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Motivations

Motivations

At short distance the spacetime should be non-commutative.

This feature should be encoded in the “Quantum Gravity”

No satisfactory description.

We can get information about such a theory analyzing
some particular regimes [Hawking].

Gravity classically Matter by quantum theory.

Gab = 8π〈Tab〉ω
Doplicher, Fredenhagen and Roberts 95 use this to obtain
uncertainty relations for the coordinates on a flat quantum space.

Questions

Does it work also on curved spacetimes?
Is the semiclassical equation a well posed dynamical system?



Plan

Plan of the talk

Uncertainties for the coordinates in a generic spherically symmetric
space.

Well posedness of semiclassical Einstain equations in cosmology.

Existence and Uniqueness of their solutions.
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Uncertainties

In [DFR 95] the authors find the commutation rules among the
coordinates

[qµ, qν ] = iQµν

compatible with the following uncertainty relations

∆x0 (∆x1 + ∆x2 + ∆x3) ≥ λ2
P ,

∆x1∆x2 + ∆x2∆x3 + ∆x3∆x1 ≥ λ2
P

which are obtained using the following:

Minimal Principle (P0):

We cannot create a singularity just observing a system.

Toghether with the Heisenberg principle (HP) (valid in Minkowksi).

The uncertainties are tailored to the flat spacetime.

On a curved spacetime we have to replace it with something else.

We use QFT on CST and their comm. rel. in combination with P0.

We shall perform such analysis on a spherically symmetric space.



Uncertainties

Spherically symmetric case

Spacetime is R2 × S2, retarded coordinates: spanned by future null
geodesic emanated from the center of the sphere

u the time on the worldline line of the center of S2

s affine parameter along the null geodesics with s(0) = 0 and ṡ(0) = 1.

ds2 := −Adu2 − 2dsdu + r 2dS2

Classical collapse of a massless scalar field has been studied by
Christodoulou.

�φ = 0

He has given a condition for the “energy content” on an initial null
cone C0 which implies the formation of a singularity inside of the cone.

Tss = ∂sφ∂sφ



Uncertainties

Classical condition

Proposition

Consider a region of the initial null cone C0 contained within the two
spherical sections determined by r1 and r2. If

r2

r1
∈ (1, 3/2) and

2 (m2 −m1)

r2
≥ 1

J+C0, the causal future of C0, contains a spacelike singularity.

Suppose s2
s1
< 3/2, then it holds that

m2 −m1

r2
≥ π

∫ s2

s1

s∂sφ∂sφ ds = π

∫ s2

s1

sTss ds

thus, if ∫ s2

s1

s∂sφ∂sφ ds ≥ 1

2π

a singularity appears in the interior of C0



Uncertainties

Quantum constraint

Take a quantum state ω, after measuring φ(f ) the state is

ωf (A) :=
ω (φ(f ) A φ(f ))

ω(φ(f )φ(f ))
.

Expectation values change accordingly

〈Q〉f ,0 := ωf (Q)− ω(Q) .

in particular we get

〈φ(x)φ(x)〉f ,0 ≥
|E (f , x)|2

ω2(f , f )
.

Quantize the “initial conditions” and use the “classical dynamics”.

The restriction of a quantum theory on a null cone C0 is well defined.

It is a sort of “Minimal” semiclassical description.



Uncertainties

On C0 using only the from of E and the |ω2(f , f )| ≤ ‖f ‖2‖∂f ‖2.∫ s2

s1

s〈Tss〉f ,0ds ≥
λ2
P

s2
2

Combining it with the classical results, we have BH formation if

λ2
P

s2
2
≥ 1

2π

Notice that the support of f in the detector φ(f ) on C0 extends up to s2.

Proposition

If we use a detector supported in a sphere determined by s2 we create a BH

It is an estimate of the detector resolution.
Now using (P0) denying the proposition we get

∆s & λP

which is compatible with the results in [DFR] valid for the flat case

∆s2 & ∆t∆r & λ2
P

see also [Tomassini Viaggiu]



Semiclassical equations in cosmology

Semiclassical equations in cosmology

To improve the results treat the backreaction on the whole spacetime.
We shall analyze this problem assuming: homogeneity and isotropy.

a spacetime M = (I × S , g)
I ⊂ R “cosmological time”

S is a 3d manifold: the “space”.
Friedmann Robertson Walker metric

g = −dt2 + a2(t)

[
dr 2

1− κr 2
+ r 2dS2(θ, ϕ)

]
.

Dynamical degree of freedom a(t).

Recent observations:
κ ' 0 =⇒ Conformally Flat.

a(t) = eHt the Hubble parameter H
(very small, positive, almost constant).

Once an initial condition is fixed, Einstein eq. are equivalent to

−R = 8π〈T 〉, ∇a〈Tab〉 = 0 .

Init. cond. G00 − 8π〈T00〉 = 0 is satisfied up to some radiation.



QFT on CS in a nutshell

Let us assume this point of view and consider a very simple matter model

Pϕ = 0 , P = −�+ ξR + m2 .

The quantization is solved once you give A(M) and a state ω,
described by the class of n−point functions (correlation functions).

〈ϕ(x1) . . . ϕ(xn)〉ω = ωn(x1, . . . , xn) ωn ∈ D′(Mn).

Tab shows products of fields evaluated at the same point (divergent).

In Minkowksi these are “cured” subtracting the vacuum.

Question

What plays the role of the vacuum in a curved spacetime?

Remnant of the Spectrum Condition (“no k0 < 0 in ω̂2(k)”)

It has to be a local and covariant condition

Idea: look at the directions in T ∗M2 of non rapid decrease

common to all localized distributions ω̂2fx1,x2(k1, k2)

Formalized using Hörmander microlocal analysis



QFT on CS in a nutshell

Microlocal spectrum condition

Definition

ω2 ∈ D′(M2) satisfies the microlocal spectrum condition (µSC ) if

WF(ω2) =
{

(x1, x2, k1, k2) ∈ T ∗M2 \ {0} | (x1, k1) ∼ (x2, k2), k1 . 0
}
.

like the Minkowski vacuum

The Hadamard parametrix

Theorem (Radzikowski)

A state ω2 satisfies µSC ⇐⇒ ω2 is of Hadamard form:

ω2 = H+ W H = lim
ε→0+

U

σε
+ V log

(
σε
µ2

)
H depends on the local geometry and on µ only.

Regularization: subtract H from ω2.



QFT on CS in a nutshell

Regularization and stress tensor

We shall use the following stress tensor (with ξ = 1/6) [Moretti 03]

Tab := ∂aϕ∂bϕ−
1

6

[
gab
(
∂cϕ∂

cϕ+
(
m2 + R

)
ϕ2
)
− Rabϕ

2 +∇a∂bϕ
2
]

Hence, on some Hadamard state ω

〈Tab〉ω = lim
x→y

Dab(ω2 −H)

In the considered procedure there is some freedom

H is not uniquely defined, it is known up to some smooth terms

Local fields are not invariant =⇒ determined up to local
counterterms ambiguities (renormalization freedom).

The ambiguities have been studied and classified by [Hollands Wald]



QFT on CS in a nutshell

Conservation equations for Tab are satisfied: ∇a〈T a
b〉ω = 0

but (un)-fortunately the trace is different from the classical one.

〈T 〉ω :=
2[v1]

8π2
+

(
−3

(
1

6
− ξ
)
�−m2

)
〈ϕ2〉ω.

More precisely (ξ = 1/6) [Wald 1978]

2[v1] =
1

360

(
CijklC

ijkl + RijR
ij − R2

3
+�R

)
+

m4

4
.

The renormalization freedom for T is

〈T ′〉ω = 〈T 〉ω + α m2R + β m4 + γ �R .

In 〈T 〉ω, three contributions: Tanomalies + Tren.freedom + Tstate .

Cancel �R from the trace =⇒ Wald’s fifth axiom holds for T .

We can not cancel Tanomalies completely.

Tanomalies is not a mixture of perfect fluids: ρ = H4

Similarities with f (R) gravity. But f (R) =⇒ unstable solutions.



Semiclassical equations

Massive model

With κ = 0 and ξ = 1/6, the equation −R = 8π〈T 〉 becomes

−6
(

Ḣ + 2H2
)

= −8πm2〈ϕ2〉ω −
1

30π

(
ḢH2 + H4

)
+

m4

4π

Important: The quantum state enters in the equations via 〈ϕ2〉ω
Physical input: We would like to use “vacuum states” i.e. 〈ϕ2〉ω = 0

Impossible: Adiabatic states, have similar properties

[Parker, Parker Fulling, Lüders Roberts, Junker Schrohe, Olbermann]

Assume (for the moment) Tstate = 0

We have only Tanomalies and Tren.freedom = αR + βm2

The differential equation is an ordinary one =⇒ it can be solved



Semiclassical equations

With some choice of α and β H = 0 and H = H+ are stable solutions.

0 1 2

1

2

H/H+

t H+

(m = 0) a length scale is introduced (proportional to G ).
Two fixed points instead of one. [Wald 80, Starobinsky 80, Vilenkin 85]

Quantum effects are not negligible at least in the past.

(m 6= 0) H+ is a renormalization constant.



Semiclassical equations

Form of the initial singularity

Question

Where is the singularity t0 in the Penrose diagram?

ds2 = a2
(
−dτ2 + dx2

)
.

Classical solution
Radiation dominated:
τ = τ0 + A(t − t0)1/2 → τ0

for t → t0

Horizon problem.

Quantum Corrections
ρ = 1/a(t)2 :
τ = τ0 + log(t − t0)→ −∞
for t → t0

Singularity is light like.

Power law inflation with
Null Big Bang =− ∪ i−



Quantum states

Fix the quantum state out of the asymptotic structure

Consider the state ω1,0 which looks like a vacuum on =−
asymptotically.

It is pure, homogeneous and isotropic [Lüders Roberts]

Def.

Theorem

If M has a null Big Bang and

(1 + (τ + r)2)(1 + (τ − r)2)m2a(τ)2

can be smoothly extended over =− ∪ i−, then
ω1,0 satisfies the µSC.

Proof: ω1,0 = (∆ � =− ⊗∆ � =−) ◦ λ



Existence of solutions

Exsistence and uniqueness of solutions at small time

ω1,0 is an asymptotic vacuum. (Initial conditions of the problem)

We search for solutions of −R = 8π〈T 〉ω1,0 near NBB =−.

Indicating by X := H−1, we rewrite the equation as:

dX

dt
= 1− X 2

X 2
c − X 2

+ m2 C X 4

X 2
c − X 2

〈ϕ2〉ω1,0 .

It is not an ordinary differential equation.

〈ϕ2〉ω1,0 is a functional of X = H−1.

To get existence of sol. =⇒ show that X := T (X ). A fixed point for

T (X ) =

∫ t

0

[
X 2
c − 2X 2

X 2
c − X 2

+ Cm2 X 4

X 2
c − X 2

〈ϕ2〉ω1,0

]
dt ′

Prove that T is a contraction map on Bc ⊂ B then use Banach
fixed point theorem. Def.



Existence of solutions

On Bc ⊂ B we have a well posed initial value problem

Theorem

For a sufficiently small t0, T is a contraction on Bc . Thus it exists one
and only one X in Bc for which

X = T (X )

Proof: We have to better analyze 〈ϕ2〉ω1,0 and its first func. derivative

〈ϕ2〉ω1,0 :=
1

2π2a2

∫ ∞
0

k2dk

[
χkχk −Θ(k −ma)

(
1

2k
− m2a2

4k3

)]
χ′′k + (k2 + m2a2)χ = 0

Sketch of proof



Existence of solutions

Some comments

The found solution is C 2.

But there are smooth spacetimes as close as you want to that
solution.

The existence does not depend on the state, in the sense the
theorem holds also for other initial conditions on =− provided the
state is Hadamard.

All these solutions show a typical phase of power law inflation which
is then state independent.

When smeared on constant time surfaces ∆ω1,0T = 0. Proof



Conclusion

Summary
Semiclassical Backreaction can be used to constraint the non
commutativity.

Semiclassical solutions of Einstein’s equations can be found.

Some of their physical properties do not depend on the
homogeneous state

Open Questions
Is it possible to combine both results?

Can we say something for the generic case?



Conclusion

Thanks a lot for your attention!



Appendix

Homogeneous Hadamard states in cosmological spacetime

The pure, homogeneous and isotropic [Lüders Roberts]

ω2(x , y) :=
1

(2π)3

∫
R3

Tk(x0)

a(x0)

Tk(y0)

a(y0)
e ik·(x−y)dk ,

Tk is a smooth function of τ , such that TkT
′
k − Tk

′
Tk = i and

T ′′k (τ) + (m2a(τ)2 + k2)Tk(τ) = 0.

Consider incoming plane waves χk(τ) ∼ e−ikτ
√

2k
for τ → −∞.

Every Tk := A(k)χk + B(k)χk with |A(k)|2 − |B(k)|2 = 1.

The state depends upon A and B. We indicate it as ωAB .

back



Appendix

Fix an interval (0, t0) then impose the following initial conditions

X (0) = 0 , a(t0) = a0 = λt0, τ(t0) = τ0

a and τ are functional of X .
Banach space B := {f ∈ C 1(0, t0) , f (0) = 0}. Norm

‖f ‖B := sup
(0,t0)

∣∣∣ḟ ∣∣∣ .
Closed ball Bc ⊂ B where 2

3 < c < 1. Radius 1/2− c/2. Center

f0 :=
1 + c

2
t .

Properties of the elements of Bc

Implements the initial condition X (0) = 0

t = 0 corresponds to =− =⇒ NBB Power law inflationary scenario

For every smooth X in Bc , ω1,0 is well posed and Hadamard
back



Appendix

Analysis of ϕ2

back

〈ϕ2(x)〉ω1,0 = lim
y→x

[ω1,0(x , y)−H(x , y)] + αR + βm2

Prescription for fixing the renormalization freedom:

Minkowski spacetime on Minkowski vacuum, fixes β.

α changes the value of Hc or Xc =⇒ Hc is a ren. constant

We regularize on Minkowski spacetime the problem −�Mϕ̃+ (ma)2ϕ̃ = 0

lim
y→x
H(y , x)− 1

a(τx)a(τy )
HM(y , x) =

m2

8π2
log a + α′R .



Appendix

Other reg. scheme

Point splitting at fixed time, then it is enough to subtract

H0
M(y , x) :=

1

(4π)2

(
2

σε
+ m2a(τx)2 log

(σε
λ2

))
Comparison with the first order adiabatic approximation

H0
M(y , x)− 1

(2π)3

∫
e ik(y−x)

2
√

k2 + m2a(τ)2
d3k

is a continuous function

〈ϕ2〉ω1,0 :=

1

2π2a2

∫ ∞
0

k2dk

[
χkχk −Θ(k −ma)

(
1

2k
− m2a2

4k3

)]
− m2

8π2
+ αR,



Appendix

Construction of the χ

χ′′k + (k2 + m2a2)χ = 0

Perturbative const. over the massless solution χ0
k(a, τ)(t) = e−ikτ(t)

√
2k

χk =
∞∑
n=0

χn
k

χn
k(t) = −

∫ t

0

sin(k(τ − τ ′))

k
a(t ′)m2χn−1

k (t ′) dt ′ ,

Proposition

The series converges absolutely on [0, t0], and

|χk | ≤
1√
2k

exp

(
m2a(t)t

k

)
, |χk | ≤

1√
2k

exp
(
m2t2

)
.

Every χn
k is O(m2n) back



Variance

Analysis of the fluctuations

The solution is meaningful provided the variance of Tµ
µ is small

The anomaly is a C−number

The variance of 〈ϕ2〉

∆ω(ϕ2) := ω(ϕ2ϕ2)− ω(ϕ2)ω(ϕ2)

diverges: it is proportional to ω2 · ω2(x , x)

When smeared the situation is better, consider the family centered in xτ

fn1,n2(τ ′, x) =
n1

n3
2

f

(
n1(τ ′ − τ) + τ,

x

n2

)
where

f (xτ ) = 1 ,

∫
M

f dµ(g) = 1 , f ≥ 0



Variance

We study the limit

lim
n1→∞

lim
n2→∞

[R(fn1,n2) + 8π〈T 〉ω(fn1,n2)] = R(xτ ) + 8π〈T 〉ω(xτ )

Theorem

We have
lim

n2→∞
∆ω1,0(ϕ2(fn1,n2)) = 0 .

In a weaker sense, the solution we have found is meaningful also
when H is very large.

back



Variance

Comparison with the ΛCDM model

The late time behavior is not under control =⇒ some assumptions
Before “local vacuum”: 〈ϕ2〉ω ∼ 0 with certain α and β

Now “local thermal state”: 〈ϕ2〉ω ∼ T 3

a3 + O
(

1
a5

)
(A minimal model with two fields a massive scalar field a massless one)

H2 = H2
∗ ±

√
H4
∗ −

C1

a4
− C2 − C3

T 3

a3

lower branch if H4
∗ is very large we get ΛCDM plus quantum correction

upper branch looks crazy (the energies appear with negative sign)

Phenomenological law for the luminosity distance µ (spatial distance)

w.r.t. red-shift z = 1
a − 1 (temporal distance) for the SN1a explosions.

µ(z) = 5 log

(
(1 + z)

∫ z

0

1

H(z ′)
dz ′
)

+ K

Compare it with observations: best fit is obtained by minimizing χ2.



Variance

Union2 supernova compilation [Amanullah et al. 2010]
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