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Outline

• The Toeplitz algebra of a C ∗-correspondence.

• Product system X of C ∗-correspondences over a
semigroup P.

• When (G ,P) is quasi-lattice ordered: look for compactly
aligned X .

• C ∗-algebras of product systems: Fowler’s Toeplitz algebra,
Toeplitz covariant algebra and Cuntz-Pimsner algebra, and
Sims and Yeend’s Cuntz-Nica-Pimsner algebra.

• A universal and a co-universal C ∗-algebra. A
gauge-invariant uniqueness result.

• Examples.
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The Toeplitz algebra of a C ∗-correspondence

X is a C ∗-correspondence over A if X is a right Hilbert
A-module with a homomorphism φ : A→ L(X ) (also say X is
a right-Hilbert A–A-bimodule).

• Toeplitz representation: a linear map ψ : X → B(H) and a
homomorphism π : A→ B(H) compatible with module
actions and s.t. ψ(ξ)∗ψ(η) = π(〈ξ, η〉A) for ξ, η ∈ X .

• There is a universal algebra TX for Toeplitz
representations, and is generated by i = (ψ0, π0): any
(ψ, π) gives rise to a repr. ψ × π of TX on H s.t.
(ψ × π) ◦ i restricts to (ψ, π).

• A concrete algebra T F (X )
X on the Fock space F (X ). Fact:

TX ∼= T
F (X )
X (Pimsner, 1994).

X can be thought of as a generalised endomorphism of A and
TX as a kind of crossed product of A by N.
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X : product system over P is a semigroup with a
homomorphism d : X → P s.t. Xp := d−1(p) is a
C ∗-correspondence over A for p ∈ P and Xe = AAA,

and the
multiplication on X extends to isomorphisms of
C ∗-correspondences

F p,q : Xp ⊗A Xq → Xpq, p, q ∈ P \ {e}

and the right and left actions of Xe (Arveson, Dinh, Fowler).
ψ is a Toeplitz representation of X in a C ∗-algebra B if

1 (ψp := ψ|Xp , ψe) is a Toeplitz representation of Xp, p ∈ P;
2 ψp(x)ψq(y) = ψpq(xy), x ∈ Xp, y ∈ Xq;
3 ψe(〈x , y〉p) = ψp(x)∗ψp(y) for x , y ∈ Xp.

Let TX be the universal C ∗-algebra for Toeplitz repr. (Fowler).
It is generated by i : X → TX

X

ψ   AAAAAAAA
i // TX

ψ∗ surjective homomorphism

���
�
�

B

TX : a sort of crossed product of A by generalised action of P.
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The Fock bimodule is F (X ) :=
⊕

s∈P Xs (cf. Fowler).

So
⊕s∈Pws ∈

∏
s∈P Xs is in F (X ) when

∑
s〈ws ,ws〉s is summable

in A;

1 right action: (⊕sws) · a = ⊕s(xs · a)

2 inner-product 〈⊕sws ,⊕szs〉 =
∑

s〈ws , zs〉s .

3 left action: ⊕sφs .

The Fock representation l : X → L(F (X )) is
ls(ξ)η = F s,r (ξ ⊗A η) if ξ ∈ Xs and η ∈ Xr for s, r ∈ P.

ls(η)∗ζ =

{
φs−1r (〈η, ζ ′〉s)ζ

′′
if r ∈ sP

0 if r /∈ sP

for ζ = F s,s−1r (ζ ′ ⊗A ζ
′′

) ∈ Xr . (Often P is given as a
subsemigroup of a group G .)
Facts: l is a Toeplitz representation of X (take le = ⊕sφs). It
is isometric (i.e. le is injective) because φe is.
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(ls , le) is a Toeplitz repr. of Xs for s ∈ P. By Pimsner, there is
a homomorphism l(s) : K(Xs)→ L(F (X )) with
l(s)(θξ,η) = ls(ξ)ls(η)∗.

For q ∈ sP let iqs : L(Xs)→ L(Xq) be

iqs (S) = F s,s−1q(S ⊗A Is−1q)(F s,s−1q)∗

and iqe = φq.
If ξ, η ∈ Xs and ζ ∈ Xq, then

l(s)(θξ,η)ζ =

{
0 if q /∈ sP

iqs (θξ,η)ζ if q ∈ sP.

Note that iqs (θξ,η) need not belong to K(Xq).
What can be said of Ks,r := l(s)(θξ,η)l(r)(θz,w ) in L(F (X ))?
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Quasi-lattice ordered groups (A. Nica 1992). G a discrete
group, P a subsemigroup with P ∩ P−1 = {e}. Partial order on
G : g ≤ h ⇐⇒ g−1h ∈ P.
(G ,P) is quasi-lattice ordered (q.l.o.) if every pair p, q ∈ G
with a common upper bound in G has a l.u.b. p ∨ q. If so,
write p ∨ q <∞, or else p ∨ q =∞.

Examples: (Zk ,Nk), k = 1, . . . ,∞; (Fn,F+
n ).

Ks,rζ = l(s)(θξ,η)l(r)(θz,w )ζ = 0 for ζ ∈ Xq unless s ∨ r <∞
and s ∨ r ≤ q.
In case K = i s∨r

s (θξ,η)i s∨r
r (θz,w ) ∈ K(Xs∨r ) for s ∨ r <∞,

Ks,r = l(s∨r)(K ).

Def. (Fowler, 2002). X is compactly aligned if

i s∨r
s (S)i s∨r

r (R) ∈ K(Xs∨r ),

whenever S ∈ K(Xs), R ∈ K(Xr ), s ∨ r <∞.
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Nica covariant Toeplitz representations

(G ,P) q.l.o. and X compactly aligned product system over P.
A Toeplitz rep. ψ : X → B is Nica covariant if

ψ(s)(S)ψ(r)(R) =

{
ψ(s∨r)

(
i s∨r
s (S)i s∨r

r (R)
)

if s ∨ r <∞
0 otherwise

for all S ∈ K(Xs) and R ∈ K(Xr ) (Fowler).

I ideal gen. by i (s)(S)i (r)(R)− i (s∨r)(i s∨r
s (S)i s∨r

r (R)).

The Toeplitz covariant algebra is Tcov(X ) := TX/I and is
generated by iX = qI ◦ i which is Nica covariant (Fowler,
Carlsen-L-Sims-Vittadello). Universal property

X

ψ
##GGGGGGGGGG

iX // Tcov(X )

ψ∗ surjective homomorphism

���
�
�

B
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Example 1. (Fowler 2002) Y is a right-Hilbert A–A-bimodule.
Put Y0 = A and Yn = Y⊗n for n ≥ 1. Then Y⊗ = tnYn is a
product system over N with TY⊗ ∼= TY . Now N is totally
ordered, so i s∨r

s (S) or i s∨r
r (R) is in K(Xs∨r ). Y⊗ is compactly

aligned and Tcov(Y⊗) ∼= TY .

Example 2. (Sims-Yeend 2007) Let (G ,P) be q.l.o. Then CP

with Xp :=C CC for all p is compactly aligned. Tcov(CP) is
isomorphic to Nica’s universal C ∗-algebra C ∗(G ,P) for
isometric repr. V of P which are (Nica) covariant:

VpV
∗
p VqV

∗
q =

{
Vp∨qV

∗
p∨q if p ∨ q <∞

0 if p ∨ q =∞.

Example 3. (Carlsen-L-Sims-Vittadello 2009) Take
(G ,P) = (F2,F+

2 ) and a, b the generators of F+
2 . Define a

product system over F+
2 by Xan = C for n ∈ N and Xp = 0 for

all other p ∈ F+
2 . Then L(Xp) = K(Xp) and

TX = Tcov(X ) = T .
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The Cuntz-Pimsner algebra of a bimodule

Pimsner: Y Hilbert bimodule over A with algebra (TY , i).
OY is the quotient of TY by the ideal I0 generated by
i (1)(φ(a))− i |A(a) for all a with φ(a) ∈ K(Y ).

There is a

Cuntz-Pimsner covariant repr. kY , so k
(1)
Y (φ(a)) = kY (a) for

φ(a) ∈ K(Y ), with a universal property

Y

ψ !!BBBBBBBB
kY // OY

ψ∗ surjective homomorphism

���
�
�

B

Katsura: uses largest IY on which φ is injective into K(Y ).
Theorem (Katsura 2004). The representation kY is injective
and OY has the gauge-invariant uniqueness property: ψ∗ is
injective iff ψ is an injective repr. and B admits an action of T
compatible with the gauge-action on OY .
Earlier: an Huef-Raeburn 1997, Fowler-Muhly-Raeburn 2003.
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The Cuntz-Nica-Pimsner algebra

Katsura: OY is the smallest C ∗-algebra generated by an
injective Cuntz-Pimsner covariant representation of Y and with
the gauge-invariant uniqueness property. So OY can be defined
without reference to IY .

Fowler: defines OX for a product system X using usual
Cuntz-Pimsner covariance in each Xp. Problem: injectivity of
kX : X → OX is not known.
Sims-Yeend (2007): Cuntz-Nica-Pimsner algebra NOX for X a
compactly aligned product system over P in a q.l.o. pair
(G ,P). By construction, NOX is universal for CNP covariant
representations of X : these are Nica covariant representations
which are Cuntz-Pimsner covariant in a new sense, compatible
with q.l.o. structure (technical definition.)
When φm ∈ K(Xm) for all m ∈ P and m ∨ n <∞ for all
m, n ∈ P (e.g. for (Zk ,Nk)), the algebra NOX is Fowler’s OX .
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Example 1. Y is a right-Hilbert A–A-bimodule and Y⊗ is the
product system over N with Yn = Y⊗n for n ≥ 1 and with
Tcov(Y⊗) ∼= TY .
Fact: NOY is isomorphic to Katsura’s OY (Sims-Yeend).

Example 3. X product system over F+
2 with Xan = C for n ∈ N

and Xp = 0 for all other p ∈ F+
2 . Recall TX = Tcov(X ) = T .

Here the universal Nica covariant representation iX of X is a
CNP covariant representation, so NOX

∼= Tcov(X ). However,
OX is C (T).

In example 2, to identify NOX for CP we need more.

A coaction δ : A→ A⊗ C ∗(G ) is an injective nondegenerate
homom. satisfying

(δ ⊗ idC∗(G)) ◦ δ = (idA⊗δG ) ◦ δ,

where δG : C ∗(G )→ C ∗(G )⊗C ∗(G ) comes from s 7→ s ⊗ s. It
is normal if (id⊗λG ) ◦ δ from A→ A⊗ C ∗r (G ) is injective.
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CNP covariant representation, so NOX

∼= Tcov(X ). However,
OX is C (T).

In example 2, to identify NOX for CP we need more.

A coaction δ : A→ A⊗ C ∗(G ) is an injective nondegenerate
homom. satisfying

(δ ⊗ idC∗(G)) ◦ δ = (idA⊗δG ) ◦ δ,

where δG : C ∗(G )→ C ∗(G )⊗C ∗(G ) comes from s 7→ s ⊗ s. It
is normal if (id⊗λG ) ◦ δ from A→ A⊗ C ∗r (G ) is injective.
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A universal and a co-universal algebra

Theorem (Sims-Yeend 2007). Given (G ,P) q.l.o and X
compactly aligned (with properties), jX is an injective CNP
repr. generating NOX , and for ψ CNP covariant repr. we have:

X
ψ

((

jX CNP cov. // NOX∏
ψ surj.

���
�
�

B

Theorem (Carlsen-L-Sims-Vittadello 2009). For X compactly
aligned (with properties), NOr

X is co-universal for injective
Nica covariant repr. ρ into B with a coaction β compatible
with the normal coaction νn.
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Back to example 2 where (G ,P) is q.l.o and CP has Xp = C
for all p ∈ P. There is a Nica spectrum of (G ,P) (Nica) and a
boundary δΩ of Ω determined by elementary relations (Laca,
Crisp-Laca).

The boundary quotient of C ∗(G ,P) is C (δΩ)×α G for a partial
action of G (Crisp-Laca). For certain right-angled Artin groups
(G ,P) such that C (δΩ)×α G is simple, Sims-Yeend prove

NOX
∼= C (δΩ)×α G .

For (G ,P) with either P directed (and so that X → NOX is an
injective representation) or all left actions injective:

NOr
X
∼= C (δΩ)×r ,α G

by the co-universal property (Carlsen-L-Sims-Vittadello). As
corollary NOX

∼= C (δΩ)×α G without having to check CNP
covariance or the elementary relations.
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The gauge-coactions

Let (G ,P) q.l.o. and X compactly aligned. There is a coaction

δ : Tcov(X )→ Tcov(X )⊗ C ∗(G )

s.t. δ(iX (x)) = iX (x)⊗ iG (d(x)) for x ∈ X (similarly ν on
NOX ).

Both δ and ν are maximal in the sense of
Echterhoff-Kaliszewski-Quigg. So Tcov(X ) and NOX are
isomorphic to the full cross sectional C ∗-algebra of their
respective Fell bundles.
NOX has the gauge-invariant uniqueness property provided
that a surjective homomorphism φ : NOX → B is injective iff:

1 there is a coaction β of G on B s.t.
β ◦ φ = (φ⊗ idC∗(G)) ◦ ν;

2 the homomorphism φ|jX (A) is injective.

Theorem (Carlsen-L-Sims-Vittadello 2009). NOX has the
gauge-invariant uniqueness property precisely when it is
isomorphic to NOr

X . This is the case if, e.g., ν is also normal.
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Another example (Carlsen-L-Sims-Vittadello): XΛ product
system over Nk for k ≥ 1 from a topological higher-rank graph
Λ of Yeend (Λ generalises the construction of topological graph
of Katsura and of higher-rank graph of Kumjian-Pask).

Theorem (CLSV): NOXΛ
∼= C ∗(GΛ) and the gauge-invariant

uniqueness property holds.

The gauge invariant uniqueness property for NOX and
maximal coactions; likewise (but differently), the gauge
invariant uniqueness property of NOr

X and normal coactions.
(Kaliszewski-L-Quigg, work in progress). Same questions for
Tcov(X ). Main point is to look at the Fell bundles.
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An aside: coactions and Fell bundles

A coaction δ : A→ A⊗ C ∗(G ) is a homom. s.t.
(δ ⊗ idC∗(G)) ◦ δ = (idA⊗δG ) ◦ δ where
δG : C ∗(G )→ C ∗(G )⊗ C ∗(G ) is the map s 7→ s ⊗ s. Let
Aδg := { a ∈ A | δ(a) = a⊗ iG (g) } for g ∈ G . The disjoint

union A = ∪gAδg × {g} is a Fell bundle over G (Quigg 1996).

Associated to a Fell bundle A there are a full cross sectional
algebra C ∗(A) (Fell-Doran), and a reduced cross sectional
algebra C ∗r (A) – independently due to Exel (1997) and Quigg
(1996) – and shown to be the same by Echterhoff and Quigg
(1999). When A is the Fell bundle associated to a cosystem
(A,G , δ), we let Ar be the reduced cross sectional algebra;
there are a surjective homomorphism λA : A→ Ar (Exel) and a
normal coaction δn on Ar s.t. δn(ag ) = ag ⊗ iG (g) for ag ∈ Aδg
(Quigg). Normal means (id⊗λG ) ◦ δn from Ar → Ar ⊗ C ∗r (G )
is injective.
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