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Clearly every primitive ideal of a C ∗-algebra A that does not contain the
center of A is modular. It is also obvious that the set of all these ideals is
open in Prim(A). Thus, if the center of A is nonzero, the set of its
modular primitive ideals has a nonempty interior in Prim(A).

The main purpose of a 1968 paper of C. Anantharaman-Delaroche is an
investigation of the converse: does the existence of a nonempty open set
of modular primitive ideals imply a nonzero center? Among other results,
an affirmative answer is obtained for liminal C ∗-algebras.

However, two examples of postliminal C ∗-algebras with zero center are
given there: one separable which has a nonempty open set of modular
primitive ideals and another one that is nonseparable but whose all
primitive ideals are modular.
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I discuss conditions which ensure that a C ∗-algebra with ’many’ modular
ideals has a nonzero center. In particular, I shall treat the case of a
postliminal algebra. Further I shall give an example of a postliminal AF
algebra with zero center whose all primitive ideals are modular. This
answers a question of Anantharaman-Delaroche in that 1968 paper.

Aldo J. Lazar (Tel Aviv University) Centers of C∗-algebras rich in modular ideals 3 / 20



By the term ideal we shall mean everywhere a two sided closed ideal.
Id(A) will denote the collection of all the ideals of the C ∗-algebra A. For
I ∈ Id(A) we shall let θI : A→ A/I be the quotient map.

On Id(A) I shall consider a compact Hausdorff topology; a net {Iα}
converges to I in this topology if and only if ‖θIα(a)‖ → ‖θI (a)‖ for every
a ∈ A. This topology was discussed on some length by R. Archbold in a
paper on primal ideals. If it is not mentioned otherwise, Id(A) and its
subsets will be endowed with this topology.
However, on the primitive ideal space of A, denoted Prim(A), I shall
always work with the usual Jacobson topology.
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A primal ideal I of a C ∗-algebra A is defined by the following property:
whenever I1, . . . In, n ≥ 2, are ideals of A such that I1 · I2 · · · In = {0} then
Ik ⊆ I for some k . Every prime (in particular every primitive) ideal is
primal and by using Zorn’s lemma one sees that every primal ideal must
contain a minimal primal ideal. The collection of all the minimal primal
ideals of A is denoted by Min-Primal(A).

Two primitive ideals P, Q of the C ∗-algebra A are said to be equivalent if
f (P) = f (Q) for every continuous f : Prim(A)→ C. Each equivalence
class is the hull of an ideal called a Glimm ideal of A; the collection of
these ideals is denoted Glimm(A) and the quotient map
φA : Prim(A)→ Glimm(A) is called the complete regularization map; it
was introduced in the well known Memoir of Dauns-Hofmann and
discussed further in a 1990 paper of R. Archbold and D. Somerset.
Glimm(A) will be considered with its quotient topology induced by this
map.
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The Dauns-Hofmann theorem implies that if a ∈ A and
f : Glimm(A)→ C is a bounded continuous function then there is a
unique b ∈ A such that θG (b) = f (G )θG (a) for every G ∈ Glimm(A).

An ideal I is called semi-Glimm if it contains a Glimm ideal; this Glimm
ideal is necessarily unique since its hull must contain the hull of I .
Obviously every Glimm ideal is semi-Glimm and every proper primal ideal
is semi-Glimm by a result of Archbold and Somerset. Set S −Glimm(A)
for the family of all the semi-Glimm ideals of A and let ψA be the map
that takes each I ∈ S −Glimm(A) to the Glimm ideal it contains. It is
easily seen that ψA is continuous.
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Positive results

A family F of ideals of the C ∗-algebra A is called sufficiently large if
∪{Prim(A/I ) | I ∈ F} is dense in Prim(A).

Theorem

Let A be a C ∗-algebra that has a countable approximate identity and
suppose there exists a sufficiently large Baire subspace S of S − Glimm(A)
consisting of modular ideals. Suppose, moreover, that every non-void
(relatively) open subset of S contains the preimage by ψSA := ψA|S of a
non-void relatively open subset of ψSA(S) ⊆ Glimm(A). Then A has a
non-zero center.
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The first consequence one can draw from the above result has also been
obtained by Archbold and Somerset in a paper to appear in Münster J.
Math.

Proposition

Let A be a C ∗-algebra with a countable approximate identity. Suppose
that φA : Prim(A)→ Glimm(A) is open and each Glimm ideal is modular.
Then A has a non-zero center.

From the openness of the the complete regularization map one infers that
G → ‖θ(a)‖ is continuous on (Glimm(A), τq) for every a ∈ A, hence the
identity map from (Glimm(A), τ) to (Glimm(A), τq), which is the
restriction of ψA to (Glimm(A), τ), is a homeomorphism. From the fact
that φA is open one also infers that (Glimm(A), τq) is a locally compact
Hausdorff space hence a Baire space. The Theorem yields the conclusion.
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A topological space X is called quasi-completely regular if for every
non-void open subset U of X there is a non-zero real valued continuous
function on X that is identically 0 on X \ U. Such spaces were called
”quasi-uniformisable” by Anantharaman-Delaroche but this term is
nowadays used in another sense in topology.
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Proposition

Let A be a C ∗-algebra that has a countable approximate identity. Suppose
that every minimal primal ideal of A is modular and Prim(A) is
quasi-completely regular. Then A has a non-zero center.

The restriction ϕA of ψA to Min-Primal(A) maps this space onto
Glimm(A), again since every primitive ideal contains a minimal primal
ideal. One must show that every non-void open subset of Min-Primal(A)
contains the preimage by ϕA of an open subset of Glimm(A). So let U be
a non-void open subset of Min-Primal(A). By using the fact, proved by
Archbold, that τ on Min-Primal(A) is equal to the restriction of a weaker
topology on Id(A) one gets an ideal J of A such that
{I ∈ Min-Primal(A) | J * I} ⊆ U . Prim(A) is quasi-completely regular so
there exists a non-zerocontinuous function f : Prim(A)→ R that vanishes
off Prim(J). Let g : Glimm(A)→ R be such that f = g ◦ φA. Then
{G ∈ Glimm(A) | g(G ) > 0} is open and its preimage by ϕA is contained
in V. The other conditions of the Theorem are easily verified.
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The C ∗-algebra obtained by adjoining a unit to the ideal of compact
operators on an infinite-dimensional Hilbert space is an example that
satisfies the conditions of the first Proposition but not those of the second
Proposition. There is an example of a C ∗-algebra in the situation
described by the second Proposition for which the complete regularization
map is not open.

A C ∗-algebra A was called by Anantharaman-Delaroche generalized
quasi-central if for every ideal I of A, I 6= A, the center of A/I is non-zero.

Corollary

Let A be a C ∗-algebra that has a countable approximate identity. Suppose
that every minimal primal ideal of A is modular and every closed subset of
Prim(A) is a quasi-completely regular space with its relative topology.
Then A is generalized quasi-central

Aldo J. Lazar (Tel Aviv University) Centers of C∗-algebras rich in modular ideals 11 / 20



The C ∗-algebra obtained by adjoining a unit to the ideal of compact
operators on an infinite-dimensional Hilbert space is an example that
satisfies the conditions of the first Proposition but not those of the second
Proposition. There is an example of a C ∗-algebra in the situation
described by the second Proposition for which the complete regularization
map is not open.

A C ∗-algebra A was called by Anantharaman-Delaroche generalized
quasi-central if for every ideal I of A, I 6= A, the center of A/I is non-zero.

Corollary

Let A be a C ∗-algebra that has a countable approximate identity. Suppose
that every minimal primal ideal of A is modular and every closed subset of
Prim(A) is a quasi-completely regular space with its relative topology.
Then A is generalized quasi-central

Aldo J. Lazar (Tel Aviv University) Centers of C∗-algebras rich in modular ideals 11 / 20



The C ∗-algebra obtained by adjoining a unit to the ideal of compact
operators on an infinite-dimensional Hilbert space is an example that
satisfies the conditions of the first Proposition but not those of the second
Proposition. There is an example of a C ∗-algebra in the situation
described by the second Proposition for which the complete regularization
map is not open.

A C ∗-algebra A was called by Anantharaman-Delaroche generalized
quasi-central if for every ideal I of A, I 6= A, the center of A/I is non-zero.

Corollary

Let A be a C ∗-algebra that has a countable approximate identity. Suppose
that every minimal primal ideal of A is modular and every closed subset of
Prim(A) is a quasi-completely regular space with its relative topology.
Then A is generalized quasi-central

Aldo J. Lazar (Tel Aviv University) Centers of C∗-algebras rich in modular ideals 11 / 20



Obviously every quasi-completely regular space has the property that every
non-empty open subset contains a closed subset with non-empty interior.
In certain topological spaces this easily verifiable property implies that the
space is quasi-completely regular. Namely, this is true for locally compact
spaces that contain an open dense Hausdorff subset.

Proposition

Let A be a postliminal C ∗-algebra with a countable approximate identity.
Suppose that every minimal primal ideal of A is modular and Prim(A) has
the property that every non-void open subset of Prim(A) contains a closed
subset with non-empty interior. Then A has a non-zero center.
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An example

As promised I present now a postliminal (separable) AF algebra whose all
primitive ideals are modular but with center reduced to {0}. As a matter
of fact, all the minimal primal ideals of this algebra are modular so the
hypothesis made on the primitive ideal space in the last Proposition
cannot be eliminated.
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This is a Bratteli diagram of an AF algebra, A say. In this diagram the
first vertex of the connected sequence a1 should be thought at the level 1
while the first vertex of the connected sequence an should be imagined at
the level 1 + 2(n − 1).

Recall that a subdiagram E of a diagram D of an AF algebra A is the
diagram of an ideal I of A if and only if E has the following two properties:
the descendants of every vertex of E belong to E and if every descendant
of a vertex belongs to E then that vertex itself belongs to E . If this is the
case then D \ E is a diagram of A/I . The ideal I is primitive if and only if
every two vertices in D \ E have a common descendant in D \ E .
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It can be immediately checked that the diagram presented has the
property that for every connected sequence {xm}∞m=1 in it, the vertex xm+1

is a descendant of xm with multiplicity one. Hence, by a result of AJL and
D. Taylor (1980), A is a postliminal algebra.

By direct examination one finds that the primitive quotients of A have one
of the following diagrams: {an}, {an, bn}, {an, cn, dn, en}, {dn}, {en},
{en, fn}, {en, gn, hn, an+1}, {hn}, n = 1, 2, . . . . Denote the primitive ideals
determined by the complementary diagrams by Pn, Qn, Rn, Sn, Tn, Un,
Vn, Wn, n = 1, 2, . . ., respectively.
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All the quotients of A by its minimal primal ideals are modular. Indeed, by
a result of F. Beckhoff, an ideal I of an AF algebra is primal if and only if
its associated diagram DI has the property that every finite set of vertices
not in DI has a common descendant in the diagram of the algebra. It is
then easily seen that all the diagrams of the quotients of A by the minimal
primal ideals are {an, bn}, {an, cn, dn, en}, {en, fn}, {en, gn, hn, an+1},
n = 1, 2, . . . and all these are diagrams of unital AF algebras.
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Now I am going to show that there are no nonzero elements in the center
of A. To this end I prove that every real valued continuous function on
Prim(A) is constant. First remark that by the definition of the hull-kernel
topology of the primitive ideal space we have:

{Pn} = {Pn}, {Qn} = {Qn,Pn}, {Rn} = {Rn,Pn, Sn,Tn}, {Sn} = {Sn},
{Tn} = {Tn}, {Un} = {Un,Tn}, {Vn} = {Vn,Tn,Wn,Pn+1}, {Wn} = {Wn}.

If f : Prim(A)→ R is a continuous function with
f (P1) = · · · = f ((Pn) = α, then by the above equalities we must have
α = f (Pn) = f (Qn) = f (Rn) = f (Sn) = f (Tn) = f (Un) = f (Vn) =
f (Wn) = f (Pn+1) and we conclude that f is a constant function.
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One gathers from the Dauns-Hofmann theorem that the center of the
multiplier algebra of A consists only of the scalar multiples of the unit. On
the other hand, A has no unit since vertices without ancestors appear at
infinitely many levels and we are done.
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Thank you for your attention
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