Remarkable result by Klein &
Landau:

Hβ = L
2(Q,Σ{0,β/2}, µ).

Proof is based on Markov property. But on L2(Q,Σ{0,β/2}, µ) the ∗-operation
is just complex conjugation.
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Theorem

For fj ∈ S(R2), j ∈ {1, . . . , n}, the following limit exists,

Wβ(f1, . . . , fn) := lim
αj→0

(Ωβ , φ(f1)e
−α1L · · ·φ(fn−1)e

−αn−1Lφ(fn)Ωβ).

Remark

We were not able to prove the existence of the Wightman functions for

time-zero fields. Up to now the Wightman functions also have to be smeared

out in time.

F. Robl The Hölder inequality for KMS states and its application to thermal QFT



Gibbs states
Non-commutative Lp spaces

Application to thermal P(φ)2 model

Outline of proof

At first approximate the time-zero field operators in M, for hj ∈ S(R),

φ
(ℓ)
β (hj) → φβ(δ ⊗ hj ).

Then we can directly apply the Hölder inequality:

(Ωβ , φ
(ℓ)
β (h1) e

−(α1+it1)L · · ·φ(ℓ)
β (hn−1) e

−(αn−1+itn−1)L φ
(ℓ)
β (hn) Ωβ)

≤ |||φ(ℓ)
β (h1)|||p1(α1) · · · |||φ

(ℓ)
β (hn)|||pn (αn) ,

where pj is the smallest, positive integer such that 1
pj

≤ min{ℜαj+1,ℜαj}. Now

there holds the inequality (without proof)

|||φβ(hj)|||p(αj ) ≤
p(αj )

2
|h|S ,

where | · |S is some Schwarz norm. Polynomial groth is good enough for
convergence in the sense of distributions.
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