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Motivations

Motivations

At short distance the spacetime should be non-commutative.

This feature should be encoded in the “Quantum Gravity”
No satisfactory description.

m We can get information about such a theory analyzing
some particular regimes [Hawking].

m Gravity classically Matter by quantum theory.
Gap = 87T<Tab>w
m Doplicher, Fredenhagen and Roberts 95 use this to obtain

uncertainty relations for the coordinates on a flat quantum space.

Does it work also on curved spacetimes?
Is the semiclassical equation a well posed dynamical system?




Plan of the talk

m Uncertainties for the coordinates in a generic spherically symmetric
space.
m Well posedness of semiclassical Einstain equations in cosmology.

m Existence and Uniqueness of their solutions.

This talk is based on
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Uncertainties

m In [DFR 95] the authors find the commutation rules among the
coordinates

[¢",q"] = iQ"
compatible with the following uncertainty relations
Axg (Axy + Axy + Axz) > N3,
Ax1Ax + AxoAxz + AxzAxy > )\f;
which are obtained using the following:

Minimal Principle (P0):

We cannot create a singularity just observing a system.

Toghether with the Heisenberg principle (HP) (valid in Minkowksi).
The uncertainties are tailored to the flat spacetime.

On a curved spacetime we have to replace it with something else.
We use QFT on CST and their comm. rel. in combination with PO.
We shall perform such analysis on a spherically symmetric space.



Uncertainties

Spherically symmetric case

m Spacetime is R? x S?, retarded coordinates: spanned by future null
geodesic emanated from the center of the sphere

m u the time on the worldline line of the center of S?
m s affine parameter along the null geodesics with s(0) = 0 and 5(0) = 1.

ds® := —Adu? — 2dsdu + r?dS?

m Classical collapse of a massless scalar field has been studied by
Christodoulou.
O =0

m He has given a condition for the “energy content” on an initial null
cone Cy which implies the formation of a singularity inside of the cone.

Tss = s¢as¢



Uncertainties

Classical condition

Consider a region of the initial null cone Cy contained within the two
spherical sections determined by r; and ry. If

r
— 1,3/2
o €(1,3/2) and P

JTCy, the causal future of Cy, contains a spacelike singularity.

Suppose z—i < 3/2, then it holds that

2

_ S2
M= 7r/ s0:00: ds = w/ sT.e ds

r2 S1 S1
thus, if
S 1
/ 50s60sp ds >
s 27

1
a singularity appears in the interior of Cgy



Uncertainties
Quantum constraint

Take a quantum state w, after measuring ¢(f) the state is

w(e(f) Ad(R)
A= =)

Expectation values change accordingly

(Q)r0 =wr(Q) —w(Q) .

in particular we get

E(f.x)I”

(p(x)d(x))F0 > W .

m Quantize the “initial conditions” and use the “classical dynamics”.
m The restriction of a quantum theory on a null cone Cy is well defined.
m It is a sort of “Minimal” semiclassical description.



On Cp using only the from of E and the |wo(f, )| < [|f]2]|0f]|2.

S )\2
/S 5<Tss>f,0d52 52%

1
Combining it with the classical results, we have BH formation if

o, 1
522 27
Notice that the support of f in the detector ¢(f) on Cy extends up to s,.

Proposition

If we use a detector supported in a sphere determined by s, we create a BH

It is an estimate of the detector resolution.
Now using (P0) denying the proposition we get

As Z )\p
which is compatible with the results in [DFR] valid for the flat case
As? > AtAr > 23

see also [Tomassini Viaceiul



Semiclassical equations in cosmology

Semiclassical equations in cosmology

To improve the results treat the backreaction on the whole spacetime.
We shall analyze this problem assuming: homogeneity and isotropy.

. m | C R “cosmological time”
m a spacetime M = (/ x S, g) &

m S is a 3d manifold: the “space”.
m Friedmann Robertson Walker metric

= —dt® + a°(t) S+ r2dS?(0, o)

1 —
m Dynamical degree of freedom a(t).

B k>~ 0 = Conformally Flat.

m Recent observations: a(t) = " the Hubble parameter H

(very small, positive, almost constant).
m Once an initial condition is fixed, Einstein eq. are equivalent to

—R =8x(T), V2(Tap) =0.

m Init. cond. Ggo — 8m(Too) = 0 is satisfied up to some radiation.



QFT on CS in a nutshell

Let us assume this point of view and consider a very simple matter model
Pp=0, P=—-0O+&R+m?.
m The quantization is solved once you give A(M) and a state w,

described by the class of n—point functions (correlation functions).

(p(x1) ... p(xn))w = wnlx, . . . s Xn) wy € D'(M").

m T,p shows products of fields evaluated at the same point (divergent).
m In Minkowksi these are “cured” subtracting the vacuum.

Question

What plays the role of the vacuum in a curved spacetime?

Remnant of the Spectrum Condition (“no kg < 0 in @wa(k)")
It has to be a local and covariant condition

Idea: look at the directions in T*M? of non rapid decrease
common to all localized distributions ugf):)q(k;l7 ko)

m Formalized using Hormander microlocal analysis



QFT on CS in a nutshell
Microlocal spectrum condition

Definition
wa € D'(M?) satisfies the microlocal spectrum condition (uSC) if

WF(UJQ) = {(Xl,XQ, kl, k2) € T*I\/I2 \ {0} ’ (Xl, kl) o~ (X27 kz), kl I>O} o

like the Minkowski vacuum
The Hadamard parametrix

Theorem (Radzikowski)

A state w» satisfies uSC <= wo is of Hadamard form:

u ¢
wr=H+W  H= lim +V|og<;2>

e—0t O¢

‘H depends on the local geometry and on p only.

Regularization: subtract H from ws.



QFT on CS in a nutshell
Regularization and stress tensor

We shall use the following stress tensor (with £ = 1/6) [Moretti 03]

1
Tab := 0200pp — c [gab (0000 + (M? + R) ©?) — Rapp® + Va0p?|
Hence, on some Hadamard state w
<Tab>w = |lim Dab(w2 - H)
X—=y

In the considered procedure there is some freedom

m H is not uniquely defined, it is known up to some smooth terms

m Local fields are not invariant = determined up to local
counterterms ambiguities (renormalization freedom).

m The ambiguities have been studied and classified by [Hollands Wald]



QFT on CS in a nutshell

Conservation equations for T, are satisfied: V,(T?5), =0
but (un)-fortunately the trace is different from the classical one.

=2 (<3(5-¢)o-m) (A
More precisely (£ = 1/6) [Wald 1978]

1 ) CR? m*
2[vi] = 360 <C,'jk/cukl + RURU 3 + DR) + Vi

The renormalization freedom for T is

(The =(T)y +amR+Bm*+~0OR.

In (T), three contributions: Tanomalies + Tren.freedom + Tstate-
Cancel R from the trace = Wald’s fifth axiom holds for T.
We can not cancel T;,omalies cOmpletely.

T anomalies is Not a mixture of perfect fluids: p = H*

Similarities with f(R) gravity. But f(R) = unstable solutions.



Semiclassical equations

Massive model

With £ = 0 and £ = 1/6, the equation —R = 87 (T) becomes
m*

6 (H + 2H2) = —8rm?(p?)., — % (HH2 v H4) + L

Important: The quantum state enters in the equations via <g02>w

Physical input: We would like to use “vacuum states” i.e. (¢?), =0
Impossible: Adiabatic states, have similar properties

[Parker, Parker Fulling, Liiders Roberts, Junker Schrohe, Olbermann]

Assume (for the moment) Tsiate =0
We have only Tanomalies and Tren. freedom = @R + Bm2

The differential equation is an ordinary one = it can be solved



Semiclassical equations

With some choice of o and 8 H =0 and H = H,. are stable solutions.

H/H

m (m = 0) a length scale is introduced (proportional to G).
Two fixed points instead of one. [Wald 80, Starobinsky 80, Vilenkin 85]

m Quantum effects are not negligible at least in the past.

m (m# 0) Hy is a renormalization constant.



Semiclassical equations
Form of the initial singularity

Where is the singularity tp in the Penrose diagram?

ds? = a? (—d7? + dx?). "

NN

Classical solution
Radiation dominated:
T =704 At — to)Y/?
for t — tg

Horizon problem.

— 70

Quantum Corrections

p=1/a(t)?
T =10 + log(t — ty) — —oc0
for t — tg

Singularity is light like.

Power law inflation with
Null Big Bang 3~ Ui~



Quantum states

Fix the quantum state out of the asymptotic structure

m Consider the state wj o which looks like a vacuum on &~
asymptotically.

m It is pure, homogeneous and isotropic [Liiders Roberts]

If M has a null Big Bang and @
(1+ (7 + DDA+ (7 — r)2)mPa(r)? NV
can be smoothly extended over 3~ Ui, then \/

wi,0 satisfies the uSC.

Proof: wio=(A[S ®A[S )0\



Existence of solutions

Exsistence and uniqueness of solutions at small time

B w1 is an asymptotic vacuum. (Initial conditions of the problem)
m We search for solutions of —R = 87(T).,, near NBB 3.

m Indicating by X := H™!, we rewrite the equation as:

dX X2 , CX*
gt T xeoxe T xe )l

It is not an ordinary differential equation.

<902>w170 is a functional of X = H™1,
To get existence of sol. = show that X := T(X). A fixed point for

EIX2—2X? X4
T(X :/ [C+Cm2 Yoo | dt’
( ) 0 Xg _ X2 Xg _ X2 <g0 > 1,0

m Prove that 7 is a contraction map on B. C B then use Banach
fixed point theorem.



Existence of solutions

On B. C B we have a well posed initial value problem

Theorem

For a sufficiently small ty, T is a contraction on B.. Thus it exists one
and only one X in B. for which

X =T(X)
m Proof: We have to better analyze <802>w1,o and its first func. derivative

1 & 1 m?a?
2 ._ 2 ~ _ _ =
(o >w1,o = 27T282/0 k=dk [Xka O(k — ma) (2/( 4k3 >:|

Xh + (K +ma)x =0



Existence of solutions

Some comments

m The found solution is C2.

m But there are smooth spacetimes as close as you want to that
solution.

m The existence does not depend on the state, in the sense the
theorem holds also for other initial conditions on &~ provided the

state is Hadamard.

m All these solutions show a typical phase of power law inflation which
is then state independent.

m When smeared on constant time surfaces Ay, , T = 0.



Conclusion

Summary

m Semiclassical Backreaction can be used to constraint the non
commutativity.

m Semiclassical solutions of Einstein's equations can be found.

m Some of their physical properties do not depend on the
homogeneous state

Open Questions
m Is it possible to combine both results?

m Can we say something for the generic case?



Conclusion

Thanks a lot for your attention!



Appendix

Homogeneous Hadamard states in cosmological spacetime

m The pure, homogeneous and isotropic [Liiders Roberts|

wolx — 1 ?k(XO) Tk(yO)eik-(x— )
209) = G [ 2

Ty is a smooth function of 7, such that TxT, — T« T« =i and
T/ (7) + (m?a(r)? + k*) T(1) = 0.
- . . e—ikT .
m Consider incoming plane waves Xk(T) VTl for 7 — —o0.

m Every Ty := A(k)x«k + B(k)X with |A(K)]* — |B(k)]> = 1.
m The state depends upon A and B. We indicate it as wag.



Fix an interval (0, tp) then impose the following initial conditions

X(O):O, a(to):a():)\to, T(to):To
a and 7 are functional of X.

Banach space B := {f € C1(0,t), f(0) = 0}. Norm

Ilf||s := sup
(0,1.'0)

Closed ball B. C B where 3 < ¢ < 1. Radius 1/2 — c¢/2. Center

f\.

Properties of the elements of B,
m Implements the initial condition X(0) =0
m t = 0 corresponds to &~ = NBB Power law inflationary scenario
m For every smooth X in B, wi is well posed and Hadamard



Appendix
Analysis of (?

(P ()ons = fim [wr0(x,y) = Hlx, )] + aR + B

Prescription for fixing the renormalization freedom:
m Minkowski spacetime on Minkowski vacuum, fixes j.

m « changes the value of H. or X, = H_ is a ren. constant
We regularize on Minkowski spacetime the problem —[y@ + (ma)?® =0

1 2
Hm(y, x) = m loga+ 'R .

lim H(y,x) — 82

y—x a(tx)a(ry)



Appendix
Other reg. scheme

Point splitting at fixed time, then it is enough to subtract

Hig(y, x) == (471r)2 (2 + m?a(7y)° log (i;))

O¢

Comparison with the first order adiabatic approximation

1 e'k(y—x)
0 _ 3
HM(yax) (27'(')3 / 2 k2 T mza(T)2 d k

is a continuous function

<902>w1,o =
1

[ee) 1 m232 m2
k?dk |, xk — ©(k — — —— )| -=—+aR
27r2a2/0 d [X"Xk Ok —ma) <2k 4K3 )] gr2 T




Appendix
Construction of the y

Xk + (k2 + m?a®)x =0

Perturbative const. over the massless solution x%(a, 7)(t) =
oo
Xk = ZXZ
n=0

= [ =y ar

Proposition

The series converges absolutely on [0, ty], and

2
t)t 1
exp (m a(t) ) ’ oga < exp (m2t2) .

1
<
Ixk| < o p

Every x7 is O(m>")



Variance
Analysis of the fluctuations

The solution is meaningful provided the variance of T,/ is small

m The anomaly is a C—number

m The variance of (¢?)

Au(9?) = w(©?¢®) — w(p?)w(¥?)

diverges: it is proportional to wy - wa(x, x)

When smeared the situation is better, consider the family centered in x;
n X

Fogmo (7', X) = —f <n1(7" —7)+ T, >

n; na

where

———————————————————————————




Variance

We study the limit

lim lim [R(fay,n,) + 8m(T)e(far.my)] = R(x:) + 87 (T )u(xr)

ny—00 Np—00

Theorem
We have

nz“_r;noo Awl,o(spz(fnhnz)) =0.

m In a weaker sense, the solution we have found is meaningful also
when H is very large.



Variance

Comparison with the ACDM model

m The late time behavior is not under control = some assumptions
Before “local vacuum”: (¢?),, ~ 0 with certain  and j3
“ w. o/ 2 73 1
Now “local thermal state”: (), ~ L+ + O (%)

(A minimal model with two fields a massive scalar field a massless one)

T3
23

C
H2=Hfi\/H:}—aj—C2—C3

m lower branch if H* is very large we get ACDM plus quantum correction
m upper branch looks crazy (the energies appear with negative sign)

m Phenomenological law for the luminosity distance p (spatial distance)
w.r.t. red-shift z = % — 1 (temporal distance) for the SN1a explosions.

w(z) = 5log <(1+z)/02 H(lzl)dz’> + K

m Compare it with observations: best fit is obtained by minimizing x2.



Variance

45 H \

35

0.10 1.00 10.00

Union2 supernova compilation [Amanullah et al. 2010]
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