

Nadia S. Larsen

C^* -algebras associated to product systems of C^* -correspondences

Nadia S. Larsen

University of Oslo

EU-NCG 4th-General Meeting IMAR, Bucharest April 28, 2011 Joint work with T. Carlsen, A. Sims and S. Vittadello

> Nadia S. Larsen

Outline

- The Toeplitz algebra of a C^* -correspondence.
- Product system X of C*-correspondences over a semigroup P.
- When (*G*, *P*) is quasi-lattice ordered: look for compactly aligned *X*.
- C*-algebras of product systems: Fowler's Toeplitz algebra, Toeplitz covariant algebra and Cuntz-Pimsner algebra, and Sims and Yeend's Cuntz-Nica-Pimsner algebra.
- A universal and a co-universal C*-algebra. A gauge-invariant uniqueness result.
- Examples.

> Nadia S. Larsen

The Toeplitz algebra of a C^* -correspondence

X is a C*-correspondence over A if X is a right Hilbert A-module with a homomorphism $\phi : A \to \mathcal{L}(X)$ (also say X is a right-Hilbert A-A-bimodule).

> Nadia S. Larsen

The Toeplitz algebra of a C^* -correspondence

X is a C^{*}-correspondence over A if X is a right Hilbert A-module with a homomorphism $\phi : A \to \mathcal{L}(X)$ (also say X is a right-Hilbert A-A-bimodule).

• Toeplitz representation: a linear map $\psi : X \to B(H)$ and a homomorphism $\pi : A \to B(H)$ compatible with module actions and s.t. $\psi(\xi)^*\psi(\eta) = \pi(\langle \xi, \eta \rangle_A)$ for $\xi, \eta \in X$.

> Nadia S Larsen

The Toeplitz algebra of a C^* -correspondence

X is a C*-correspondence over A if X is a right Hilbert A-module with a homomorphism $\phi : A \to \mathcal{L}(X)$ (also say X is a right-Hilbert A-A-bimodule).

- Toeplitz representation: a linear map $\psi : X \to B(H)$ and a homomorphism $\pi : A \to B(H)$ compatible with module actions and s.t. $\psi(\xi)^*\psi(\eta) = \pi(\langle \xi, \eta \rangle_A)$ for $\xi, \eta \in X$.
- There is a universal algebra \mathcal{T}_X for Toeplitz representations, and is generated by $i = (\psi_0, \pi_0)$: any (ψ, π) gives rise to a repr. $\psi \times \pi$ of \mathcal{T}_X on H s.t. $(\psi \times \pi) \circ i$ restricts to (ψ, π) .

> Nadia S Larsen

The Toeplitz algebra of a C^* -correspondence

X is a C*-correspondence over A if X is a right Hilbert A-module with a homomorphism $\phi : A \to \mathcal{L}(X)$ (also say X is a right-Hilbert A-A-bimodule).

- Toeplitz representation: a linear map $\psi : X \to B(H)$ and a homomorphism $\pi : A \to B(H)$ compatible with module actions and s.t. $\psi(\xi)^*\psi(\eta) = \pi(\langle \xi, \eta \rangle_A)$ for $\xi, \eta \in X$.
- There is a universal algebra \mathcal{T}_X for Toeplitz representations, and is generated by $i = (\psi_0, \pi_0)$: any (ψ, π) gives rise to a repr. $\psi \times \pi$ of \mathcal{T}_X on H s.t. $(\psi \times \pi) \circ i$ restricts to (ψ, π) .
- A concrete algebra $\mathcal{T}_X^{F(X)}$ on the Fock space F(X). Fact: $\mathcal{T}_X \cong \mathcal{T}_X^{F(X)}$ (Pimsner, 1994).

> Nadia S Larsen

The Toeplitz algebra of a C^* -correspondence

X is a C*-correspondence over A if X is a right Hilbert A-module with a homomorphism $\phi : A \to \mathcal{L}(X)$ (also say X is a right-Hilbert A-A-bimodule).

- Toeplitz representation: a linear map $\psi : X \to B(H)$ and a homomorphism $\pi : A \to B(H)$ compatible with module actions and s.t. $\psi(\xi)^*\psi(\eta) = \pi(\langle \xi, \eta \rangle_A)$ for $\xi, \eta \in X$.
- There is a universal algebra \mathcal{T}_X for Toeplitz representations, and is generated by $i = (\psi_0, \pi_0)$: any (ψ, π) gives rise to a repr. $\psi \times \pi$ of \mathcal{T}_X on H s.t. $(\psi \times \pi) \circ i$ restricts to (ψ, π) .
- A concrete algebra $\mathcal{T}_X^{F(X)}$ on the Fock space F(X). Fact: $\mathcal{T}_X \cong \mathcal{T}_X^{F(X)}$ (Pimsner, 1994).

X can be thought of as a generalised endomorphism of A and T_X as a kind of crossed product of A by \mathbb{N} .

> Nadia S. Larsen

X: product system over P is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a C*-correspondence over A for $p \in P$ and $X_e = {}_AA_A$,

> Nadia S. Larsen

X: product system over P is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a C*-correspondence over A for $p \in P$ and $X_e = {}_AA_A$, and the multiplication on X extends to isomorphisms of C*-correspondences

$$F^{p,q}: X_p \otimes_A X_q \to X_{pq}, \ p,q \in P \setminus \{e\}$$

and the right and left actions of X_e (Arveson, Dinh, Fowler).

> Nadia S. Larsen

X: product system over P is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a C^* -correspondence over A for $p \in P$ and $X_e = {}_AA_A$, and the multiplication on X extends to isomorphisms of C^* -correspondences

$$F^{p,q}: X_p \otimes_A X_q \to X_{pq}, \ p,q \in P \setminus \{e\}$$

and the right and left actions of X_e (Arveson, Dinh, Fowler). ψ is a Toeplitz representation of X in a C*-algebra B if

1 $(\psi_p := \psi|_{X_p}, \psi_e)$ is a Toeplitz representation of X_p , $p \in P$; 2 $\psi_p(x)\psi_q(y) = \psi_{pq}(xy)$, $x \in X_p$, $y \in X_q$; 3 $\psi_e(\langle x, y \rangle_p) = \psi_p(x)^*\psi_p(y)$ for $x, y \in X_p$.

> Nadia S Larsen

X: product system over P is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a C^* -correspondence over A for $p \in P$ and $X_e = {}_AA_A$, and the multiplication on X extends to isomorphisms of C^* -correspondences

$$F^{p,q}: X_p \otimes_A X_q \to X_{pq}, \ p,q \in P \setminus \{e\}$$

and the right and left actions of X_e (Arveson, Dinh, Fowler). ψ is a Toeplitz representation of X in a C*-algebra B if

1 $(\psi_p := \psi|_{X_p}, \psi_e)$ is a Toeplitz representation of X_p , $p \in P$; 2 $\psi_p(x)\psi_q(y) = \psi_{pq}(xy)$, $x \in X_p$, $y \in X_q$; 3 $\psi_e(\langle x, y \rangle_p) = \psi_p(x)^*\psi_p(y)$ for $x, y \in X_p$.

Let \mathcal{T}_X be the universal C^* -algebra for Toeplitz repr. (Fowler). It is generated by $i: X \to \mathcal{T}_X$

> Nadia S Larsen

X: product system over P is a semigroup with a homomorphism $d: X \to P$ s.t. $X_p := d^{-1}(p)$ is a C^* -correspondence over A for $p \in P$ and $X_e = {}_AA_A$, and the multiplication on X extends to isomorphisms of C^* -correspondences

$$F^{p,q}: X_p \otimes_A X_q \to X_{pq}, \ p,q \in P \setminus \{e\}$$

and the right and left actions of X_e (Arveson, Dinh, Fowler). ψ is a Toeplitz representation of X in a C^{*}-algebra B if

1 $(\psi_p := \psi|_{X_p}, \psi_e)$ is a Toeplitz representation of X_p , $p \in P$; 2 $\psi_p(x)\psi_q(y) = \psi_{pq}(xy)$, $x \in X_p$, $y \in X_q$; 3 $\psi_e(\langle x, y \rangle_p) = \psi_p(x)^*\psi_p(y)$ for $x, y \in X_p$.

Let \mathcal{T}_X be the universal C^* -algebra for Toeplitz repr. (Fowler). It is generated by $i: X \to \mathcal{T}_X$

 \mathcal{T}_X : a sort of crossed product of A by generalised action of P.

> Nadia S. Larsen

The Fock bimodule is $F(X) := \bigoplus_{s \in P} X_s$ (cf. Fowler).

```
C*-algebras
associated to
product
systems of
C*-
correspondences
```

Nadia S. Larsen

The Fock bimodule is
$$F(X) := \bigoplus_{s \in P} X_s$$
 (cf. Fowler). So $\bigoplus_{s \in P} w_s \in \prod_{s \in P} X_s$ is in $F(X)$ when $\sum_s \langle w_s, w_s \rangle_s$ is summable in A ;

> Nadia S. Larsen

The Fock bimodule is $F(X) := \bigoplus_{s \in P} X_s$ (cf. Fowler). So $\bigoplus_{s \in P} w_s \in \prod_{s \in P} X_s$ is in F(X) when $\sum_s \langle w_s, w_s \rangle_s$ is summable in A;

- **1** right action: $(\oplus_s w_s) \cdot a = \oplus_s (x_s \cdot a)$
- 2 inner-product $\langle \oplus_s w_s, \oplus_s z_s \rangle = \sum_s \langle w_s, z_s \rangle_s$.
- **3** left action: $\oplus_s \phi_s$.

> Nadia S Larsen

The Fock bimodule is $F(X) := \bigoplus_{s \in P} X_s$ (cf. Fowler). So $\bigoplus_{s \in P} w_s \in \prod_{s \in P} X_s$ is in F(X) when $\sum_s \langle w_s, w_s \rangle_s$ is summable in A;

- **1** right action: $(\oplus_s w_s) \cdot a = \oplus_s (x_s \cdot a)$
- 2 inner-product $\langle \oplus_s w_s, \oplus_s z_s \rangle = \sum_s \langle w_s, z_s \rangle_s$.
- **3** left action: $\bigoplus_{s} \phi_{s}$.

The Fock representation $l : X \to \mathcal{L}(F(X))$ is $l_s(\xi)\eta = F^{s,r}(\xi \otimes_A \eta)$ if $\xi \in X_s$ and $\eta \in X_r$ for $s, r \in P$.

> Nadia S Larsen

The Fock bimodule is $F(X) := \bigoplus_{s \in P} X_s$ (cf. Fowler). So $\bigoplus_{s \in P} w_s \in \prod_{s \in P} X_s$ is in F(X) when $\sum_s \langle w_s, w_s \rangle_s$ is summable in A;

- **1** right action: $(\oplus_s w_s) \cdot a = \oplus_s (x_s \cdot a)$
- 2 inner-product $\langle \oplus_s w_s, \oplus_s z_s \rangle = \sum_s \langle w_s, z_s \rangle_s$.
- **3** left action: $\oplus_{s} \phi_{s}$.

The Fock representation $l: X \to \mathcal{L}(F(X))$ is $l_s(\xi)\eta = F^{s,r}(\xi \otimes_A \eta)$ if $\xi \in X_s$ and $\eta \in X_r$ for $s, r \in P$.

$$\mathfrak{l}_{\mathfrak{s}}(\eta)^{*}\zeta = \begin{cases} \phi_{\mathfrak{s}^{-1}r}(\langle \eta, \zeta' \rangle_{\mathfrak{s}})\zeta'' & \text{ if } r \in \mathfrak{sP} \\ 0 & \text{ if } r \notin \mathfrak{sP} \end{cases}$$

for $\zeta = F^{s,s^{-1}r}(\zeta' \otimes_A \zeta'') \in X_r$. (Often *P* is given as a subsemigroup of a group *G*.)

> Nadia S Larsen

The Fock bimodule is $F(X) := \bigoplus_{s \in P} X_s$ (cf. Fowler). So $\bigoplus_{s \in P} w_s \in \prod_{s \in P} X_s$ is in F(X) when $\sum_s \langle w_s, w_s \rangle_s$ is summable in A;

- **1** right action: $(\oplus_s w_s) \cdot a = \oplus_s (x_s \cdot a)$
- 2 inner-product $\langle \oplus_s w_s, \oplus_s z_s \rangle = \sum_s \langle w_s, z_s \rangle_s$.
- **3** left action: $\oplus_{s} \phi_{s}$.

The Fock representation $l: X \to \mathcal{L}(F(X))$ is $l_s(\xi)\eta = F^{s,r}(\xi \otimes_A \eta)$ if $\xi \in X_s$ and $\eta \in X_r$ for $s, r \in P$.

$$\mathfrak{l}_{\mathfrak{s}}(\eta)^{*}\zeta = \begin{cases} \phi_{\mathfrak{s}^{-1}r}(\langle \eta, \zeta' \rangle_{\mathfrak{s}})\zeta'' & \text{ if } r \in \mathfrak{sP} \\ 0 & \text{ if } r \notin \mathfrak{sP} \end{cases}$$

for $\zeta = F^{s,s^{-1}r}(\zeta' \otimes_A \zeta'') \in X_r$. (Often *P* is given as a subsemigroup of a group *G*.)

> Nadia S Larsen

The Fock bimodule is $F(X) := \bigoplus_{s \in P} X_s$ (cf. Fowler). So $\bigoplus_{s \in P} w_s \in \prod_{s \in P} X_s$ is in F(X) when $\sum_s \langle w_s, w_s \rangle_s$ is summable in A;

- **1** right action: $(\oplus_s w_s) \cdot a = \oplus_s (x_s \cdot a)$
- 2 inner-product $\langle \oplus_s w_s, \oplus_s z_s \rangle = \sum_s \langle w_s, z_s \rangle_s$.
- **3** left action: $\bigoplus_{s} \phi_{s}$.

The Fock representation $l : X \to \mathcal{L}(F(X))$ is $l_s(\xi)\eta = F^{s,r}(\xi \otimes_A \eta)$ if $\xi \in X_s$ and $\eta \in X_r$ for $s, r \in P$.

$$\mathfrak{l}_{\mathfrak{s}}(\eta)^{*}\zeta = \begin{cases} \phi_{\mathfrak{s}^{-1}r}(\langle \eta, \zeta' \rangle_{\mathfrak{s}})\zeta'' & \text{ if } r \in \mathfrak{sP} \\ 0 & \text{ if } r \notin \mathfrak{sP} \end{cases}$$

for $\zeta = F^{s,s^{-1}r}(\zeta' \otimes_A \zeta'') \in X_r$. (Often *P* is given as a subsemigroup of a group *G*.)

Facts: l is a Toeplitz representation of X (take $l_e = \bigoplus_s \phi_s$). It is *isometric* (i.e. l_e is injective) because ϕ_e is.

> Nadia S. Larsen

 $(\mathfrak{l}_s,\mathfrak{l}_e)$ is a Toeplitz repr. of X_s for $s \in P$. By Pimsner, there is a homomorphism $\mathfrak{l}^{(s)}: \mathcal{K}(X_s) \to \mathcal{L}(F(X))$ with $\mathfrak{l}^{(s)}(\theta_{\xi,\eta}) = \mathfrak{l}_s(\xi)\mathfrak{l}_s(\eta)^*$.

> Nadia S. Larsen

 $(\mathfrak{l}_{s},\mathfrak{l}_{e})$ is a Toeplitz repr. of X_{s} for $s \in P$. By Pimsner, there is a homomorphism $\mathfrak{l}^{(s)}: \mathcal{K}(X_{s}) \to \mathcal{L}(F(X))$ with $\mathfrak{l}^{(s)}(\theta_{\xi,\eta}) = \mathfrak{l}_{s}(\xi)\mathfrak{l}_{s}(\eta)^{*}$. For $q \in sP$ let $i_{s}^{q}: \mathcal{L}(X_{s}) \to \mathcal{L}(X_{q})$ be

$$i_{s}^{q}(S) = F^{s,s^{-1}q}(S \otimes_{A} I_{s^{-1}q})(F^{s,s^{-1}q})^{*}$$

and $i_e^q = \phi_q$.

> Nadia S. Larsen

 $(\mathfrak{l}_{s},\mathfrak{l}_{e})$ is a Toeplitz repr. of X_{s} for $s \in P$. By Pimsner, there is a homomorphism $\mathfrak{l}^{(s)}: \mathcal{K}(X_{s}) \to \mathcal{L}(F(X))$ with $\mathfrak{l}^{(s)}(\theta_{\xi,\eta}) = \mathfrak{l}_{s}(\xi)\mathfrak{l}_{s}(\eta)^{*}$. For $q \in sP$ let $i_{s}^{q}: \mathcal{L}(X_{s}) \to \mathcal{L}(X_{q})$ be

$$i_{s}^{q}(S) = F^{s,s^{-1}q}(S \otimes_{\mathcal{A}} I_{s^{-1}q})(F^{s,s^{-1}q})^{*}$$

and $i_e^q = \phi_q$. If $\xi, \eta \in X_s$ and $\zeta \in X_q$, then

$$\mathfrak{l}^{(s)}(heta_{\xi,\eta})\zeta = egin{cases} 0 & ext{if } q \notin sP \ i_s^q(heta_{\xi,\eta})\zeta & ext{if } q \in sP. \end{cases}$$

> Nadia S. Larsen

 $(\mathfrak{l}_{s},\mathfrak{l}_{e})$ is a Toeplitz repr. of X_{s} for $s \in P$. By Pimsner, there is a homomorphism $\mathfrak{l}^{(s)}: \mathcal{K}(X_{s}) \to \mathcal{L}(F(X))$ with $\mathfrak{l}^{(s)}(\theta_{\xi,\eta}) = \mathfrak{l}_{s}(\xi)\mathfrak{l}_{s}(\eta)^{*}$. For $q \in sP$ let $i_{s}^{q}: \mathcal{L}(X_{s}) \to \mathcal{L}(X_{q})$ be

$$i_{s}^{q}(S) = F^{s,s^{-1}q}(S \otimes_{A} I_{s^{-1}q})(F^{s,s^{-1}q})^{*}$$

and
$$i_e^q = \phi_q.$$

If $\xi, \eta \in X_s$ and $\zeta \in X_q$, then

$$\mathfrak{l}^{(s)}(heta_{\xi,\eta})\zeta = egin{cases} 0 & ext{if } q
otin sP \ i_s^q(heta_{\xi,\eta})\zeta & ext{if } q \in sP. \end{cases}$$

Note that $i_s^q(\theta_{\xi,\eta})$ need not belong to $\mathcal{K}(X_q)$.

> Nadia S. Larsen

 $(\mathfrak{l}_s, \mathfrak{l}_e)$ is a Toeplitz repr. of X_s for $s \in P$. By Pimsner, there is a homomorphism $\mathfrak{l}^{(s)} : \mathcal{K}(X_s) \to \mathcal{L}(F(X))$ with $\mathfrak{l}^{(s)}(\theta_{\xi,\eta}) = \mathfrak{l}_s(\xi)\mathfrak{l}_s(\eta)^*$. For $q \in sP$ let $i_s^q : \mathcal{L}(X_s) \to \mathcal{L}(X_q)$ be

$$i_{s}^{q}(S) = F^{s,s^{-1}q}(S \otimes_{A} I_{s^{-1}q})(F^{s,s^{-1}q})^{*}$$

and
$$i_e^q = \phi_q$$
.
If $\xi, \eta \in X_s$ and $\zeta \in X_q$, then

$$\mathfrak{l}^{(s)}(heta_{\xi,\eta})\zeta = egin{cases} 0 & ext{if } q \notin sP \ i_s^q(heta_{\xi,\eta})\zeta & ext{if } q \in sP. \end{cases}$$

Note that $i_s^q(\theta_{\xi,\eta})$ need not belong to $\mathcal{K}(X_q)$. What can be said of $\mathcal{K}_{s,r} := \mathfrak{l}^{(s)}(\theta_{\xi,\eta})\mathfrak{l}^{(r)}(\theta_{z,w})$ in $\mathcal{L}(F(X))$?

> Nadia S. Larsen

Quasi-lattice ordered groups (A. Nica 1992). G a discrete group, P a subsemigroup with $P \cap P^{-1} = \{e\}$. Partial order on G: $g \leq h \iff g^{-1}h \in P$.

(G, P) is quasi-lattice ordered (q.l.o.) if every pair $p, q \in G$ with a common upper bound in G has a l.u.b. $p \lor q$. If so, write $p \lor q < \infty$, or else $p \lor q = \infty$.

> Nadia S. Larsen

Quasi-lattice ordered groups (A. Nica 1992). G a discrete group, P a subsemigroup with $P \cap P^{-1} = \{e\}$. Partial order on G: $g \leq h \iff g^{-1}h \in P$.

(G, P) is quasi-lattice ordered (q.l.o.) if every pair $p, q \in G$ with a common upper bound in G has a l.u.b. $p \lor q$. If so, write $p \lor q < \infty$, or else $p \lor q = \infty$. Examples: $(\mathbb{Z}^k, \mathbb{N}^k), k = 1, \dots, \infty; (\mathbb{F}_n, \mathbb{F}_n^+)$.

> Nadia S. Larsen

> > and $s \lor r < q$.

Quasi-lattice ordered groups (A. Nica 1992). *G* a discrete group, *P* a subsemigroup with $P \cap P^{-1} = \{e\}$. Partial order on *G*: $g \leq h \iff g^{-1}h \in P$. (*G*, *P*) is quasi-lattice ordered (q.l.o.) if every pair $p, q \in G$

with a common upper bound in *G* has a l.u.b. $p \lor q$. If so, write $p \lor q < \infty$, or else $p \lor q = \infty$. Examples: $(\mathbb{Z}^k, \mathbb{N}^k)$, $k = 1, ..., \infty$; $(\mathbb{F}_n, \mathbb{F}_n^+)$. $\mathcal{K}_{s,r}\zeta = \mathfrak{l}^{(s)}(\theta_{\xi,n})\mathfrak{l}^{(r)}(\theta_{z,w})\zeta = 0$ for $\zeta \in X_q$ unless $s \lor r < \infty$

> Nadia S. Larsen

Quasi-lattice ordered groups (A. Nica 1992). G a discrete group, P a subsemigroup with $P \cap P^{-1} = \{e\}$. Partial order on $G: g \leq h \iff g^{-1}h \in P.$ (G, P) is quasi-lattice ordered (q.l.o.) if every pair $p, q \in G$ with a common upper bound in G has a l.u.b. $p \lor q$. If so, write $p \lor q < \infty$, or else $p \lor q = \infty$. Examples: $(\mathbb{Z}^k, \mathbb{N}^k), k = 1, \dots, \infty; (\mathbb{F}_n, \mathbb{F}_n^+).$ $\mathcal{K}_{s,r}\zeta = \mathfrak{l}^{(s)}(\theta_{\xi,n})\mathfrak{l}^{(r)}(\theta_{z,w})\zeta = 0$ for $\zeta \in X_a$ unless $s \vee r < \infty$ and $s \lor r < q$.

In case $K = i_s^{s \vee r}(\theta_{\xi,\eta})i_r^{s \vee r}(\theta_{z,w}) \in \mathcal{K}(X_{s \vee r})$ for $s \vee r < \infty$,

$$K_{s,r} = \mathfrak{l}^{(s \vee r)}(K).$$

> Nadia S Larsen

Quasi-lattice ordered groups (A. Nica 1992). G a discrete group, P a subsemigroup with $P \cap P^{-1} = \{e\}$. Partial order on $G: g \leq h \iff g^{-1}h \in P.$ (G, P) is quasi-lattice ordered (q.l.o.) if every pair $p, q \in G$ with a common upper bound in G has a l.u.b. $p \lor q$. If so, write $p \lor q < \infty$, or else $p \lor q = \infty$. Examples: $(\mathbb{Z}^k, \mathbb{N}^k), k = 1, \dots, \infty; (\mathbb{F}_n, \mathbb{F}_n^+).$ $\mathcal{K}_{s,r}\zeta = \mathfrak{l}^{(s)}(\theta_{\xi,n})\mathfrak{l}^{(r)}(\theta_{z,w})\zeta = 0$ for $\zeta \in X_a$ unless $s \vee r < \infty$ and $s \lor r < q$. In case $K = i_s^{s \lor r}(\theta_{\xi,n})i_r^{s \lor r}(\theta_{z,w}) \in \mathcal{K}(X_{s \lor r})$ for $s \lor r < \infty$, $K_{s,r} = \mathfrak{l}^{(s \vee r)}(K).$

Def. (Fowler, 2002). X is compactly aligned if

 $i_s^{s \vee r}(S)i_r^{s \vee r}(R) \in \mathcal{K}(X_{s \vee r}),$ whenever $S \in \mathcal{K}(X_s)$, $R \in \mathcal{K}(X_r)$, $s \vee r < \infty$.

> Nadia S. Larsen

Nica covariant Toeplitz representations

(G, P) q.l.o. and X compactly aligned product system over P. A Toeplitz rep. $\psi: X \to B$ is Nica covariant if

> Nadia S. Larsen

Nica covariant Toeplitz representations

(G, P) q.l.o. and X compactly aligned product system over P. A Toeplitz rep. $\psi : X \to B$ is Nica covariant if

$$\psi^{(s)}(S)\psi^{(r)}(R) = \begin{cases} \psi^{(s \lor r)}(i_s^{s \lor r}(S)i_r^{s \lor r}(R)) & \text{if } s \lor r < \infty \\ 0 & \text{otherwise} \end{cases}$$

for all $S \in \mathcal{K}(X_s)$ and $R \in \mathcal{K}(X_r)$ (Fowler).

> Nadia S. Larsen

Nica covariant Toeplitz representations

(G, P) q.l.o. and X compactly aligned product system over P. A Toeplitz rep. $\psi : X \to B$ is Nica covariant if

$$\psi^{(s)}(S)\psi^{(r)}(R) = \begin{cases} \psi^{(s \lor r)}(i_s^{s \lor r}(S)i_r^{s \lor r}(R)) & \text{if } s \lor r < \infty \\ 0 & \text{otherwise} \end{cases}$$

for all $S \in \mathcal{K}(X_s)$ and $R \in \mathcal{K}(X_r)$ (Fowler).

 \mathcal{I} ideal gen. by $i^{(s)}(S)i^{(r)}(R) - i^{(s\vee r)}(i_s^{s\vee r}(S)i_r^{s\vee r}(R)).$

> Nadia S. Larsen

Nica covariant Toeplitz representations

(G, P) q.l.o. and X compactly aligned product system over P. A Toeplitz rep. $\psi : X \to B$ is Nica covariant if

$$\psi^{(s)}(S)\psi^{(r)}(R) = \begin{cases} \psi^{(s \lor r)}(i_s^{s \lor r}(S)i_r^{s \lor r}(R)) & \text{ if } s \lor r < \infty \\ 0 & \text{ otherwise} \end{cases}$$

for all $S \in \mathcal{K}(X_s)$ and $R \in \mathcal{K}(X_r)$ (Fowler).

 \mathcal{I} ideal gen. by $i^{(s)}(S)i^{(r)}(R) - i^{(s \vee r)}(i_s^{s \vee r}(S)i_r^{s \vee r}(R)).$

The Toeplitz covariant algebra is $\mathcal{T}_{cov}(X) := \mathcal{T}_X/\mathcal{I}$ and is generated by $i_X = q_\mathcal{I} \circ i$ which is Nica covariant (Fowler, Carlsen-L-Sims-Vittadello). Universal property

> Nadia S. Larsen

Example 1. (Fowler 2002) Y is a right-Hilbert A-A-bimodule. Put $Y_0 = A$ and $Y_n = Y^{\otimes n}$ for $n \ge 1$. Then $Y^{\otimes} = \bigsqcup_n Y_n$ is a product system over \mathbb{N} with $\mathcal{T}_{Y^{\otimes}} \cong \mathcal{T}_Y$. Now \mathbb{N} is totally ordered, so $i_s^{s \lor r}(S)$ or $i_r^{s \lor r}(R)$ is in $\mathcal{K}(X_{s \lor r})$. Y^{\otimes} is compactly aligned and $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

> Nadia S. Larsen

Example 1. (Fowler 2002) Y is a right-Hilbert A-A-bimodule. Put $Y_0 = A$ and $Y_n = Y^{\otimes n}$ for $n \ge 1$. Then $Y^{\otimes} = \bigsqcup_n Y_n$ is a product system over \mathbb{N} with $\mathcal{T}_{Y^{\otimes}} \cong \mathcal{T}_Y$. Now \mathbb{N} is totally ordered, so $i_s^{s \lor r}(S)$ or $i_r^{s \lor r}(R)$ is in $\mathcal{K}(X_{s \lor r})$. Y^{\otimes} is compactly aligned and $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

Example 2. (Sims-Yeend 2007) Let (G, P) be q.l.o. Then \mathbb{C}^P with $X_p :=_{\mathbb{C}} \mathbb{C}_{\mathbb{C}}$ for all p is compactly aligned. $\mathcal{T}_{cov}(\mathbb{C}^P)$ is isomorphic to Nica's universal C^* -algebra $C^*(G, P)$ for isometric repr. V of P which are (Nica) covariant:

$$V_p V_p^* V_q V_q^* = \begin{cases} V_{p \lor q} V_{p \lor q}^* & \text{if } p \lor q < \infty \\ 0 & \text{if } p \lor q = \infty. \end{cases}$$

> Nadia S. Larsen

Example 1. (Fowler 2002) Y is a right-Hilbert A-A-bimodule. Put $Y_0 = A$ and $Y_n = Y^{\otimes n}$ for $n \ge 1$. Then $Y^{\otimes} = \bigsqcup_n Y_n$ is a product system over \mathbb{N} with $\mathcal{T}_{Y^{\otimes}} \cong \mathcal{T}_Y$. Now \mathbb{N} is totally ordered, so $i_s^{s \lor r}(S)$ or $i_r^{s \lor r}(R)$ is in $\mathcal{K}(X_{s \lor r})$. Y^{\otimes} is compactly aligned and $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

Example 2. (Sims-Yeend 2007) Let (G, P) be q.l.o. Then \mathbb{C}^P with $X_p :=_{\mathbb{C}} \mathbb{C}_{\mathbb{C}}$ for all p is compactly aligned. $\mathcal{T}_{cov}(\mathbb{C}^P)$ is isomorphic to Nica's universal C^* -algebra $C^*(G, P)$ for isometric repr. V of P which are (Nica) covariant:

$$V_p V_p^* V_q V_q^* = egin{cases} V_{p ee q} V_{p ee q}^* & ext{if } p ee q < \infty \ 0 & ext{if } p ee q = \infty. \end{cases}$$

Example 3. (Carlsen-L-Sims-Vittadello 2009) Take $(G, P) = (\mathbb{F}_2, \mathbb{F}_2^+)$ and a, b the generators of \mathbb{F}_2^+ . Define a product system over \mathbb{F}_2^+ by $X_{a^n} = \mathbb{C}$ for $n \in \mathbb{N}$ and $X_p = 0$ for all other $p \in \mathbb{F}_2^+$. Then $\mathcal{L}(X_p) = \mathcal{K}(X_p)$ and $\mathcal{T}_X = \mathcal{T}_{cov}(X) = \mathcal{T}$.

> Nadia S. Larsen

The Cuntz-Pimsner algebra of a bimodule

Pimsner: Y Hilbert bimodule over A with algebra (\mathcal{T}_Y, i) . \mathcal{O}_Y is the quotient of \mathcal{T}_Y by the ideal \mathcal{I}_0 generated by $i^{(1)}(\phi(a)) - i|_A(a)$ for all a with $\phi(a) \in \mathcal{K}(Y)$.

Nadia S Larsen

The Cuntz-Pimsner algebra of a bimodule

Pimsner: Y Hilbert bimodule over A with algebra (\mathcal{T}_Y, i) . \mathcal{O}_Y is the quotient of \mathcal{T}_Y by the ideal \mathcal{I}_0 generated by $i^{(1)}(\phi(a)) - i|_A(a)$ for all a with $\phi(a) \in \mathcal{K}(Y)$. There is a Cuntz-Pimsner covariant repr. k_Y , so $k_Y^{(1)}(\phi(a)) = k_Y(a)$ for $\phi(a) \in \mathcal{K}(Y)$, with a universal property

Nadia S Larsen

The Cuntz-Pimsner algebra of a bimodule

Pimsner: Y Hilbert bimodule over A with algebra (\mathcal{T}_Y, i) . \mathcal{O}_Y is the quotient of \mathcal{T}_Y by the ideal \mathcal{I}_0 generated by $i^{(1)}(\phi(a)) - i|_A(a)$ for all a with $\phi(a) \in \mathcal{K}(Y)$. There is a Cuntz-Pimsner covariant repr. k_Y , so $k_Y^{(1)}(\phi(a)) = k_Y(a)$ for $\phi(a) \in \mathcal{K}(Y)$, with a universal property

Katsura: uses largest \mathcal{I}_Y on which ϕ is injective into $\mathcal{K}(Y)$. Theorem (Katsura 2004). The representation k_Y is injective and \mathcal{O}_Y has the gauge-invariant uniqueness property: ψ_* is injective iff ψ is an injective repr. and B admits an action of \mathbb{T} compatible with the gauge-action on \mathcal{O}_Y .

Nadia S Larsen

The Cuntz-Pimsner algebra of a bimodule

Pimsner: Y Hilbert bimodule over A with algebra (\mathcal{T}_Y, i) . \mathcal{O}_Y is the quotient of \mathcal{T}_Y by the ideal \mathcal{I}_0 generated by $i^{(1)}(\phi(a)) - i|_A(a)$ for all a with $\phi(a) \in \mathcal{K}(Y)$. There is a Cuntz-Pimsner covariant repr. k_Y , so $k_Y^{(1)}(\phi(a)) = k_Y(a)$ for $\phi(a) \in \mathcal{K}(Y)$, with a universal property

Katsura: uses largest \mathcal{I}_Y on which ϕ is injective into $\mathcal{K}(Y)$. Theorem (Katsura 2004). The representation k_Y is injective and \mathcal{O}_Y has the gauge-invariant uniqueness property: ψ_* is injective iff ψ is an injective repr. and B admits an action of \mathbb{T} compatible with the gauge-action on \mathcal{O}_Y . Earlier: an Huef-Raeburn 1997, Fowler-Muhly-Raeburn 2003.

> Nadia S. Larsen

The Cuntz-Nica-Pimsner algebra

Katsura: \mathcal{O}_Y is the smallest C^* -algebra generated by an injective Cuntz-Pimsner covariant representation of Y and with the gauge-invariant uniqueness property. So \mathcal{O}_Y can be defined without reference to \mathcal{I}_Y .

> Nadia S. Larsen

The Cuntz-Nica-Pimsner algebra

Katsura: \mathcal{O}_Y is the smallest C^* -algebra generated by an injective Cuntz-Pimsner covariant representation of Y and with the gauge-invariant uniqueness property. So \mathcal{O}_Y can be defined without reference to \mathcal{I}_Y .

Fowler: defines \mathcal{O}_X for a product system X using usual Cuntz-Pimsner covariance in each X_p . Problem: injectivity of $k_X : X \to \mathcal{O}_X$ is not known.

Sims-Yeend (2007): Cuntz-Nica-Pimsner algebra \mathcal{NO}_X for X a compactly aligned product system over P in a q.l.o. pair (G, P).

> Nadia S Larsen

The Cuntz-Nica-Pimsner algebra

Katsura: \mathcal{O}_Y is the smallest C^* -algebra generated by an injective Cuntz-Pimsner covariant representation of Y and with the gauge-invariant uniqueness property. So \mathcal{O}_Y can be defined without reference to \mathcal{I}_Y .

Fowler: defines \mathcal{O}_X for a product system X using usual Cuntz-Pimsner covariance in each X_p . Problem: injectivity of $k_X : X \to \mathcal{O}_X$ is not known.

Sims-Yeend (2007): Cuntz-Nica-Pimsner algebra \mathcal{NO}_X for X a compactly aligned product system over P in a q.l.o. pair (G, P). By construction, \mathcal{NO}_X is universal for CNP covariant representations of X: these are Nica covariant representations which are Cuntz-Pimsner covariant in a new sense, compatible with q.l.o. structure (technical definition.)

> Nadia S Larsen

The Cuntz-Nica-Pimsner algebra

Katsura: \mathcal{O}_Y is the smallest C^* -algebra generated by an injective Cuntz-Pimsner covariant representation of Y and with the gauge-invariant uniqueness property. So \mathcal{O}_Y can be defined without reference to \mathcal{I}_Y .

Fowler: defines \mathcal{O}_X for a product system X using usual Cuntz-Pimsner covariance in each X_p . Problem: injectivity of $k_X : X \to \mathcal{O}_X$ is not known.

Sims-Yeend (2007): Cuntz-Nica-Pimsner algebra \mathcal{NO}_X for X a compactly aligned product system over P in a q.l.o. pair (G, P). By construction, \mathcal{NO}_X is universal for CNP covariant representations of X: these are Nica covariant representations which are Cuntz-Pimsner covariant in a new sense, compatible with q.l.o. structure (technical definition.)

When $\phi_m \in \mathcal{K}(X_m)$ for all $m \in P$ and $m \lor n < \infty$ for all $m, n \in P$ (e.g. for $(\mathbb{Z}^k, \mathbb{N}^k)$), the algebra \mathcal{NO}_X is Fowler's \mathcal{O}_X .

> Nadia S. Larsen

Example 1. Y is a right-Hilbert A–A-bimodule and Y^{\otimes} is the product system over \mathbb{N} with $Y_n = Y^{\otimes n}$ for $n \ge 1$ and with $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

Fact: \mathcal{NO}_Y is isomorphic to Katsura's \mathcal{O}_Y (Sims-Yeend).

> Nadia S. Larsen

Example 1. Y is a right-Hilbert A–A-bimodule and Y^{\otimes} is the product system over \mathbb{N} with $Y_n = Y^{\otimes n}$ for $n \ge 1$ and with $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

Fact: \mathcal{NO}_Y is isomorphic to Katsura's \mathcal{O}_Y (Sims-Yeend).

Example 3. X product system over \mathbb{F}_2^+ with $X_{a^n} = \mathbb{C}$ for $n \in \mathbb{N}$ and $X_p = 0$ for all other $p \in \mathbb{F}_2^+$. Recall $\mathcal{T}_X = \mathcal{T}_{cov}(X) = \mathcal{T}$. Here the universal Nica covariant representation i_X of X is a CNP covariant representation, so $\mathcal{NO}_X \cong \mathcal{T}_{cov}(X)$. However, \mathcal{O}_X is $C(\mathbb{T})$.

> Nadia S. Larsen

Example 1. Y is a right-Hilbert A–A-bimodule and Y^{\otimes} is the product system over \mathbb{N} with $Y_n = Y^{\otimes n}$ for $n \ge 1$ and with $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

Fact: \mathcal{NO}_Y is isomorphic to Katsura's \mathcal{O}_Y (Sims-Yeend).

Example 3. X product system over \mathbb{F}_2^+ with $X_{a^n} = \mathbb{C}$ for $n \in \mathbb{N}$ and $X_p = 0$ for all other $p \in \mathbb{F}_2^+$. Recall $\mathcal{T}_X = \mathcal{T}_{cov}(X) = \mathcal{T}$. Here the universal Nica covariant representation i_X of X is a CNP covariant representation, so $\mathcal{NO}_X \cong \mathcal{T}_{cov}(X)$. However, \mathcal{O}_X is $\mathcal{C}(\mathbb{T})$.

In example 2, to identify \mathcal{NO}_X for \mathbb{C}^P we need more.

> Nadia S. Larsen

Example 1. Y is a right-Hilbert A–A-bimodule and Y^{\otimes} is the product system over \mathbb{N} with $Y_n = Y^{\otimes n}$ for $n \ge 1$ and with $\mathcal{T}_{cov}(Y^{\otimes}) \cong \mathcal{T}_Y$.

Fact: \mathcal{NO}_Y is isomorphic to Katsura's \mathcal{O}_Y (Sims-Yeend).

Example 3. X product system over \mathbb{F}_2^+ with $X_{a^n} = \mathbb{C}$ for $n \in \mathbb{N}$ and $X_p = 0$ for all other $p \in \mathbb{F}_2^+$. Recall $\mathcal{T}_X = \mathcal{T}_{cov}(X) = \mathcal{T}$. Here the universal Nica covariant representation i_X of X is a CNP covariant representation, so $\mathcal{NO}_X \cong \mathcal{T}_{cov}(X)$. However, \mathcal{O}_X is $C(\mathbb{T})$.

In example 2, to identify \mathcal{NO}_X for \mathbb{C}^P we need more.

A coaction $\delta: A \to A \otimes C^*(G)$ is an injective nondegenerate homom. satisfying

$$(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta,$$

where $\delta_G : C^*(G) \to C^*(G) \otimes C^*(G)$ comes from $s \mapsto s \otimes s$. It is normal if $(id \otimes \lambda_G) \circ \delta$ from $A \to A \otimes C^*_r(G)$ is injective.

> Nadia S. Larsen

A universal and a co-universal algebra

Theorem (Sims-Yeend 2007). Given (G, P) q.l.o and X compactly aligned (with properties), j_X is an injective CNP repr. generating \mathcal{NO}_X , and for ψ CNP covariant repr. we have:

> Nadia S. Larsen

A universal and a co-universal algebra

Theorem (Sims-Yeend 2007). Given (G, P) q.l.o and X compactly aligned (with properties), j_X is an injective CNP repr. generating \mathcal{NO}_X , and for ψ CNP covariant repr. we have:

> Nadia S. Larsen

A universal and a co-universal algebra

Theorem (Sims-Yeend 2007). Given (G, P) q.l.o and X compactly aligned (with properties), j_X is an injective CNP repr. generating \mathcal{NO}_X , and for ψ CNP covariant repr. we have:

Theorem (Carlsen-L-Sims-Vittadello 2009). For X compactly aligned (with properties), \mathcal{NO}_X^r is co-universal for injective Nica covariant repr. ρ into B with a coaction β compatible with the normal coaction ν^n .

> Nadia S. Larsen

Back to example 2 where (G, P) is q.l.o and \mathbb{C}^P has $X_p = \mathbb{C}$ for all $p \in P$. There is a *Nica spectrum* of (G, P) (Nica) and a boundary $\delta\Omega$ of Ω determined by elementary relations (Laca, Crisp-Laca).

> Nadia S. Larsen

Back to example 2 where (G, P) is q.l.o and \mathbb{C}^P has $X_p = \mathbb{C}$ for all $p \in P$. There is a *Nica spectrum* of (G, P) (Nica) and a boundary $\delta\Omega$ of Ω determined by elementary relations (Laca, Crisp-Laca).

The boundary quotient of $C^*(G, P)$ is $C(\delta\Omega) \times_{\alpha} G$ for a partial action of G (Crisp-Laca). For certain right-angled Artin groups (G, P) such that $C(\delta\Omega) \times_{\alpha} G$ is simple, Sims-Yeend prove

 $\mathcal{NO}_X \cong C(\delta\Omega) \times_{\alpha} G.$

> Nadia S. Larsen

Back to example 2 where (G, P) is q.l.o and \mathbb{C}^P has $X_p = \mathbb{C}$ for all $p \in P$. There is a *Nica spectrum* of (G, P) (Nica) and a boundary $\delta\Omega$ of Ω determined by elementary relations (Laca, Crisp-Laca).

The boundary quotient of $C^*(G, P)$ is $C(\delta\Omega) \times_{\alpha} G$ for a partial action of G (Crisp-Laca). For certain right-angled Artin groups (G, P) such that $C(\delta\Omega) \times_{\alpha} G$ is simple, Sims-Yeend prove

$$\mathcal{NO}_X \cong C(\delta\Omega) \times_{\alpha} G.$$

For (G, P) with either P directed (and so that $X \to \mathcal{NO}_X$ is an injective representation) or all left actions injective:

$$\mathcal{NO}_X^r \cong C(\delta\Omega) \times_{r,\alpha} G$$

by the co-universal property (Carlsen-L-Sims-Vittadello). As corollary $\mathcal{NO}_X \cong C(\delta\Omega) \times_{\alpha} G$ without having to check CNP covariance or the elementary relations.

> Nadia S. Larsen

The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction $\delta: \mathcal{T}_{cov}(X) \to \mathcal{T}_{cov}(X) \otimes C^*(G)$

s.t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for $x \in X$ (similarly ν on \mathcal{NO}_X).

> Nadia S Larsen

The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction $\delta: \mathcal{T}_{cov}(X) \to \mathcal{T}_{cov}(X) \otimes C^*(G)$

s.t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for $x \in X$ (similarly ν on \mathcal{NO}_X). Both δ and ν are maximal in the sense of Echterhoff-Kaliszewski-Quigg. So $\mathcal{T}_{cov}(X)$ and \mathcal{NO}_X are isomorphic to the full cross sectional C^* -algebra of their respective Fell bundles.

> Nadia S. Larsen

The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction $\delta: \mathcal{T}_{cov}(X) \to \mathcal{T}_{cov}(X) \otimes C^*(G)$

s.t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for $x \in X$ (similarly ν on \mathcal{NO}_X). Both δ and ν are maximal in the sense of Echterhoff-Kaliszewski-Quigg. So $\mathcal{T}_{cov}(X)$ and \mathcal{NO}_X are isomorphic to the full cross sectional C^* -algebra of their respective Fell bundles.

 \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective homomorphism $\phi : \mathcal{NO}_X \to B$ is injective iff:

> Nadia S. Larsen

The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction $\delta: \mathcal{T}_{cov}(X) \to \mathcal{T}_{cov}(X) \otimes C^*(G)$

s.t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for $x \in X$ (similarly ν on \mathcal{NO}_X). Both δ and ν are maximal in the sense of Echterhoff-Kaliszewski-Quigg. So $\mathcal{T}_{cov}(X)$ and \mathcal{NO}_X are isomorphic to the full cross sectional C^* -algebra of their respective Fell bundles.

 \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective homomorphism $\phi : \mathcal{NO}_X \to B$ is injective iff:

1) there is a coaction β of G on B s.t.

$$\beta \circ \phi = (\phi \otimes \mathsf{id}_{C^*(G)}) \circ \nu;$$

> Nadia S. Larsen

The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction $\delta : \mathcal{T}_{cov}(X) \to \mathcal{T}_{cov}(X) \otimes C^*(G)$

s.t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for $x \in X$ (similarly ν on \mathcal{NO}_X). Both δ and ν are maximal in the sense of Echterhoff-Kaliszewski-Quigg. So $\mathcal{T}_{cov}(X)$ and \mathcal{NO}_X are isomorphic to the full cross sectional C^* -algebra of their respective Fell bundles.

 \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective homomorphism $\phi : \mathcal{NO}_X \to B$ is injective iff:

1 there is a coaction
$$\beta$$
 of G on B s.t.
 $\beta \circ \phi = (\phi \otimes id_{C^*(G)}) \circ \nu;$

2 the homomorphism $\phi|_{j_X(A)}$ is injective.

> Nadia S Larsen

The gauge-coactions

Let (G, P) q.l.o. and X compactly aligned. There is a coaction $\delta: \mathcal{T}_{cov}(X) \to \mathcal{T}_{cov}(X) \otimes C^*(G)$

s.t. $\delta(i_X(x)) = i_X(x) \otimes i_G(d(x))$ for $x \in X$ (similarly ν on \mathcal{NO}_X). Both δ and ν are maximal in the sense of Echterhoff-Kaliszewski-Quigg. So $\mathcal{T}_{cov}(X)$ and \mathcal{NO}_X are isomorphic to the full cross sectional C^* -algebra of their respective Fell bundles.

 \mathcal{NO}_X has the gauge-invariant uniqueness property provided that a surjective homomorphism $\phi : \mathcal{NO}_X \to B$ is injective iff:

1) there is a coaction β of G on B s.t.

 $\beta \circ \phi = (\phi \otimes \mathsf{id}_{C^*(G)}) \circ \nu;$

2 the homomorphism $\phi|_{j_X(A)}$ is injective.

Theorem (Carlsen-L-Sims-Vittadello 2009). \mathcal{NO}_X has the gauge-invariant uniqueness property precisely when it is isomorphic to \mathcal{NO}_X^{\prime} . This is the case if, e.g., ν is also normal.

> Nadia S. Larsen

Another example (Carlsen-L-Sims-Vittadello): X_{Λ} product system over \mathbb{N}^k for $k \ge 1$ from a topological higher-rank graph Λ of Yeend (Λ generalises the construction of topological graph of Katsura and of higher-rank graph of Kumjian-Pask).

> Nadia S. Larsen

Another example (Carlsen-L-Sims-Vittadello): X_{Λ} product system over \mathbb{N}^k for $k \geq 1$ from a topological higher-rank graph Λ of Yeend (Λ generalises the construction of topological graph of Katsura and of higher-rank graph of Kumjian-Pask). Theorem (CLSV): $\mathcal{NO}_{X_{\Lambda}} \cong C^*(\mathcal{G}_{\Lambda})$ and the gauge-invariant uniqueness property holds.

> Nadia S. Larsen

Another example (Carlsen-L-Sims-Vittadello): X_{Λ} product system over \mathbb{N}^k for $k \geq 1$ from a topological higher-rank graph Λ of Yeend (Λ generalises the construction of topological graph of Katsura and of higher-rank graph of Kumjian-Pask). Theorem (CLSV): $\mathcal{NO}_{X_{\Lambda}} \cong C^*(\mathcal{G}_{\Lambda})$ and the gauge-invariant uniqueness property holds.

The gauge invariant uniqueness property for \mathcal{NO}_X and maximal coactions; likewise (but differently), the gauge invariant uniqueness property of \mathcal{NO}_X^r and normal coactions. (Kaliszewski-L-Quigg, work in progress). Same questions for $\mathcal{T}_{cov}(X)$. Main point is to look at the Fell bundles.

Nadia S. Larsen

An aside: coactions and Fell bundles

A coaction
$$\delta : A \to A \otimes C^*(G)$$
 is a homom. s.t.
 $(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta$ where
 $\delta_G : C^*(G) \to C^*(G) \otimes C^*(G)$ is the map $s \mapsto s \otimes s$. Let
 $A_g^{\delta} := \{ a \in A \mid \delta(a) = a \otimes i_G(g) \}$ for $g \in G$. The disjoint
union $\mathcal{A} = \bigcup_g A_g^{\delta} \times \{g\}$ is a Fell bundle over G (Quigg 1996).

Nadia S Larsen

An aside: coactions and Fell bundles

A coaction $\delta : A \to A \otimes C^*(G)$ is a homom. s.t. $(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta$ where $\delta_G : C^*(G) \to C^*(G) \otimes C^*(G)$ is the map $s \mapsto s \otimes s$. Let $A_g^{\delta} := \{ a \in A \mid \delta(a) = a \otimes i_G(g) \}$ for $g \in G$. The disjoint union $\mathcal{A} = \cup_g A_g^{\delta} \times \{g\}$ is a Fell bundle over G (Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran),

Nadia S Larsen

An aside: coactions and Fell bundles

A coaction $\delta: A \to A \otimes C^*(G)$ is a homom. s.t. $(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta$ where $\delta_G: C^*(G) \to C^*(G) \otimes C^*(G)$ is the map $s \mapsto s \otimes s$. Let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union $\mathcal{A} = \bigcup_{g} \mathcal{A}_{g}^{\delta} \times \{g\}$ is a Fell bundle over *G* (Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C^*(\mathcal{A})$ – independently due to Exel (1997) and Quigg (1996) – and shown to be the same by Echterhoff and Quigg (1999).

Nadia S Larsen

An aside: coactions and Fell bundles

A coaction $\delta: A \to A \otimes C^*(G)$ is a homom. s.t. $(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta$ where $\delta_G: C^*(G) \to C^*(G) \otimes C^*(G)$ is the map $s \mapsto s \otimes s$. Let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union $\mathcal{A} = \bigcup_{g} \mathcal{A}_{g}^{\delta} \times \{g\}$ is a Fell bundle over *G* (Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C^*(\mathcal{A})$ – independently due to Exel (1997) and Quigg (1996) – and shown to be the same by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} be the reduced cross sectional algebra;

Nadia S Larsen

An aside: coactions and Fell bundles

A coaction $\delta: A \to A \otimes C^*(G)$ is a homom. s.t. $(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta$ where $\delta_G : C^*(G) \to C^*(G) \otimes C^*(G)$ is the map $s \mapsto s \otimes s$. Let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union $\mathcal{A} = \bigcup_{g} \mathcal{A}_{g}^{\delta} \times \{g\}$ is a Fell bundle over *G* (Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C^*(\mathcal{A})$ – independently due to Exel (1997) and Quigg (1996) – and shown to be the same by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} be the reduced cross sectional algebra; there are a surjective homomorphism $\lambda_A : A \to A^r$ (Exel) and a normal coaction δ^n on A^r s.t. $\delta^n(a_g) = a_g \otimes i_G(g)$ for $a_g \in A^{\delta}_{\sigma}$ (Quigg).

Nadia S Larsen

An aside: coactions and Fell bundles

A coaction $\delta: A \to A \otimes C^*(G)$ is a homom. s.t. $(\delta \otimes \operatorname{id}_{C^*(G)}) \circ \delta = (\operatorname{id}_A \otimes \delta_G) \circ \delta$ where $\delta_G : C^*(G) \to C^*(G) \otimes C^*(G)$ is the map $s \mapsto s \otimes s$. Let $A^{\delta}_{\sigma} := \{ a \in A \mid \delta(a) = a \otimes i_{G}(g) \}$ for $g \in G$. The disjoint union $\mathcal{A} = \bigcup_{g} \mathcal{A}_{g}^{\delta} \times \{g\}$ is a Fell bundle over *G* (Quigg 1996). Associated to a Fell bundle \mathcal{A} there are a full cross sectional algebra $C^*(\mathcal{A})$ (Fell-Doran), and a reduced cross sectional algebra $C^*(\mathcal{A})$ – independently due to Exel (1997) and Quigg (1996) – and shown to be the same by Echterhoff and Quigg (1999). When \mathcal{A} is the Fell bundle associated to a cosystem (A, G, δ) , we let A^{r} be the reduced cross sectional algebra; there are a surjective homomorphism $\lambda_A : A \to A^r$ (Exel) and a normal coaction δ^n on A^r s.t. $\delta^n(a_g) = a_g \otimes i_G(g)$ for $a_g \in A^{\delta}_{\sigma}$ (Quigg). Normal means (id $\otimes \lambda_G$) $\circ \delta^n$ from $A^r \to A^r \otimes C^*_r(G)$ is injective.