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V= vector space over C;
e the non-commutative space over V: Voc = [, Mn(V)

e noncommutative sets: 2 C Voc suchthat X @Y = {)O( )0,} € Qnim

forall X € Q,..Y € Q... where Q,, = Qny™*"

e upper admissible sets: Q@ C Vne such that forall X € Q,,. Y € Q.
and all Z € y™*™, there exists A € C, A # 0, with

X XN
[0 Y :| € Qn+7n~

Mihai Popa Non-commutative functions and some of their applications in free probc



Examples of upper-admissible sets:
e Q) = Nilp V = the set of nilpotent matrices over V

e If Vis a Banach space and Q is open in the sense that ©,, C V™**" is
open for all n, then Q is upper admissible.

e B =unital C*-algebra, A=x-algebra containing B;
XeA,
(X :B)={B e M,(B):1,®X — ginvertible}

p(X;B) =112, pn(X : B) is upper admissible
e Noncommutative half-planes over A:

[H+(Anc) = {CL (S Anc: %a > 0}
IH_(Anc) = {(L S .Anc: %a < 0}
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Q C Vac = Nnon-commutative (upper admissible) set
Noncommutative function:
79 — Whe such that

® f(S2) C Ma(W)

@ frespectsdirectsums: f(X@Y) = f(X) & f(Y) forall X € Q.
Y € Q.

@ frespectssimilarities: f(TXT™ ') = Tf(X)T~" forall X € Q, and
T € GL,(C) such that TXT~! € Q,.
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Examples of nc-functions:

e non-commutative polynomials

V=R" W=NMN,where N =module overaring R
F(X1, o, Xm) = X1X3 — X3 X1 + b1 X2 Xabo X5

N.b.: A nc polynomial is determined uniquely by this type of nc
function
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Examples of nc-functions:

e non-commutative polynomials
V=R" W=NMN,where N =module overaring R
f(X1,. . Xm) = X1 X3 — X3X1 + b1 X2 Xabo X5

N.b.: A nc polynomial is determined uniquely by this type of nc
function

e K =field of characteristic zero

po= Y sign(mX;P X, XTETX,
TESn 41
f: Q€ K2 — Kne. given by

[e's}

fl@r,@2) =) pul@r, @2).

k=1

For (w1, 22) € M, (K?), the terms px (21, 22), k > n all vanish.
All n-dimensional components of f are polynomials, but f is not a
nc polynomial.
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Examples of nc-functions:

e free holomorphic functions (G. Popescu)

f(X1,.., X Z > AXy X,

m=1i=(i1,...,im)

where X;,,..., X,

in

are free elements in some operator algebra

¢ the generalized moment series of u € ¥5.p

¢ : A — D cp B-bimodule map

A((L—&b)"") = My = (Mn,u)n . Where i = (1, ® p),, id the fully
matricial extension of .

= (1. ®@p)([X - b)),

k=0
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Mx indeed encodes all the moments of X, not only the symmetric
ones, since for

0 b1 0 0
0 0 b 0
b= . (S Mn+1(B)
0 0 0 by
0 0 0 0
we have that
0 0 0

(v @) ([X-b]") =

Mihai Popa Non-commutative functions and some of their applications in free probc



Examples of nc-functions:
e the full B-resolvent of X
B = unital C*-algebra, A=«-algebra containing B;
XeA,
(X :B)={p e M,(B):1,®X — ginvertible}

on each p(1,, ® X; M, (B)) consider the analytic function
Brr(ln®X-p)~"
e the generalized Cauchy fransform of X: Gx
¢ : A — D cp B-bimodule map
Gx = (Gg?))n, where

G HY (Ma(B)) 3 b G (b) = ¢ul(b— X ®1,) " € H (Mo (D))
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Difference-differential calculus

Nc functions admit a nice differential calculus. The
difference-differential operators can be calculated directly by
evaluation on block-triangular matrices.

¥ 2= ansine

The operator Z — Arf(X,Y)(Z) is linear and

fY) = f(X) + Ar(X,Y)(X - Y)
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Particularly, if B ¢ A, and X € A, a QD-bialgebra structure is induced
by
0x : B(X) ® B(X) — B(X)

where dx ;3 =0and éx(X) =1® 1.
For f € B(X).if ox(f) =>_ f1 ® f2, with f1, fo € B(X), then

ARf(X,X)(b) =Y fi-b- fo.

The relations for higher order derivatives is similar.

Mihai Popa Non-commutative functions and some of their applications in free probc



The Taylor-Taylor expansion:
If f:Q — Whc is a non-commutative function, Q=upper-admissible
set, X € Q,. Then foreach N and X € Q, we have that

N
fO)=> ARf(X,...,. X)(X -Y,..., X -Y)
k=0 . .
k+1 times k times

+ANTUA(X, . L XY (X —Y,..., X —Y)
—— —_—

N+1 times N+1 times
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The Taylor-Taylor expansion:
If f:Q — Whc is a non-commutative function, Q=upper-admissible
set, X € Q,. Then foreach N and X € Q, we have that

N
fO)=> ARf(X,...,. X)(X -Y,..., X -Y)
k=0 . .
k+1 times k times

+ANTUA(X, . L XY (X —Y,..., X —Y)
—— —_—

N+1 times N+1 times

Moreover, if 0 € Q then for X € Q we have

FX) = ST AR F(0, ..., 0)(X,..., X
(X) ;)R(k+1)( k )

where KE}(O, ..., 0) are the fully matricial extension of the multilinear
N——

k+1
maps A% £(0,...,0): V¥ — W,
——

k41
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'X Z1 0 ()'
0 X
f 0
: X  Z
K 0 Y|
[f(X) Arf(X,X)(Z1) - -+ ARFX,....X,Y)(Z1,..., %) ]
0 f(X) ARTYR(X, XYY ( 2oy, Z)
: F(X) Arf(X,Y)(Zx)
L O 0 fY) ]
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B= unital C*-algebra
B c Ainclusion of unital C* (x)-algebras
¢ : A — B positive conditional expectation
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B= unital C*-algebra
B c Ainclusion of unital C* (x)-algebras
¢ : A — B positive conditional expectation

X=X"ed
A(Xb1 Xy X) # $(X?)b1ba

moments = mulfilinear maps

B" 5 (by,...,bn) — ¢(Xb1 - XbuX)
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B= unital C*-algebra
B c Ainclusion of unital C* (x)-algebras
¢ : A — B positive conditional expectation

X=X"ed
A(Xb1 Xy X) # $(X?)b1ba

moments = mulfilinear maps

B" 5 (by,...,bn) — ¢(Xb1 - XbuX)

“Distributions”

B(X)=the x-algebra of non-commutative polynomials in the
self-adjoint variable X and with coefficients in B
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B= unital C*-algebra
B c Ainclusion of unital C* (x)-algebras
¢ : A — B positive conditional expectation

X=X"ed
A(Xb1 Xy X) # $(X?)b1ba

moments = mulfilinear maps

B" 5 (by,...,bn) — ¢(Xb1 - XbuX)

“Distributions”

B{X)=the x-algebra of non-commutative polynomials in the
self-adjoint variable X and with coefficients in B

Yp = {v: B(X) — B: positive conditional expectation}
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Yp = {v: B(X) — B: positive conditional expectation}

Mihai Popa Non-commutative functions and some of their applications in free probc



Yp = {v: B(X) — B: positive conditional expectation}

Example:
Free Central Limit Thm.: B-Semicircular Law (D-V. Voiculescu, ‘95, R.
Speicher ‘97):

b — n(b) = cp map

§(Xb1Xby - - - Xbs X') =n(b1)ban(bs)ban(bs) + 1(b1)b2m(ban(ba)bs)+
n(b11(b2)b3)ban(bs) + n(brm(b2)bsn(ba)bs) + 1(bim(b2n(bs)ba)bs)

eqasy using non-crossing pair partitions
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Free Independence: (A4, A, = subalgebras of A)
d(araz - an) =0

whenever a; € Ay ;) With ¢(ar) = 0 and ax € A.x) With k(3) # k(i + 1)
and ¢(ax) = 0.
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Free Independence: (A4, A, = subalgebras of A)
d(araz - an) =0

whenever a; € Ay ;) With ¢(ar) = 0 and ax € A.x) With k(3) # k(i + 1)
and ¢(ax) = 0.

B: B(X) x B(X) — B(X)
given by: XY free over B, then uxyy = pux B uy
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Free Independence: (A4, A, = subalgebras of A)

dlaraz---an) =0

whenever a; € Ay ;) With ¢(ar) = 0 and ax € A.x) With k(3) # k(i + 1)
and ¢(ax) = 0.

B: B(X) x B(X) — B(X)
given by: XY free over B, then uxyy = pux B uy

No literature about infinite divisibility in X5 except R. Speicher,
Mem. AMS ‘98,
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Infinite divisibility wrt classical (additive) convolution: back to
Kolmogorov, Hincin, P Levy

Levy-Hincin formula:

Fu(t) = exp [iat + [(e" — 1 —itx) zi‘g'ldp(m)]

Infinite divisibility wrt free additive convolution: H. Bercovici, D-V.
Voiculescu ('92, ‘93), H. Bercovici, V. Pata ( '95, '99)

Free Levy-Hincin formula:

(=
@,(2) =7+ [ Hdo(t) fora,() = (5ig) -
or, equivalently
1R, (2) = a+ [, tZ-dp(t) where G,y o [LRx(z) + 1] = 2
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Infinite divisibility wrt classical (additive) convolution: back to
Kolmogorov, Hincin, P Levy

Levy-Hincin formula:

Fu(t) = exp [iat + [(e" — 1 —itx) zi‘g'ldp(m)]

Infinite divisibility wrt free additive convolution: H. Bercovici, D-V.
Voiculescu ('92, ‘93), H. Bercovici, V. Pata ( '95, '99)

Free Levy-Hincin formula:

(=
@,(2) =7+ [ Hdo(t) fora,() = (5ig) -
or, equivalently
1R, (2) = a+ [, tZ-dp(t) where G,y o [LRx(z) + 1] = 2

Bercovici - Pata bijection
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The non-commutative R-transform of v € Xz:

M, (b) — 1 = R, (bM, (b))
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The non-commutative R-transform of v € Xz:

M, (b) — 1 = R, (bM, (b))

The equation is always meaningful for b € Nilp(B):
if A=C*-algebra, then also for b in a non-commutative ball around 0.
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The non-commutative R-transform of v € Xz:

M, (b) — 1 = R, (bM, (b))

The equation is always meaningful for b € Nilp(B):
if A=C*-algebra, then also for b in a non-commutative ball around 0.

Properties:
e R, is a non-commutative function
e Rm =R, + R,
e The op-valued semicircular law is characterized by

forsome cpmap n: B — B.
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Theorem (V.Vinnikov, M.R, "10)

u € Y is free infinitly divisible if and only if there exist some selfadjoint

a € B and some completely positive (C-)linear map v : B(X) — B such
that

R.(b) = -1+ (b(L — Xb)~")]b.
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The case of c. p. maps

Mihai Popa Noi

ommutative functions and some of their applications in free prob




The case of c. p. maps

A1, A2 C A subalgebras containing B.
® : A — D aB-bimodule map, ¥ : A — B conditional expectation
Ai, As are c-free if:

e Ay, A are free wirt. ¢
o O(ar---an) = P(a1) - ®(an) Whenever ¢(a;) = 0and a; € Ac;)
with e(5) # e(j + 1)
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e F Boca (JFA, ‘91) - "amalgamated free product of cp maps”
e R. Speicher, M. Bozejko (Pac. J. Math, '96) - scalar case,
“c-freeness”, ¢ R-fransform, limit laws

e K. Dykemaq, E. Blanchard (Pac. J. Math., ‘01) - reduced free
products and embeddings of free products of von Neumann
algebras

e M. P, J-C Wang (08, to appear in Trans. AMS) - multiplicative
properties, c-free S-transform

e Op-valued ¢R-transform: W. Mlotkowsky (‘03), M.P('08)
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Yp.p = {u: B{(X) — D B-bimodule maps, c.p. }
¥ ={v:p:B(X) —— B positive conditional expectations }

ASX =X"4 (ux,vx) € Xgp X L5

c-freeness induces
: (s> x Xp) X (Ep:p x ¥g) — Zp.p X X

((ux,vx), (v, vy)) = (ux+v,vx+y), where X,Y = c-free
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Op-valued Boolean independence:
A1, A2 C A are Boolean independent if

O(araz - --an) = 6(a1) - - - 6(an) Whenever a; € A.;) with €(i) # (i + 1).

W EB:’D X EB:’D — EB:’D

induced by pux W uy = puxty. for X, Y=boolean independent
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Op-valued Boolean independence:
A1, A2 C A are Boolean independent if

O(araz - --an) = 6(a1) - - - 6(an) Whenever a; € A.;) with €(i) # (i + 1).

W EB:’D X EB:’D — EB:’D

induced by pux W uy = puxty. for X, Y=boolean independent
W is linearized by y — B,..

B/L(b) 'Mu(b) = AL,,(b) -1
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Op-valued Boolean independence:
A1, A2 C A are Boolean independent if

O(araz - --an) = 6(a1) - - - 6(an) Whenever a; € A.;) with €(i) # (i + 1).

W:XBD X UBD — LB:D
induced by pux W uy = puxty. for X, Y=boolean independent
W is linearized by y — B,..
B/L(b) 'Mu(b) = AL,,(b) -1
Op-valued Bernoulli law is given by Bger = 1(b)b;
e s s = Ber H Ber (M. Anschelevich)
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Bpu(b) - Myu(b) = Mp(b) — 1

Theorem (M.R'10):

Theorem(M.F 10):

e Any u € X.p IS infinitely divisible with respect to boolean
convolution.

e Forany i € Xi.p, there exists a selfadjoint & € D and a cp C-linear
map o : B(X) — D such that

Bu(b) = [a-1+5 (b(1 - Xb)"")] -b. 4))
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Non-commutative ©R-transform for (i, v) € ¥g.p X Xg:
(M (b) = 1) - “Ryu,u (bM, (b)) = (Myu(b) — 1) - M. (D)

- °Ris a non-commutative function
- if X, Y € A are c-free w.rt. (®,4).then “Rx1y = “Rx + Ry
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Non-commutative ©R-transform for (i, v) € ¥g.p X Xg:
(M (b) = 1) - “Ryu,u (bM, (b)) = (Myu(b) — 1) - M. (D)

- °Ris a non-commutative function
- if X, Y € A are c-free w.rt. (®,4).then “Rx1y = “Rx + Ry

Theorem( M.R, V. Vinnikov “10)

A pair (u,v) € Xg.p x Xg is c-free infinitely divisible iff v is free infinitely
divisible and there exist some selfadjoint « € B and some completely
positive (C-)linear map v : B(X) — D such that

‘Ruv(b) = [a- 1+ (b(L—X-b)"")]b.
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The Non-commutative Boolean-to-Free Bercovici-Pata bijection:
BP : Sp.p x £ — [ ¢ Jnfinitely divisible elements of Xs.p x T

(W, v)
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The Non-commutative Boolean-to-Free Bercovici-Pata bijection:
BP : Sp.p x L — [ ¢ Jinfinitely divisible elements of Ys.p x S5

(1, v)

|

(By, By)
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The Non-commutative Boolean-to-Free Bercovici-Pata bijection:
BP : Sp.p x £ — [ ¢ Jnfinitely divisible elements of Xs.p x T

(W, v)

|

(By, By)

.

(a17017a2,02)
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The Non-commutative Boolean-to-Free Bercovici-Pata bijection:
BP : Sp.p x L — [ ¢ Jinfinitely divisible elements of Ys.p x S5

(1, v)

|

(BH>BV) (CRM',V'vRU’)

~

(0170'1701270'2)
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The Non-commutative Boolean-to-Free Bercovici-Pata bijection:

(k,v) (W, v')
l T
(Bu, Bv) (“Ryur s Ruvr)

~,

(a17017a2,02)
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The Non-commutative Boolean-to-Free Bercovici-Pata bijection:

(1) 2 (', v)
l T
(By., By) (*Rururs Rur)

~. 7

(a17017a2,02)
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ldea: p determines p,, : B{X) — B via the moment-free cumulant
recurrence relations. On B(X)o = B(X) \ B consider the positive pairing
(f(X),9(X)) = pu(9(X)* (X)) and the self-adjoint operator

T: f(X)— Xf(X).

Then consider the self-adjoint operator V' on the full Fock B-bimodule
over B(X)o., which B-valued distribution with respect to the ground
B-state coincides with ., given by

V =ax +ax + T + p(X)ld.

The ferms from the Taylor-Taylor development of Eu are the moments
of T' with respect to the mapping (-X, X') and the conclusion follows
using the additivity property of R and some cb-norm inequalities.
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W: Ygp X Yg:p — Zg:p IS linearized by u — By,

Mu(b) -1= Bu(b) : Mu(b)

Theorem(M.F 10):

@ Any i € 3g.p is infinitely divisible with respect to boolean
convolution.

© There exists a selfadjoint o € D and a cp C-linear map
o : B(X) — D such that

Bu(b) = [a-1+7 (b(1 —Xb)~")] -b. @)
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