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Overview

@ The Holder inequality for Gibbs states

o Araki's & Masuda's non-commutative L, spaces

@ The Holder inequality for KMS states

@ Application: Construction of the thermal P(¢)> model
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Gibbs states

Schatten classes

Let # be a finite dimensional Hilbert space. The Schatten p-class L,(Tr) is

defined as .
A€ Mi(C): Al = (TrAP)Y? < o0

A, B € L[5(Tr) are called Hilbert Schmidt operators. L»(Tr) is a Hilbert space

with inner product
(A, B)T: = TrA*B.

There holds the Holder inequality:
(A, B)re| < (ANl (o) 1BllLg(my

for1/p+1/q=1
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Gibbs states

Holder inequality for Gibbs states

Now let M,(C) > p >0, Trp =1,
wP(A) = TI"pA,

and )
1/2 1/2
AllLy(op) = (Tx o2 A P) 7.

The inner product in Ly(w,) is given by
(A, B)s, = Trp'/?A*p'/?B.

Holder inequality:
(A, By | < [[AllLp () 1BllLg(wp)

for1/p+1/g=1.
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Gibbs states

Relative modular operators

Now for a second density matrix v define the linear operator
A’ApA = VAp—lz

which fulfills
DYPA =P ApTIP,

Applying the Holder inequality gives

IN

|(A2A1/p A1A1/q

v2,p) Vl,p)wp|

1 1
AL A2 AP e 1AL o)

A ([ Azl] (Tr v2)/(Tr 12)9
A ]| | Az woy (1)7 wny (1)

for 1/p+1/q = 1. This structure is preserved for general KMS states.
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Non-commutative Lp spaces

Given objects

The starting point is a von Neumann algebra in standard form, i.e. let
(H, M, J, P¥) be given, where

@ H is a Hilbert space,
@ M C B(H) is a von Neumann algebra,
@ J is an anti-unitary involution on H and
@ Phis a self dual cone,
such that JMJ = M’', JU = W for ¥ € P¥; and the KMS state
ws(A) = (2,AQ), AeM,

Q beeing a cyclic and separating vector for M. Furthermore there are the
Tomita Takesaki objects summarized by

SAQ = JAY?AQ = A"Q, Ae M.

Lastly we assume the existence of a generator L such that A2 = e PL/2,
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Non-commutative Lp spaces

Relative modular operators

For a second vector state ¢ = (§, &), the operator defined by
SeAQ = A¢
is also closable. The polar decomposition yields
SeaAQ = JeaAYHAQ = A"E.

Je o is an anti-linear involution. A¢ o is positive self-adjoint. Note the

coincidences
S = SQ’Q, J = JQ’Q and A= AQ’Q.

In the finite dimensional case Agq, q, is precisely the matrix from the first part
of the talk.
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Non-commutative Lp spaces

Araki's generalisation

Theorem (Araki)
1" .= {(z1,...,2,) €C": Z%zj <a,0< Rz},
j=1

fora>0. Letze I = Il(") and z},, zl» € C be such that Rz,,, Rz, > 0,
z, + zl! = zy, and

Rz1 + ... Rzm1 + Rzl < 1/2,
Rzn + ... Rzm1 + Rz, < 1/2.

Under these conditions, for ¢1,...,¢n € MY, Xo,..., X0 € M and
2=1- E;:1 Rz

= - 7
Zm * A Zm+1 Zn * z zi_q =
(AT XZAT AT OXIQ AT (X1 AT AT 0 Xo0Q)

< (Tt 1907 ([T (™)
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Non-commutative Lp spaces

Araki's & Masuda's non-commutative L, spaces

For 2 < p < o0,

Ly(M,Q) = {¢ € [ D(AZoP) | i€l < oo},

ceH
where .
<lle = sup [|Ag ¢l -
[l€lI=1
For 1 < p <2, L,(M,Q) is defined as the completion of H with respect to the
norm

¢l = inf{llAg Q" ¢l TIEN = 1,50m(8) = sm(Q)}-

Here spq(€) denotes the smallest projection in M, which leaves & invariant.

Remark
@ LL(M,Q)=H, Leo(M,Q2) 2 M and Li(M,Q) = M..
9 |ws(A"B)| < [|All, im0 1Bllgm,e) for 1/p+1/q=1.
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Non-commutative Lp spaces

Holder inequality for KMS states

For Ae M™,
LAl = ws (e /P A =82 AY1/7

p times

Theorem (J&R)

Consider a (1, B)-KMS state wg over a C*-dynamical system (A, 7). Let
(z1,...,2n) € C" be such, that 0 < Rz, -, Rz < 1/2 and

Z}’:mﬂ Rz; < 1/2, and let p; be the smallest, positive integer such that

plj < min{Rzj;1, Rz}, with zo41 = z, and zo = z. Then
s (Ane ™05 - Are™ A0) | < [ Aol -+ I Anlle (*)

for all Ao, ..., A, € MT.
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Non-commutative Lp spaces

Ideas of the proof |

More handy than the L, (M, Q) are the auxilliary spaces
Lp(M,Q) = {UAXS | u partial isometry, ¢ € M} and
Ly(M,Q) = {ADZ qAr-- A7 (A | A€ M, ¢ € MI,Y Rz <1-1/p},

for 1 < p < 0o. The identification with L,(M, Q) is done via application to the
distinguished vector Q. By the invariance of the distinguished vector,
A%Q = Q, the following equivalence relation is in effect:

A;)/I?QAQ ~ Agfn in £,(M,Q)",
where 1 —1/qg+a < 1/p. Apparently, for Ac M* and 1/p+1/p' =1
AYPPAAYP € £7(M, Q).
Then, according to Araki and Masuda, there exists ¢ € M7 such that

AI/ZpAAl/Zp ~ A(lj;/,s in ,C;/ (M7 Q) .
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Non-commutative Lp spaces

Ideas of the proof Il

Thusly one makes sense of the left hand side of the desired inequality and
immediately can use Araki's inequality. It is left to show, that ¢;(1) = |||Ajl|p-
$i(1) = (&, 1) = (Jg 2B 52 Je .0l 59)
< ((Aé;,?z)p/ZQ, (Aéj/f;z)p/zﬂ) _ ((Al/szAl/zp)p/zﬂ’ (Al/szjAl/zp)p/zQ)
= wy(Aje P TP,

as JEJ’QJ@,Q is a projection. O

Remark

9 (*) is uniform in Sz;

9 ||| - ||lp norms are “better” than || - ||.
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Application to thermal P(¢), model

The thermal P(¢$)2 model

Define Q := Sg(Ss x R) and for f, g € S(Ss x R)

C(f,g) = (f,(-Aa+m")g).
In this context the bidual embedding ¢(f) : Q = R, g +— (g, f) is called the
Euclidean quantum field. For the free Gaussian measure there holds

/Q 6(F) é(g) doc = C(F. g).

More interestingly, the interacting measure is defined by

fSB ><[_/’/]:F’((#(oz,x)):(_- dx da

wi= lime doc,

|— o0

where P is a bounded below polynomial. p is translation invariant.
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Application to thermal P(¢), model

Interacting Schwinger functions

Foro<ai <...<ap<p
S0, X1, -, Clmy ) = /q5(5a1 ©6y) - B(0a, @64 di

/ 9357 U0z — a1, x0 = 3a) -+~ (557 ) Ulern — 1,30 — x )$(85 )
where U(a, x) implements translations and rotations on the cylinder. The

second line above follows from translation invariance of . Sg only depends on
the relative coordinates, so for the purpose of this talk we sloppily write

SB(CX1,X1, .. .,Ozn_l,Xn_l).
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Application to thermal P(¢), model

Osterwalder Schrader reconstruction

The Osterwalder Schrader reconstruction for thermal fields is due to Klein &
Landau. Aim: Construct

9 Hilbert space Hg,

9 field operators ¢g,

@ a distinguished (vacuum) vector Qg,

@ a generator of time translations (Liouvillean) L,
such that one can define for f € S(Sg x R)

We(fi, ... fn) = (s, () ... d5(£:)28)
and there holds

Sg(ozl,xl, .o .,Oénfl,anl) = Wﬁ(—iOq,Xl, ey —I'Oznf;[,anl).
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Application to thermal P(¢), model

Prametrize zylinder by
(v, x) for

a € (-8/2,8/2)

x € R and define the
reflection map R:

(R¢)(a; x) := ¢(—a, x)

For 0 <~y < 8 we denote by Y| ) the o-algebra generated by the functions
@(f) with supp f C [0,7] x R.
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Application to thermal P(¢), model

Scalar product:
VF € L*(Q,Xp,s/2,du) . (F,F) ;:/ R(F)Fdy > 0.
Q

By factoring out the kernel N of (-,-), we can define the physical Hilbert
space.

Hﬁ = 1_2((?7 Z[Oyﬁ/Q], d/.L)/N
Let V: L*(Q,%(0,5/2),dp) — Hs denote the canonical projection, then

QB = V(].)
is called the distinguished (vacuum) vector. The field ¢g, on Hg acts as
¢5(0 @ g)V(F) =V(6(6 © g)F),

for F € L*(Q,Z(0,5/2, 1b)-
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Application to thermal P(¢), model

Define D := V(L*(Q,Xp0,5/2—1, 1)) C Hp for 0 <y < 3/2. For 0 < v < v
the operators P(«) on D defined by

P(a)V(¥) = V(U()y), ¥ € L*(Q,p0,5/2-15 1),

form a local symmetric semigroup, i.e.
@ Do, C Dy, for 0 <oy < < 3/2 and

U Da

0<a<p/2

is dense in Hg;

(7

P(«) is linear;
P(0) =1, P(a)Dy C Dy—q for 0 < a <~ < /2, and

(7

P(a)P(v) = P(a+7);

©

P(«) is symmetric;

©

P(«) is weakly continuous.
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Application to thermal P(¢), model

Theorem (Klein & Landau and independently Frohlich)

For every local symmetric semigroup (P(a), Do, 3/2) on a Hilber space H,
there exists a generator L, which fulfills

P(a)y =e "y, 1€ Da.

Therefore it is possible to define

We(ts — ica, X1y ...yt — [Qtny Xn)

_ (Qﬁ, ¢ﬁ(5)efit1Lefa1Leix1P¢(5) o efitnLefanLeianqSﬁ(é)Qﬁ)
for aj > 0 and }°; o < /2. Then there holds

Sglaa, X1, ..., 0, %n) = Wa(—ioa, x1,..., —icn, Xn).
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Application to thermal P(¢), model

Construction of the algebra M

L=(Q, X0}, 1) leaves L*(Q,%(0,5/2, 1) and N invariant. Therefore one can
define a representation of L>(Q, X0}, 1) on Hg by

ms(A)V(F) = V(AF),

where A € L™(Q, %0y, 11) and F € L*(Q,X0,5/2, it)- Then M is defined to
be the von Neumann algebra generated by

eitLﬂ'B(A)e_itL.
Qg is cyclic and separating for M. Naturally,

wp(A) == (2s,AQs), A€ M.

Remark

Same construction for L°(Q, Xz /2y, 1) results in M’.
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Application to thermal P(¢), model

Tomita Takesaki objects

The Tomita Takesaki objects can be constructed quite explicitly from
operations on L?(Q, Y 0,8/ I)-

@ Modular operator: A2 = ¢=FL/2,
@ Modular conjugation J: Induced action of j := m on Hp.
Obviously JMJ = M.

How can we see, that JAY2AQ; = A*Q3? Remarkable result by Klein &
Landau:

Hp = L*(Q,X0,8/2), 1)-

Proof is based on Markov property. But on Lz(Q,Z{O,B/Q},M) the x-operation
is just complex conjugation.
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Application to thermal P(¢), model

For f; € S(R?), j € {1, ..., n}, the following limit exists,

Ws(f, ... f): (Qs, p(A)e ™+ B(fa1)e” " (£)Qp).

= lim
a;—0

We were not able to prove the existence of the Wightman functions for
time-zero fields. Up to now the Wightman functions also have to be smeared
out in time.
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Application to thermal P(¢), model

Outline of proof

At first approximate the time-zero field operators in M, for h; € S(R),
&%) (hy) — ¢5(0 ® hy).
Then we can directly apply the Holder inequality:

(Qp, ¢B (h)e” (a+it)L '¢g)(hn—1) o (@n—1titn_1)L ¢(BZ)(hn) Q5)

< 165" (r)lllpscan) ==~ 165" (o) 1ot

where p; is the smallest, positive integer such that % < min{Raj+1, R }. Now
J
there holds the inequality (without proof)

p(oy
165l < 222 1hls,
2

where | - |s is some Schwarz norm. Polynomial groth is good enough for
convergence in the sense of distributions. O
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Application to thermal P(¢), model
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