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Outline

e The Toeplitz algebra of a C*-correspondence.

e Product system X of C*-correspondences over a
semigroup P.

e When (G, P) is quasi-lattice ordered: look for compactly
aligned X.

e (*-algebras of product systems: Fowler's Toeplitz algebra,
Toeplitz covariant algebra and Cuntz-Pimsner algebra, and
Sims and Yeend's Cuntz-Nica-Pimsner algebra.

e A universal and a co-universal C*-algebra. A
gauge-invariant uniqueness result.

e Examples.
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e There is a universal algebra 7x for Toeplitz
representations, and is generated by i = (g, mo): any
(1, ) gives rise to a repr. ¥ x w of Tx on H s.t.

(1 x ) o i restricts to (¢, 7).

e A concrete algebra T;(X) on the Fock space F(X). Fact:
Tx = TXF(X) (Pimsner, 1994).

X can be thought of as a generalised endomorphism of A and
Tx as a kind of crossed product of A by N.
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Tx: a sort of crossed product of A by generalised action of P.
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The Fock bimodule is F(X) := @,.p Xs (cf. Fowler). So
©sepWs € [[sep Xs is in F(X) when ) _(ws, ws)s is summable
in A;

O right action: (Psws) - a = Gs(xs - a)

@® inner-product (Bsws, Dszs) = > (Ws, Zs)s.

© left action: ®s¢s.

The Fock representation [ : X — L(F(X)) is
s(&)n=F>"({®an) if £ € Xs and n € X, for s,r € P.

oo b1 (0, CN)C ifresP
sle = {0 if r ¢ sP

for ¢ = F>5'7(¢' ®a (") € X,. (Often P is given as a
subsemigroup of a group G.)

Facts: [is a Toeplitz representation of X (take [ = ®s¢s). It
is isometric (i.e. le is injective) because ¢, is.
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(Is,le) is a Toeplitz repr. of X, for s € P. By Pimsner, there is
a homomorphism 1() : K(X,) — L(F(X)) with

()0 ) = () ls(n)"-
For g € sP let i : L(Xs) — L(Xy) be

9(5) = F9(S @ ly-1g) (F>* )"

and i = ¢q.
If £, € Xs and ¢ € Xg, then
s 0 if g ¢ sP
i (0e )¢ if g € sP.

Note that id(6¢ ,,) need not belong to K(Xj).
What can be said of Ky, := ((9)(6¢,)I(N(6,.,) in L(F(X))?
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Def. (Fowler, 2002). X is compactly aligned if
is""(8)ir""(R) € K(Xsvr),
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Nica covariant Toeplitz representations

(G, P) q.l.o. and X compactly aligned product system over P.
A Toeplitz rep. v : X — B is Nica covariant if

(svr)(;svr isVr ;
¢(s)(5)¢(')(R) _ WP (i2V7(S)ifV(R)) ifsv r.< 00
0 otherwise

for all S € IC(Xs) and R € KC(X;) (Fowler).
7 ideal gen. by i()(S)i((R) — iVI(igVr(S)isVr(R)).

The Toeplitz covariant algebra is 7., (X) := 7x/Z and is
generated by ix = gz o i which is Nica covariant (Fowler,
Carlsen-L-Sims-Vittadello). Universal property

X —% Toou(X)
|

| s  surjective homomorphism

v v
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Example 2. (Sims-Yeend 2007) Let (G, P) be q.l.o. Then CP
with X, :=¢ Cc for all p is compactly aligned. Zeoy(CF) is
isomorphic to Nica's universal C*-algebra C*(G, P) for
isometric repr. V of P which are (Nica) covariant:

Vp\/q V;Vq
0 if pVqg=oc.

if pv
v,,v;qugz{ "pVg<oo

Example 3. (Carlsen-L-Sims-Vittadello 2009) Take

(G, P) = (F2,F5) and a, b the generators of F. Define a
product system over FJ by X;» = C for n € N and X, = 0 for
all other p € F§. Then £(X,) = K(X,) and

Tx = Teon(X) = T.
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Katsura: uses largest Zy on which ¢ is injective into IC(Y).
Theorem (Katsura 2004). The representation ky is injective
and Oy has the gauge-invariant uniqueness property: ), is
injective iff ¢ is an injective repr. and B admits an action of T
compatible with the gauge-action on Oy.

Earlier: an Huef-Raeburn 1997, Fowler-Muhly-Raeburn 2003.
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Katsura: Oy is the smallest C*-algebra generated by an
injective Cuntz-Pimsner covariant representation of Y and with
the gauge-invariant uniqueness property. So Oy can be defined
without reference to Zy.

Fowler: defines Ox for a product system X using usual
Cuntz-Pimsner covariance in each X,. Problem: injectivity of
kx : X — Ox is not known.

Sims-Yeend (2007): Cuntz-Nica-Pimsner algebra N'Ox for X a
compactly aligned product system over P in a q.l.o. pair

(G, P). By construction, NOx is universal for CNP covariant
representations of X: these are Nica covariant representations
which are Cuntz-Pimsner covariant in a new sense, compatible
with g.l.o. structure (technical definition.)

When ¢, € K(Xp) for all me P and mV n < oo for all

m,n € P (e.g. for (Z*,NK)), the algebra N'Ox is Fowler's Ox.
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product system over N with Y, = Y®" for n > 1 and with
,erov(y(g) = TY-

Fact: NOy is isomorphic to Katsura's Oy (Sims-Yeend).

Example 3. X product system over F3 with X;» = C for n € N
and X, = 0 for all other p € F5. Recall Tx = Teou(X) = 7.
Here the universal Nica covariant representation ix of X is a
CNP covariant representation, so N Ox = 70, (X). However,
Ox is C(T)

In example 2, to identify A’Ox for C” we need more.

A coaction § : A — A® C*(G) is an injective nondegenerate
homom. satisfying

(5 X idC*(G)) 0 = (IdA ®5G) o (S,

where 0¢ : C*(G) — C*(G) ® C*(G) comes from s — s®s. It
is normal if (id ®Ag) 0 d from A — A® C}(G) is injective.
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Theorem (Sims-Yeend 2007). Given (G, P) q.l.o and X
compactly aligned (with properties), jx is an injective CNP
repr. generating AN'Ox, and for ¢» CNP covariant repr. we have:
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A universal and a co-universal algebra

Theorem (Sims-Yeend 2007). Given (G, P) q.l.o and X
compactly aligned (with properties), jx is an injective CNP
repr. generating N'Ox, and for 1) CNP covariant repr. we have:

X jx CNP cov. NOX, y
\ |
I TI ¥ surj.
N
’ B, 5
I
| ps,r surj.
\i
NOg, v"

Theorem (Carlsen-L-Sims-Vittadello 2009). For X compactly
aligned (with properties), N'O is co-universal for injective
Nica covariant repr. p into B with a coaction 3 compatible
with the normal coaction v".




Back to example 2 where (G, P) is q.l.0 and C” has X, = C
for all p € P. There is a Nica spectrum of (G, P) (Nica) and a
boundary 692 of Q determined by elementary relations (Laca,
Crisp-Laca).
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Back to example 2 where (G, P) is q.l.0 and C” has X, = C
for all p € P. There is a Nica spectrum of (G, P) (Nica) and a
boundary 692 of Q determined by elementary relations (Laca,
Crisp-Laca).

The boundary quotient of C*(G, P) is C(69Q2) x G for a partial
action of G (Crisp-Laca). For certain right-angled Artin groups
(G, P) such that C(692) x4 G is simple, Sims-Yeend prove

NOx = C(6Q) x4 G.

For (G, P) with either P directed (and so that X — N Ox is an
injective representation) or all left actions injective:

NOL 2 C(6Q) %0 G

by the co-universal property (Carlsen-L-Sims-Vittadello). As
corollary NOx = C(6Q2) X, G without having to check CNP
covariance or the elementary relations.



The gauge-coactions
Let (G, P) q.l.o. and X compactly aligned. There is a coaction
0 Teov(X) = Teov(X) @ C*(G)

s.t. 0(ix(x)) = ix(x) ® ig(d(x)) for x € X (similarly v on
NOx).
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Let (G, P) q.l.o. and X compactly aligned. There is a coaction
6 : Toov(X) = Teov(X) ® C(G)
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The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction
6 : Toov(X) = Teov(X) ® C(G)

s.t. 0(ix(x)) = ix(x) ® ig(d(x)) for x € X (similarly v on
NOx). Both ¢ and v are maximal in the sense of
Echterhoff-Kaliszewski-Quigg. So Zeov(X) and N Ox are
isomorphic to the full cross sectional C*-algebra of their
respective Fell bundles.
NOx has the gauge-invariant uniqueness property provided
that a surjective homomorphism ¢ : NOx — B is injective iff:
@ there is a coaction 3 of G on B s.t.
Bo¢=(p®idc:(g))ov;
® the homomorphism ¢|jx(A) is injective.
Theorem (Carlsen-L-Sims-Vittadello 2009). NOx has the
gauge-invariant uniqueness property precisely when it is
isomorphic to NOy. This is the case if, e.g., v is also normal.




Another example (Carlsen-L-Sims-Vittadello): X product
system over N¥ for k > 1 from a topological higher-rank graph
A of Yeend (A generalises the construction of topological graph
of Katsura and of higher-rank graph of Kumjian-Pask).
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Another example (Carlsen-L-Sims-Vittadello): X product
system over N¥ for k > 1 from a topological higher-rank graph
A of Yeend (A generalises the construction of topological graph
of Katsura and of higher-rank graph of Kumjian-Pask).
Theorem (CLSV): NOx, = C*(Gp) and the gauge-invariant
uniqueness property holds.

The gauge invariant uniqueness property for N’'Ox and
maximal coactions; likewise (but differently), the gauge
invariant uniqueness property of N'Oy and normal coactions.
(Kaliszewski-L-Quigg, work in progress). Same questions for
Teov(X). Main point is to look at the Fell bundles.



An aside: coactions and Fell bundles

A coaction § : A— A® C*(G) is a homom. s.t.

(6 @idc-()) 06 = (ida ®36) o § where

dg : C*(G) — C*(G) ® C*(G) is the map s — s® s. Let

Ag ={acAl|da)=a®ig(g)} for g € G. The disjoint
union A = UgAg x {g} is a Fell bundle over G (Quigg 1996).
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An aside: coactions and Fell bundles

A coaction § : A— A® C*(G) is a homom. s.t.

(6 @idc-()) 06 = (ida ®36) o § where

dg : C*(G) — C*(G) ® C*(G) is the map s — s® s. Let

Ag, ={acAl|da)=a®ig(g)} for g € G. The disjoint
union A = UgAg x {g} is a Fell bundle over G (Quigg 1996).
Associated to a Fell bundle A there are a full cross sectional
algebra C*(.A) (Fell-Doran), and a reduced cross sectional
algebra C(.A) — independently due to Exel (1997) and Quigg
(1996) — and shown to be the same by Echterhoff and Quigg
(1999). When A is the Fell bundle associated to a cosystem
(A, G,9), we let A" be the reduced cross sectional algebra;
there are a surjective homomorphism A\ 4: A — A" (Exel) and a
normal coaction ¢" on A" s.t. §"(ag) = ag ® ig(g) for ag € Ag
(Quigg). Normal means (id ®Ag) 0 0" from A" — A" ® C;(G)
is injective.




