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Properties of 3-Matrix-Model

S [X ] = NTr{−1
4 [Xa,Xb]2 + iα

3 εabcXa[Xb,Xc ]}

Xa’s NxN matrices, where a, b = 1, 2, 3

equations of motion:
δ
δXa

: Tr [Xb,−[Xa,Xb] + iαεabcXc ]
!

= 0→ Xa = αLa

La’s are SU(2) generators of N-dimensional irreducible
representation [La, Lb] = iεabcLc
form one set of solutions (another e.g.: commuting matrices)

classical solution: S [L] = −Nα4
∑

L d(L)
C

su(2)
2 (L)

6

α̃4 = β interpreted as inverse temperature, where α̃ =
√
Nα
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Matrix Phase I

high-temperature phase

system governed by Yang-Mills term

matrices have random entries, distributed around zero

ground state has positive energy with solutions around
commuting saddle point

no background geometry
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Matrix Phase II

EV-distribution continuous within solid ball

distribution fits parabola f (x) = 3(R2−x2)
4πR3

Eigenvalue Distribution for X3 of size 25x25
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Fuzzy Phase (I)

Low-temperature phase

Chern-Simons Term becomes important

Geometry of a fuzzy sphere emerges

ground state with negative energy

forms fuzzy S2 with radius R = 1
2α
√
N2 − 1

EV’s distribute around fuzzy sphere due to SU(2)

classical sphere emerges when N →∞

Eigenvalue distribution for X3 of size 25x25
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Fuzzy Phase (II)

multi fuzzy sphere solutions possible Xa = αL
(k)
a ⊗ 1k

where N =
∑N

i=2 niki with n fuzzy spheres of size i

ground state given by the N-dimensional irrep of SU(2)
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Adding Fluctuations

expand around minimum: Xa → Xa = αφLa + Aa

solve Z =
∫
dXae

−S[X ] up to first order

integrate out, divide by N2 and let N →∞ to find F = - 1β lnZ

F
N2 = 3

4 ln[α̃4] + α̃4

2

(
φ4

4 −
φ3

3

)
+ ln[φ] where α̃ =

√
Nα

find α̃crit ' 2.087

average of action:
<S>
N2 = α̃4 d

dα̃4

(
F
N2

)
= 3

4 −
α̃φ3

24

Entropy for α̃ = 0, S = 3
4

for α̃ = α̃c , S = 5
12

jump in Entropy at α̃crit with ∆S = 1
9 per DoF
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Specific Heat

when approaching from low temperature phase:

jump in specific heat; diverges at point of phase transition

when approaching from high temperature phase:

no divergent specific heat
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Metropolis-Algorithm

generates Markov chain of microstates

accept new state with probability P = min(1, e−(Eold−Enew ))

system will eventually decay to ground state

the set of microstates obtained in the simulation constitutes
an estimation of the canonical ensemble of the system

can calculate macroscopical properties by averaging over this
set of microstates i with inner energy Ei
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Wang-Landau-Algorithm: Main Features

estimates Density of States of system
Z =

∑
states i e

−βEi =
∑

E g(E )e−βE

can compute partition function and thus the free energy of
the system

made for systems with 1st order phase transition

introduces bias for visited energies → forces system in regions
of energy space that have not been probed yet; enhances
“tunneling probability”

developed in solid state physics; first applied to spin systems
which have discrete parameter E

in our system continuous parameter E → have to make bins
small enough to capture all important properties of the system
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Comparison with Metropolis algorithm

graphs show specific heat and density of states for 8x8
matrices

agreement around α̃crit very good
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Results for Entropy
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Estimation of ∆S

taking values from α̃ = 2.20 to α̃ = 2.22, ∆S ' 0.14 while
1/9 ' 0.11

not possible to distinguish between 1st and 2nd order phase
transition

would need to test for bigger matrices
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Conclusion and Outlook

Wang-Landau allows to measure entropy directly from
simulation data

specific heat fits good with metropolis results

confirms jump in entropy

improve algorithm so states near the ground state in fuzzy
phase are visited more often

test for bigger matrix sizes

behaviour of 1st or 2nd order phase transition?

determine ∆S more accurately
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