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Let (A, α) be a classical C ∗-dynamical system.

Let A be a unital C ∗-algebra

and let α : A −→ A be a ∗-automorphism.

The crossed product A×α Z is the C ∗-algebra generated by the
universal covariant representation of (A, α).

A×α Z is generated by A and a unitary U such that
UaU∗ = α(a)
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Logo Crossed product by endomorphism

Let (A, α) be a non-classical C ∗-dynamical system.

Let A be a unital C ∗-algebra

and let α : A −→ A be a ∗-endomorphism.

The idea of the construction comes originally from Cuntz.

A
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Logo Crossed product by endomorphism

So construct the full corner sub-C ∗-algebra

p(A∞ ×α∞
Z)p

where p = ι1,∞(1).

Also observe that pU∞p is an isometry in p(A∞ ×α∞
Z)p, that

together with ι1,∞(A) generates all p(A∞ ×α∞
Z)p.

Later Paschke gave a generalization of Cuntz’s construction
and described and studied C ∗-algebras generated by a unital
algebra and an isometry.
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Logo Crossed product by endomorphism

Stacey gave an elegant description of the crossed products by
endomorphisms, actually in the most general context of crossed
products by semigroups.

A covariant representation of (A, α) is a pair (π,V ) such that:

1 π : A −→ B(H) is a non-degenerate representation

2 V ∈ B(H) an isometry such that Vπ(a)V ∗ = π(α(a)).

He proved that if A∞ 6= 0 there exists (ι,V ) a universal
covariant representation of (A, α), and denote by A×α N the
C ∗-algebra generated by ι(A) and ι(A)V .
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Logo Crossed product by endomorphism

We have that

A×α N ∼= p(A∞ ×α∞
Z)p .

Though A∞ ×α∞
Z and A×α N are Morita equivalent,

unluckily we cannot always recover the structure of α∞ from α,
and vice-versa.
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Logo What is known?

There are result about the simplicity of A×α N from Paschke,
Adji-Laca-Nielsen-Raeburn and Olesen-Pedersen,
But the most satisfactory is the following from Schweizer.

Theorem 1 (Schweizer)

Let A be a unital C ∗-algebra and let α be an injective
∗-endomorphism. T.F.A.E:

1 αn is outer for every n ≥ 1 and there are no non-trivial
ideals I of A such that α(I ) ⊆ I .

2 A×α N is simple and α(A) is full.
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Logo What is known?

Rørdam gave sufficient conditions for the crossed product being
simple and purely infinite.

Theorem 2 (Rørdam)

Let A be a unital simple C ∗-algebra with real rank zero and
with the comparability property, and let α be a proper corner
endomorphism of A. Then A×α N is simple and purely infinite
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∗-algebras.

Let E = (E 0,E 1, r , s) be a directed graph.

We say that E is locally finite if 0 ≤ |s−1(v)|, |s−1(v)| < ∞.

A vertex v ∈ E 0 is a sink if |s−1(v)| = 0 , and it is a source if
|r−1(v)| = 0.

A path of length n is a sequence of edges α = αn · · ·α1 with
r(αi ) = s(αi+1)

A cycle is a path α = αn · · ·α1 with αi 6= αj if i 6= j and with
r(αn) = s(α1)
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Logo Definition of Graph C
∗-algebras.

The graph C ∗-algebra C ∗(E ) is the universal algebra generated
by a family of mutually orthogonal projections {pv}v∈E0 and
isometries {Se}e∈E1 satisfying:

(CK1) S∗
e Sf = δe,f ps(e)

(CK2) pv =
∑

r(e)=v SeS
∗
e if 0 < |r−1(v)| < ∞

We have that

C ∗(E ) = span{SηS
∗
ν : η, ν ∈ E ∗ with s(η) = s(ν)}
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e Sf = δe,f ps(e)

(CK2) pv =
∑

r(e)=v SeS
∗
e if 0 < |r−1(v)| < ∞

We have that

C ∗(E ) = span{SηS
∗
ν : η, ν ∈ E ∗ with s(η) = s(ν)}
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Logo What is known about graph C
∗-algebras?.

A lot is known about graph C ∗-algebras, due to many authors
like an Huef, Bates, Pask, Hong, Pask, Raeburn, Szymański,....

Properties like simplicity, ideal structure and purely infiniteness
are completely determined by properties of the graph.
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Logo The core of C ∗(E ).

We can define a group homomorphism γ : T → Aut(C ∗(E ))
where for every z ∈ T we define the automorphism
γz : C ∗(E ) → C ∗(E ) given by

γz(pv ) = pv and γz(Se) = zSe

for every v ∈ E 0 and e ∈ E 1.

We define the core

C ∗(E )γ := {x ∈ C ∗(E ) : γz(x) = x for all z ∈ T} .
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Logo The core of C ∗(E ).

Given v ∈ E 0 and n ≥ 0 we define

Fn(v) = span{SηS
∗
ν : |η| = |ν| = n} ∼= Mkn,v (C) .

So let Fn := ⊕v∈E0Fn(v) and Cn = F0 + · · ·+ Fn.

Then we have that

C ∗(E )γ =
⋃

n≥0

Cn

that is an AF-algebra.

17 / 25



Graph
C∗-algebras
and crossed
products by
endomor-
phisms

E. Ortega

Crossed
Products

Graph
C∗-algebras

Gauge
invariant
ideals

The Cuntz
Krieger
uniqueness
theorem

Logo The core of C ∗(E ).

Given v ∈ E 0 and n ≥ 0 we define

Fn(v) = span{SηS
∗
ν : |η| = |ν| = n} ∼= Mkn,v (C) .

So let Fn := ⊕v∈E0Fn(v) and Cn = F0 + · · ·+ Fn.

Then we have that

C ∗(E )γ =
⋃

n≥0

Cn

that is an AF-algebra.

17 / 25



Graph
C∗-algebras
and crossed
products by
endomor-
phisms

E. Ortega

Crossed
Products

Graph
C∗-algebras

Gauge
invariant
ideals

The Cuntz
Krieger
uniqueness
theorem

Logo The core of C ∗(E ).

Given v ∈ E 0 and n ≥ 0 we define

Fn(v) = span{SηS
∗
ν : |η| = |ν| = n} ∼= Mkn,v (C) .

So let Fn := ⊕v∈E0Fn(v) and Cn = F0 + · · ·+ Fn.

Then we have that

C ∗(E )γ =
⋃

n≥0

Cn

that is an AF-algebra.

17 / 25



Graph
C∗-algebras
and crossed
products by
endomor-
phisms

E. Ortega

Crossed
Products

Graph
C∗-algebras

Gauge
invariant
ideals

The Cuntz
Krieger
uniqueness
theorem

Logo Graph C
∗-algebras as crossed products.

Let E be a locally finite graph without sinks,
then

T =
∑

e∈E1

|s−1(s(e))|−1/2Se

is an isometry in M(C ∗(E )).

Then define the endomorphism

βE : C ∗(E )γ −→ C ∗(E )γ

x 7−→ TxT ∗

Theorem 3 (an Huef-Raeburn)

Let E be a locally finite graph without sinks, then
C ∗(E ) ∼= C ∗(E )γ ×βE

N.
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1 Crossed products

2 Graph C ∗-algebras

3 Gauge invariant ideals

4 The Cuntz Krieger uniqueness theorem
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Logo Gauge invariant ideals.

We can naturally define a gauge action γ : T → Aut(A×α N).

An ideal I ⊳ A×α N is called gauge invariant if γz(I ) = I for
every z ∈ T.

Definition 4

Let α : A → A be a ∗-homomorphism, we say that I ⊳ A is:

1 weakly α-invariant if α(I ) ⊆ I .

2 α-invariant if α(A)Iα(A) = α(I ).

3 strongly α-invariant if α(I ) = I .
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Logo Gauge invariant ideals.

We define a bijection between the hereditary and saturated sets
of E 0 and the βE -invariant ideals of C

∗(E )γ as

H 7−→
∑

v∈H,n≥0

Fn(v)

and
I 7−→ {v ∈ E 0 : pv ∈ I} .

Proposition 5 (Bates-Pask-Raeburn-Szymański, Katsura,
Ortega)

Let E be a locally finite graph without sinks. There is a
bijection between the following sets:

1 The βE -invariant ideals of C
∗(E )γ .

2 The hereditary and saturated sets of E 0.

3 The gauge invariant ideals of C ∗(E )γ ×βE
N ∼= C ∗(E ). 21 / 25
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Logo The Cuntz Krieger uniqueness theorem.

We say that A×α N satisfies the Cuntz-Krieger uniqueness
theorem if given any ∗-homomorphism

Φ : A×α N −→ B

with Φ|A injective , then Φ is injective

Theorem 6 (Cuntz-Krieger)

Let E be a graph satisfying condition (L). Then C ∗(E ) satisfies
the Cuntz-Krieger uniqueness theorem.
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Logo The Cuntz Krieger uniqueness theorem.

We say that α is strongly outer endomorphism if for every
n ≥ 1 and every weakly α-invariant ideal I of A then αn

|I is
outer.

Theorem 7 (Ortega)

Let E be a locally finite graph without sinks. T.F.A.E:

1 E satisfies condition (L).

2 βE is a strongly outer endomorphism.

Theorem 8 (Bates-Pask-Raeburn-Szymański)

Let E be a locally finite graph without sinks. T.F.A.E:

1 C ∗(E ) ∼= C ∗(E )γ ×βE
N is simple.

2 C ∗(E )γ has no non-trivial βE -invariant ideals and βE is
strongly outer.
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Let E be a locally finite graph without sinks. T.F.A.E:

1 C ∗(E ) ∼= C ∗(E )γ ×βE
N is simple.

2 C ∗(E )γ has no non-trivial βE -invariant ideals and βE is
strongly outer.

24 / 25



Graph
C∗-algebras
and crossed
products by
endomor-
phisms

E. Ortega

Crossed
Products

Graph
C∗-algebras

Gauge
invariant
ideals

The Cuntz
Krieger
uniqueness
theorem

Logo Simple Purely Infinite graph C
∗-algebra.

Theorem 9 (Hong-Szymański, Rørdam, Ortega)

Let E be a locally finite graph without sinks. T.F.A.E:

1 C ∗(E )γ is unital, βE (1) 6= 1 and C ∗(E )γ has no non-trivial
βE -invariant ideals.

2 C ∗(E )γ ×βE
N ∼= C ∗(E ) is a unital simple purely infinite

C ∗-algebra.
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