On crossed products of locally m-convex *-algebras

Maria Joița

University of Bucharest

EU-NCG 4, Bucharest 2011

Definition

Let A be a *-algebra. A submultiplicative *-seminorm on A is a seminorm p on A which verifies:

$$\texttt{0} \ \ \mathsf{p}(\mathsf{a}\mathsf{b}) \leq \mathsf{p}(\mathsf{a})\mathsf{p}(\mathsf{b}), \ \forall \mathsf{a}, \mathsf{b} \in \mathsf{A};$$

$$p(a^*) = p(a), \forall a \in A.$$

Definition

A locally *m*-convex *-algebra (Imc *-algebra) is a Hausdorff topological complex *-algebra A whose topology is determined by a directed family of submultiplicative *-seminorms.

Locally m-convex *-algebras (continued) Examples

- Banach *-algebras
- Inverse limits of Banach *-algebras
- products of Banach *-algebras with the product topology

Locally m-convex *-algebras(continued)

Let A be an Imc *-algebra.

• $S(A) = \{p : A \rightarrow [0, \infty); p \text{ is a continuous submultiplicative } *-seminorm\}$

- S(A) is directed with the partial order $q \leq p$ if $q(a) \leq p(a) \forall a \in A$.
- For p ∈ S(A), A/ ker p is a normed *-algebra in the *-norm ||·||_p induced by p (that is, ||a||_p = p(a)∀a ∈ A). Let A_p be the completion of the normed *-algebra A/ ker p.
- For $p, q \in S(A)$ with $q \le p$ there is a continuous *-morphism with dense range $\pi^A_{pq}: A_p \to A_q$ such that

$$\pi^{\mathcal{A}}_{pq}\left(\mathbf{a}+\ker p
ight)=\mathbf{a}+\ker q.$$

{A_p; π^A_{pq}}_{p,q∈S(A)} is an inverse system of Banach *-algebras.

Theorem

Let A be a complete Imc *-algebra. Then

$$A \equiv \lim_{\stackrel{\leftarrow}{p}} A_p \quad up \text{ to a } *\text{-isomorphism.}$$

The terms used for locally m-convex *-algebras:

- m*- convex algebras
- Arens Michael *- algebras (A. Ya. Helemskii)

R. Arens and E. A. Michael (1952) studied independently Imc *-algebras as inverse limit of Banach *-algebras

Definition

A pro- C^* -algebra is a complete lmc *-algebra A whose topology is determined by a directed family of C^* -seminorms (a C^* -seminorm on A is a sumultipliative *-seminorm p on A with "C*-property"

$$p(a^*a) = p(a)^2$$
, $\forall a, b \in A$).

The terms used for pro- C^* -algebras:

- locally C*-algebras (A. Mallios, A. Inoue, M. Fragoulopoulou etc.)
- LMC* -algebras (G. Lassner, K. Schmüdgen)
- b *-algebras (C. Apostol)

The term 'pro- C^* -algebra' was first used by D. Voiculescu and W. Arveson.

イロト 人間ト イヨト イヨト

Pro-C*-algebras (continued)

Let A be a pro- C^* -algebra.

•
$$S(A) = \{p : A \rightarrow [0, \infty); p \text{ is a continuous } C^*\text{-seminorm}\}$$

- S(A) is directed with the partial order q ≤ p if q (a) ≤ p (a) ∀a ∈ A.
- For p ∈ S(A), A/ker p is a C*-algebra in the C*-norm ||·||_p induced by p (that is, ||a||_p = p(a)∀a ∈ A). Let A_p = A/ker p.
- For $p,q\in S(A)$ with $q\leq p$ there is a surjective $C^*\text{-morphism}$ $\pi^A_{pq}:A_p\to A_q$ such that

$$\pi^{\mathcal{A}}_{pq}\left(\mathbf{a}+\operatorname{ker}\mathbf{p}
ight) =\mathbf{a}+\operatorname{ker}\mathbf{q}.$$

7 / 35

• $\{A_p; \pi^A_{pq}\}_{p,q \in S(A)}$ is an inverse system of C^* -algebras.

Theorem

Let A be a pro- C^* -algebra. Then

$$A \equiv \lim_{\substack{\leftarrow \\ p}} A_p \quad up \text{ to an isomorphism of pro-}C^*\text{-algebras.}$$

Pro-C*-algebras (continued) Examples

- Any inverse limits of C^* -algebras is a pro- C^* -algebra.
- If X is a Hausdorff countably compactly generated topological space (that is, ∃ a countable family of compact spaces K₁ ⊆ K₂ ⊆ ... ⊆ K_n ⊆ ... such that X = lim_{n→} K_n), then the * -algebra C(X) of all continuous complex valued functions on X equipped with the topology defined by the family of C*-seminorms {p_{K_n}}_n, where

$$p_{K_n}(f) = \sup \{ |f(x)|, x \in K_n \},\$$

is a metrizable unital commutative pro- C^* -algebra.

- C_{cc}([0, 1]) the *-algebra of all complex valued continuous functions on [0, 1] with the topology of uniform convergence on the countable compact subsets of [0, 1] is a pro-C*-algebra which is not topologically isomorphic to any C*-algebra.
- A product of C^* -algebras with the product topology is a pro- C^* -algebra.
- The multiplier algebra of the Pedersen ideal of a C*-algebra is a pro-C*-algebra.

MARIA JOITA, University of Bucharest

- R. M. Brooks (1971) constructed the enveloping pro-C*-algebra of a unital metrizable Imc *-algebra.
- A. Inoue (1971) constructed the enveloping pro-C*-algebra of an Imc *-algebra with bounded approximate unit.

The enveloping pro-C*-algebra of an Imc *-algebra (continued)

Let A be an Imc *-algebra with bounded approximate unit.

Definition

A *-representation of A on a Hilbert space H is a continuous *-morphism $\varphi: A \rightarrow L(H)$.

•
$$\mathcal{R}(A) = \{arphi; arphi ext{ is a } * ext{-representation of } A\}$$

•
$$\mathcal{R}_{p}(A) = \{ \varphi; \varphi \in \mathcal{R}(A) \text{ with } \|\varphi(a)\| \leq p(a) \forall a \in A \}$$

•
$$\mathcal{R}(A) = \cup_{p \in S(A)} \mathcal{R}_p(A)$$

- $I = \{a \in A; \varphi(a) = 0 \forall \varphi \in \mathcal{R}(A)\}$ is a closed bilateral *-ideal of A.
 - A/I is an algebra with involution.
 - For $p \in S(A)$, $\hat{p} : A/I \to [0, \infty)$, $\hat{p}(a+I) = \sup\{\|\varphi(a)\|; \varphi \in \mathcal{R}_p(A)\}$ is a C^* -seminorm on A/I.

The enveloping pro-C*-algebra of an Imc *-algebra (continued)

Definition

The pro-
$$C^*$$
-algebra $\mathcal{E}(A) = (A/I, \{\widehat{p}\}_{p \in S(A)})$ is called the enveloping pro- C^* -algebra of A .
 $\delta_A : A \to \mathcal{E}(A)$ denotes the canonical map.

Proposition

Let A be an Imc *-algebra with bounded approximate unit. Then

$$\mathcal{E}\left(A\right)\equiv\lim_{\stackrel{\leftarrow}{p}}\mathcal{E}\left(A_{p}\right).$$

3

Definition

We say that an Imc *-algebra A with bounded approximate unit has an enveloping C^* -algebra if the enveloping pro- C^* -algebra $\mathcal{E}(A)$ is isomorphic with a C^* -algebra.

S.J. Bhatt and D.J. Karia (1993) proved a necessary and sufficient condition for an Imc *-algebra admits an enveloping C^* -algebra.

Theorem

An Imc *-algebra with bounded approximate unit admits an enveloping C^* -algebra if and only if A has a maximal continuous C^* -seminorm.

Locally m-convex *-algebras(continued) Examples

•
$$\mathcal{AC}^{\omega}[0,1] = \bigcap_{n \ge 1} \mathcal{AC}^{n}[0,1]$$
, where
 $\mathcal{AC}^{n}[0,1] = \{f \in \mathcal{C}[0,1]; f' \text{ exists and } f' \in L^{n}[0,1]\}$

is a complete Imc *-algebra with pointwise operations, involution

$$f
ightarrow f^*$$
, $f^*(t) = \overline{f(t)}$

and the topology given by the family of submultiplicative *-seminorms $\{p_n\}_{n\geq 1}$

$$p_n(f) = \|f\|_{\infty} + \left(\int_0^1 |f'(t)|^n dt\right)^{\frac{1}{n}}$$

 $\mathcal{E}(\mathcal{AC}^{\omega}[0,1])\sim\mathcal{C}[0,1]$ (S.J. Bhatt and D.J. Karia)

Locally m* -convex algebras (continued) Examples

• Let
$$\mathbb{D} = \{z \in \mathbb{C}; |z| \le 1\}$$
 and $U = \{z \in \mathbb{C}; |z| < 1\}$.
 $\mathcal{A}^{\omega}(\mathbb{D}) = \bigcap_{n \ge 0} \mathcal{A}^n(\mathbb{D})$, where
 $\mathcal{A}^n(\mathbb{D}) = \{f : U \to \mathbb{C}; f \text{ is analytic and } f^{(k)} \text{ has continuous}$
extension on $\mathbb{D}, \forall k \text{ with } 0 \le k \le n\}$

is a complete Imc *-algebra with pointwise operations, involution

$$f
ightarrow f^{st}$$
 , $f^{st}(z)=\overline{f\left(\overline{z}
ight)}$

and the topology given by the family of submultiplicative *-seminorms $\{p_n\}_{n\geq 1}$,

$$p_n(f) = \sum_{k=0}^n \frac{1}{k!} \sup\{ |f^{(k)}(z)|; z \in \mathbb{D} \}.$$

 $\mathcal{E}\left(\mathcal{A}^{\omega}\left(\mathbb{D}
ight)
ight)\sim\mathcal{C}[-1,1]$ (S.J. Bhatt and D.J. Karia)

Locally m-convex *-algebras with enveloping C*-algebras $_{\mbox{\sc Examples}}$

Let A = {f ∈ C[∞] (ℝ), f⁽ⁿ⁾ ∈ L¹(ℝ) ∀n ∈ ℕ}.
 A with the topology determined by the family of submultiplicative *-seminorms {p_n}_n,

$$p_{n}(f) = \|f\|_{1} + \|f^{(n)}\|_{1}$$

is a complete Imc *-algebra. $\mathcal{E}(A) \sim \mathcal{E}(L^1(\mathbb{R}))$ (S.J. Bhatt and D.J. Karia)

Group actions on Imc *-algebras (pro-C*-algebras)

Let A be an Imc *- algebra (pro-C*-algebra). Aut(A) = { $\sigma : A \rightarrow A; \sigma$ is a *-isomorphism}

Definition

A **continuous action** of a locally compact group G on an Imc *-convex algebra (pro- C^* -algebra) A is a group morphism $g \mapsto \alpha_g$ from G to Aut(A) such that the map

$$g \in G \rightarrow \alpha_g(a) \in A$$

is continuous for each $a \in A$.

We say that the **continuous action** α **is** *G*-invariant if for each $p \in S(A)$, there is $M_p > 0$ such that

$$p(\alpha_g(a)) \leq M_p p(a), \forall g \in G \text{ and } \forall a \in A.$$

Group actions on Imc *-algebras (pro-C*-algebras) (continued)

Suppose that α is a *G*-invariant continuos action of *G* on *A*.

• For $p \in S(A)$ and $g \in G \Longrightarrow \exists M_p > 0$ such that $p(\alpha_{\sigma}(a)) < M_p p(a) \forall a \in A$

 $\implies \exists \ \alpha_g^p : A_p \rightarrow A_p \text{ such that}$

$$\alpha_g^p \circ \pi_p^A = \pi_p^A \circ \alpha_g$$

Moreover, $\alpha_g^p \circ \alpha_{g^{-1}}^p = \alpha_{g^{-1}}^p \circ \alpha_g^p = \operatorname{id}_{\mathcal{A}_p}$.

 $\Longrightarrow \alpha_g^p \in \operatorname{Aut}(A_p) \Longrightarrow g \to \alpha_g^p \text{ is a continuous action of } G \text{ on } A_p$

(α^p_g)_p is an inverse system of *-isomorphisms
 α_g = lim_{←p} α^p_g

Group actions on Imc *-algebras (pro-C*-algebras) (continued)

Lemma

Let α be a *G*-invariant continuos action of a locally compact group *G* on an Imc *-algebra (pro-C*-algebra) *A*. Then there are continuous actions α^p of *G* on A_p , $p \in S(A)$ such that

$$\alpha_g = \lim_{\leftarrow p} \alpha_g^p$$

for each $g \in G$.

Suppose that α is a *G*-invariant continuous action of *G* on a complete lmc *-algebra *A* with bounded approximate unit.

- For each $g \in G$, $\alpha_g = \lim_{\leftarrow p} \alpha_g^p$, where $g \mapsto \alpha_g^p$ is a continuous action of G on A_p , $p \in S(A)$.
- For $p \in S(A)$, $g \in G \Rightarrow \alpha_g^p \in Aut(A_p) \Rightarrow \exists \alpha_g^{\widetilde{p}} \in Aut(\mathcal{E}(A_p))$ such that

$$\alpha_g^p \circ \delta_{A_p} = \delta_{A_p} \circ \alpha_g^p.$$

For p ∈ S(A) ⇒ g ↦ α^p_g is a continuous action of G on E(A_p).
For each g ∈ G, (a^p_g) is an inverse system of C*-isomorphisms.

 For each g ∈ G, (α_g)_p is an inverse system of C -isomorphisms. Let α_g = lim_φ α_g^p.
 g ↦ α_g is a G-invariant continuous action of G on E(A).

Proposition

Any G-invariant continuous action α of a locally compact group G on a complete Imc *-algebra A with bounded approximate unit induces a G-invariant continuous action $\tilde{\alpha}$ of G on $\mathcal{E}(A)$.

Group actions on Imc *-algebras (pro-<u>C*-algebras</u>) (continued)

Examples

Example

Let (G, X) be a transformation group with X a Hausdorff countably compactly generated topological space and G a compact group. Then the map $\alpha_{\sigma}: C(X) \to C(X)$ defined by

$$\alpha_{g}(f)(x) = f\left(g^{-1} \cdot x\right)$$

is an isomorphism of pro- C^* -algebras for each $g \in G$, and the map

$$g \rightarrow \alpha_g(f)$$
 from G to $C(X)$

is a G-invariant continuous action of G on C(X). Moreover, if α is aG-invariant action of G on a metrizable unital commutative pro- C^* -algebra A, then there is a transformation group (G, X), X = Sp(A)which induces the action α .

MARIA JOITA, University of Bucharest

Group actions on Imc *-algebras (pro-C*-algebras) (continued)

Example

Let A be a complete lmc *-algebra with bounded approximate unit (pro- C^* -algebra) and $\varphi \in Aut(A)$.

The map $n \to \alpha_n$, where

$$\alpha_n = \varphi^n$$
,

is continuous action of \mathbb{Z} on A.

Moreover, if φ is an inverse limit of *-isomorphisms, then α is \mathbb{Z} -invariant.

Example

The map
$$t \to \alpha_t$$
 from \mathbb{Z}_2 to Aut $(\mathcal{A}^{\omega}(\mathbb{D}))$, where

$$lpha_{0}\left(f
ight)=f ext{ and } lpha_{1}\left(f
ight)\left(z
ight)=f\left(-z
ight)$$
 , $orall f\in\mathcal{A}^{\omega}(\mathbb{D})$, $orall z\in\mathbb{D}$,

is a continuous action of \mathbb{Z}_2 on $\mathcal{A}^{\omega}(\mathbb{D})$.

Let α be a *G*-invariant action of *G* on a complete lmc *-algebra *A* with bounded approximate unit.

C_c (G, A) = {f : G → A; f is continuous with compact support} is a topological *-algebra with:

•
$$(f * h)(t) = \int_{G} f(g) \alpha_g (h(g^{-1}t)) dg$$

• $f^{\#}(t) = \Delta (t^{-1}) \alpha_t (f(t^{-1}))^*$, where Δ is the modular function on G
• $\{N_p\}_{p \in S(A)}, N_p(f) = \int_{G} p(f(g)) dg$.

Definition

The lmc *-algebra $L^1(G, \alpha, A)$ obtained by the Hausdorff completion of $C_c(G, A)$ is called the covariance algebra associated to α .

Proposition

Let α be a G-invariant action of G on a complete Imc *-algebra A with bounded approximate unit.

• $L^1(G, \alpha, A)$ is a complete lmc *-algebra with bounded approximate unit.

$$\{L^{1}(G, \alpha^{p}, A_{p}), \chi_{pq}\}_{p,q \in S(A), p \geq q}, \text{ where}$$
$$\chi_{pq}: L^{1}(G, \alpha^{p}, A_{p}) \rightarrow L^{1}(G, \alpha^{q}, A_{q}), \ \chi_{pq}(f) = \pi_{p}^{A} \circ f,$$

is an inverse system of Banach *-algebras and moreover,

$$L^{1}(G, \alpha, A) \equiv \lim_{\stackrel{\leftarrow}{p}} L^{1}(G, \alpha^{p}, A_{p})$$
 up to an $*$ -isomorphism.

Let α be a *G*-invariant action of *G* on a complete Imc *-algebra *A* with bounded approximate unit.

Question

When is $\mathcal{E}(L^1(G, \alpha, A))$ isomorphic to a C^{*}-algebra?

Definition

The enveloping pro- C^* -algebra of $L^1(G, \alpha, A)$ is called the crossed product of A by α and is denoted by $G \times_{\alpha} A$.

Proposition

Then

$$G \times_{\alpha} A \equiv \lim_{\leftarrow n} G \times_{\alpha^p} A_p$$
 up to an *-isomorphism.

Covariant representations (recall)

Let A be a Banach *-algebra with approximate unit and α a continuous action of G on A.

Definition

A (non-degenerate) covariant *-representation is a triple (φ, u, H) , where (φ, H) is a (non-degenerate) *-representation of A and (u, H) is a unitary representation of G, such that $\varphi(\alpha_g(a)) = u_g \varphi(a) u_g^*$, $\forall a \in A$, $\forall g \in G$.

$$\begin{split} &\mathsf{Rep}(\mathit{G}, \alpha, \mathit{A}) = \{(\varphi, \mathit{u}, \mathit{H}) \, ; \, (\varphi, \mathit{u}, \mathit{H}) \text{ is a non-degenerate covariant} \\ &\ast\text{-representation} \} \end{split}$$

Proposition

 $\textit{The map } (\varphi, u, H) \in \textit{Rep}(G, \alpha, A) \rightarrow (\varphi \times u, H) \in \textit{Rep}\bigl(L^1(G, \alpha, A)\bigr), \textit{ where }$

$$(\varphi \times u)(f) = \int_{G} \varphi(f(t)) u_t dt,$$

is a bijective correspondence.

Lemma

Let α be a continuous action of G on a Banach *-algebra A with approximate unit. Then the map

$$(\varphi, H) \mapsto \left(\varphi \circ \delta_{L^1(G, \tilde{\alpha}, \mathcal{E}(A))} \circ j, H\right)$$

where

$$j: L^1(G, \alpha, A) \to L^1(G, \widetilde{\alpha}, \mathcal{E}(A)), j(f) = \delta_A \circ f$$

is a bijective correspondence between $Rep(G \times_{\widetilde{\alpha}} \mathcal{E}(A))$ and $Rep(L^1(G, \alpha, A))$.

Theorem

Let α be a continuous action of G on a Banach *-algebra A with bounded approximate unit. Then there is a C^* -isomorphism $\Phi: G \times_{\widetilde{\alpha}} \mathcal{E}(A) \to G \times_{\alpha} A$ such that

$$\Phi\left(\left(\delta_{L^{1}(G,\tilde{\alpha},\mathcal{E}(A))}\circ j\right)(f)\right)=\delta_{L^{1}(G,\alpha,A)}(f)$$

for all $f \in L^1(G, \alpha, A)$.

Corollary

Let α be a G-invariant continuous action of G on a complete lmc *-algebra A with bounded approximate unit. Then

$$G \times_{\alpha} A \sim G \times_{\widetilde{\alpha}} \mathcal{E}(A).$$

Image: Image:

3

Remark

Suppose that α is a G-invariant continuous action of G on a complete locally m-convex *-algebra A with bounded approximate unit and A has an enveloping C*-algebra.

 $\mathcal{E}(A)$ is isomorphic to a C^* -algebra $\Rightarrow G \times_{\widetilde{\alpha}} \mathcal{E}(A)$ is isomorphic to a C^* -algebra $\Rightarrow G \times_{\alpha} A$ is isomorphic to a C^* -algebra.

Multiplier algebra of a pro-C*-algebra

Let A be a pro- C^* -algebra and

 $M(A) = \{(I, r); I, r : A \rightarrow A \text{ are left and right module morphisms such that } aI(b) = r(a)b, \forall a, b \in A\}$

M(A) equipped with the topology determined by the family of C^* -seminorms $\{p_{M(A)}\}_{p\in S(A)}$, where

$$p_{M(A)}\left(\textit{I},\textit{p}
ight) = \sup \{ p\left(\textit{I}(\textit{a})
ight); p(\textit{a}) \leq 1 \},$$

is a pro-*C*-algebra.*

Theorem

Let A be a pro- C^* -algebra. Then

$$M(A) \equiv \lim_{\stackrel{\leftarrow}{p}} M(A_p)$$
 up to an isomorphism of C^* algebras.

< 3 > < 3 >

Multiplier algebra and crossed products

Let A be a C^* -algebra and α a continuous action of G on A. The map $i_A : A \to M(G \times_{\alpha} A)$ defined by

 $i_{A}\left(a
ight)\left(f
ight)\left(g
ight)=\left(af\left(g
ight),f\left(g
ight)lpha_{g}\left(a
ight)
ight)$ for all $f\in C_{c}(G,A),g\in G$

is a faithful C^* -morphism.

Corollary

Let A be a pro-C^{*}-algebra and α a G -invariant continuous action of G on A. Then $(i_{A_p})_p$ is an inverse system of C^{*}-morphisms, and

$$i_A = \lim_{\stackrel{\leftarrow}{p}} i_{A_p}$$

is an embedding of A into $M(G \times_{\alpha} A)$.

Remark

Suppose that α is a G-invariant continuous action of G on a complete locally m-convex *-algebra A with bounded approximate unit and $G \times_{\alpha} A$ is isomorphic to a C*-algebra. $G \times_{\alpha} A$ is isomorphic to a C*-algebra $\Rightarrow G \times_{\widetilde{\alpha}} \mathcal{E}(A)$ is isomorphic to a C^* -algebra $\Rightarrow M(G \times_{\widetilde{\alpha}} \mathcal{E}(A))$ is isomorphic to a C*-algebra Since $\mathcal{E}(A)$ can be identified with a pro-C*-subalgebra of $M(G \times_{\widetilde{\alpha}} \mathcal{E}(A))$, $\mathcal{E}(A)$ is isomorphic to a C*-algebra.

Theorem

Let α be a *G*-invariant continous action of *G* on a complete lmc *-algebra *A* with bounded approximate unit. Then $G \times_{\alpha} A$ is isomorphic to a *C**-algebra if and only if *A* has an enveloping *C**-algebra.

Corollary

Let G be a locally compact group and let A be a complete lmc *-algebra with bounded approximate unit. Then the projective tensor product $L^1(G)$ $\widehat{\otimes}_{\pi}A$ of $L^1(G)$ and A admits an enveloping C*-algebra if and only if A admits an enveloping C*-algebra.

$$L^1(G) \widehat{\otimes}_{\pi} A \equiv L^1(G, \operatorname{id}, A), \operatorname{id}_g = \operatorname{id}_A$$
 for all $g \in G$.

4 3 4 3 4 3 4

References

- S. J. Bhatt, D. J. Karia, Topological algebras with C*-enveloping algebras, Proc. Indian Acad. Sci (Math. Soc.) 102(1993), 201-215.
- S. J. Bhatt, *Topological algebras with C*-enveloping algebras II*, Proc. Indian Acad. Sci (Math. Soc.) 111(2001), 65-94.
- M. Fragoulopoulou, *Topological algebras with involution*, North-Holland Mathematics Studies 200, 2005.
- M. Joiţa, Crossed products of locally C*-algebras, Rocky Mountain J. Math. 37(2007), 5, 1623-1644.
- N. C. Phillips, Representable K-theory for σ-C*-algebras, K-Theory, 3(1989), 5, 441–478.
- D. P. Williams, Crossed products of C*-algebras, Mathematical Surveys and Monographs (134) 2007, American Mathematical Society.

Image: Image:

Thank you for your attention!

3