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3-Matrix-Model

Properties of 3-Matrix-Model

S[X] = NTr{—3[Xa, Xp]? + & €apc Xa[Xp, X]}
@ X,'s NxN matrices, where a,b=1,2,3
@ equations of motion:
) !

55 Tr[Xp, —[Xa, Xp] + ic€apcXc] = 0 — X, = al,

@ L,'s are SU(2) generators of N-dimensional irreducible
representation [La, Lp) = i€apclc
form one set of solutions (another e.g.: commuting matrices)

su(2)
e classical solution: S[L] = —Na* ", d(L) G < Q)

e &* = [ interpreted as inverse temperature, where & = v/ No
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3-Matrix-Model

Matrix Phase |

high-temperature phase
system governed by Yang-Mills term
matrices have random entries, distributed around zero

ground state has positive energy with solutions around
commuting saddle point

@ no background geometry

Kaltenbrunner WL in 3MM



3-Matrix-Model

Matrix Phase |l

o EV-distribution continuous within solid ball
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o distribution fits parabola f(x) = =3
018 (3HR*2-x*2))/(4*Pi*R**3) ——
016 s
014 w‘i;;g ﬁ'%”;'“’:ﬁ}*;
012 £ g ‘3* .
01 big *
KR+
0.08 A‘- ‘1‘
0.06 o ‘t
004 | 4l " ;
002 | gE e
0
- 1 1 0 o 0 L 1, 2

range

Eigenvalue Distribution for X3 of size 25x25
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3-Matrix-Model

Fuzzy Phase (1)

@ Low-temperature phase

@ Chern-Simons Term becomes important

@ Geometry of a fuzzy sphere emerges

@ ground state with negative energy

o forms fuzzy S? with radius R = 2(1\/ N2 —

e EV's distribute around fuzzy sphere due to SU(2)
@ classical sphere emerges when N — oo
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Eigenvalue distributlon for X3 of size 25x25
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3-Matrix-Model

Fuzzy Phase (I1)

@ multi fuzzy sphere solutions possible X, = aLgk) ® 1g
where N = ZIIVZZ nik; with n fuzzy spheres of size i

e ground state given by the N-dimensional irrep of SU(2)

20x20 Wairices for Apna=087  + o 20620 Matrices for dpha=0.87  +

£ ;
? s
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3-Matrix-Model

Adding Fluctuations

@ expand around minimum: X; — X; = a¢l, + A,

o solve Z = [ dXze SX] up to first order

e integrate out, divide by N2 and let N — oo to find F = -%InZ
% = %|n[&4]+%4(%4—%3>+|n[¢] where & = v/ Na

o find Gy ~ 2.087

@ average of action:

<S> _s4.d (F\_3 a3
N2 T % dat\ N2 )T a4 24

@ Entropy for &4 =0, S = %

LAY _ 5
foroz—ozC,S—12

jump in Entropy at & with AS = % per DoF
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3-Matrix-Model

Specific Heat

when approaching from low temperature phase:
@ jump in specific heat; diverges at point of phase transition
when approaching from high temperature phase:

@ no divergent specific heat
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Wang-Landau-Algorithm

Metropolis-Algorithm

generates Markov chain of microstates
accept new state with probability P = min(1, e~ (Eold—Enew))
system will eventually decay to ground state

the set of microstates obtained in the simulation constitutes
an estimation of the canonical ensemble of the system

@ can calculate macroscopical properties by averaging over this
set of microstates i with inner energy E;
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Wang-Landau-Algorithm

Wang-Landau-Algorithm: Main Features

@ estimates Density of States of system
Z =3 ates e Pk = > E g(E)eiﬁE

@ can compute partition function and thus the free energy of
the system

@ made for systems with 1st order phase transition

@ introduces bias for visited energies — forces system in regions
of energy space that have not been probed yet; enhances
“tunneling probability”

@ developed in solid state physics; first applied to spin systems
which have discrete parameter E

@ in our system continuous parameter E — have to make bins
small enough to capture all important properties of the system
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Wang-Landau-Algorithm

Comparison with Metropolis algorithm

Spec.Heat/N2

@ graphs show specific heat and density of states for 8x8
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matrices

@ agreement around Qr very good
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Results for Entropy

Results for Entropy
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Results for Entropy

Estimation of AS
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@ taking values from & = 2.20 to & = 2.22, AS ~ 0.14 while
1/9~0.11

@ not possible to distinguish between 1%t and 2"? order phase
transition

@ would need to test for bigger matrices
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Conclusions

Conclusion and Outlook

Wang-Landau allows to measure entropy directly from
simulation data

@ specific heat fits good with metropolis results

@ confirms jump in entropy

@ improve algorithm so states near the ground state in fuzzy
phase are visited more often

@ test for bigger matrix sizes
@ behaviour of 15t or 2"¢ order phase transition?

@ determine AS more accurately
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