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Dirac Operator on a Lie Group
I Let G be a simple, simply connected and compact Lie group, g its

Lie algebra with orthonormal basis {xi : 1 ≤ i ≤ n}.

I The symmetric,nondegenerate bilinear form of g defines a Clifford
algebra cl(g). Denote by γ : g→ cl(g) the canonical embedding and
(Σ, s) an irreducible representation of cl(g).

I A homomorphism from g to cl(g) is given by

x 7→ ãd(x) :=
1

4

∑
k

γ(xk)γ([x , xk ]) ∈ cl(g).

For all x , y ∈ g:

γ([x , y ]) = [ãd(x), γ(y)].

I The classical Dirac operator D ∈ U(g)⊗ cl(g) is defined by

D =
∑
k

(xk ⊗ γ(xk) + N ⊗ γ(xk)ãd(xk)) ∈ U(g)⊗ cl(g).

(
∑

k xk ⊗ xk is invariant under the adjoint action of g.), N ∈ R.
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1. D commutes with the algebra homomorphism

x 7→ (id⊗ ãd)4(x) = x ′ ⊗ ãd(x ′′)

The square of D is a sum of Casimir elements in U(g)⊗ cl(g).

2. Denote by D the Dirac opeator acting on H = L2(G )⊗ Σ. The
spectral triple (C∞(G ),D,H) recovers the structure of Riemannian
manifold G . The spectrum of D behaves as

|D|−n ∈ L1+(H), n = dim(G ).
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Quantum Group Preliminaries
I The quantum group Uq(g) is the unital associative algebra with

generators ki , k
−1
i , ei , fi (1 ≤ i ≤ n) subject to

[ki , kj ] = 0, kik
−1
i = 1 kiejk

−1
i = q

aij/2
i ej , ki fjk

−1
i = q

−aij/2
i fj ,

[ei , fj ] = δij
k2
i − k−2

i

qi − q−1
i

, qi = qdi

and the quantum Serre relations. (aij is the cartan matrix of g and
{di : 1 ≤ i ≤ n} coprime positive integers such that (diaij)ij is a
symmetric matrix.) Choose q ∈ (0, 1).

I The structure of Hopf ∗-algebra can be chosen by

4q(ki ) = ki ⊗ ki 4q(ei ) = ei ⊗ ki + k−1
i ⊗ ei , 4q(fi ) = fi ⊗ ki + k−1

i ⊗ fi ,

Sq(ei ) = −qei , Sq(fi ) = −q−1fi , Sq(ki ) = k−1
i ,

εq(ki ) = 1, εq(ei ) = εq(fi ) = 0, e∗i = fi , f ∗i = ei , k∗i = ki .

I The comultiplication is noncocommutative but there exists
R ∈ Uq(g)⊗ Uq(g) so that

x ′′ ⊗ x ′ = 4op
q (x) = R4q(x)R−1,

Equipped with R, the Hopf algebra Uq(g) is quasitriangular.
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Algebraic Dirac Operator: Harju 2010

I Let (V ,
ad
. ) denote the adjoint representation of Uq(g) with a basis

{|n〉 : n ∈ I} and let V ∗ be its dual with an orthonormal dual basis
{〈n| : n ∈ I}.

I Put Ω =
∑

n∈I |n〉 ⊗ 〈n|. Ω spans the singlet of V ⊗ V ∗:

(x ′ ⊗ x ′′)
ad
. Ω = ε(x)Ω,

for all x ∈ Uq(g).

I We would like to define

D′q = (θ ⊗ γ̄q)Ω ∈ Uq(g)⊗ clq(g)

where clq(g) is a deformation of cl(g) and a Uq(g)-module algebra,
γ̄q : V ∗ → clq(g) an embedding and θ : V → Lq(g) ⊂ Uq(g) are
module isomorphisms.
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Clifford Algebra clq(g)

I Denote by Bq the nondegenerate bilinear form V ⊗ V → C which is
invariant

Bq(4q(x)
ad
. (u ⊗ v)) = εq(x)Bq(u ⊗ v),

for all x ∈ Uq(g). Since 4q is noncocommutative Bq is
nonsymmetric.

I The braid operator Ř = σR is an automorphism of V ⊗ V and
commutes with the representation. σ is the flip automorphism.

I Each irreducible component of V ⊗ V is an eigenspace of Ř. The
eigenvalues are real because Ř is self adjoint and do not reach zero
because Ř is automorphism.
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Clifford Algebra clq(g)

I Denote by T (V ) the tensor algebra of V .

I Denote by B i
q and Ři the bilinear form and braid operator acting on

i ’th and (i + 1)’th tensor component and {bi,k : k ∈ J} the positive
eigenvalues of Ři . Define an ideal I of T (V ) by

I = {(id− B i
q)t : t ∈ Ker(Ři − bi,k) for some i ∈ N, k ∈ J}.

I Define

clq(g) = T (V )/I.

I clq(g) is Uq(g)-module algebra.

I Denote by γq : V → clq(g) the canonical embedding.
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q and Ři the bilinear form and braid operator acting on

i ’th and (i + 1)’th tensor component and {bi,k : k ∈ J} the positive
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Spinor module

I There exists a homomorphism ãdq : Uq(g)→ clq(g) so that

γq(x
ad
. ψ) = ãdq(x ′)γq(ψ)ãdq(Sq(x ′′)),

for all x ∈ Uq(g).

I Denote by (Σ, sq) an irreducible representations of clq(g).
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Quantum Lie algebra: Delius, Gould (1997)
I Define the opposite adjoint action of Uq(g) on itself by

x
ad
I y = x ′′ySop

q (x ′).

I Let (U, π) denote the defining reprsentation of Uq(g) and

Z = H−1((R t)opRop − 1) ∈ Uq(g)⊗ Uq(g),

Zlk = (πlk ⊗ id)Z ∈ C⊗ Uq(g) ' Uq(g).

I The vectors Zlk transform covariantly under the adjoint action

x
ad
I Zlk = Zijπ

∗
il (x
′)πjk(x ′′), for all x ∈ Uq(g).

I Pick the C-G coefficients of the module homomorphism
V → U∗ ⊗ U. Define

Za = C ij
a (πij ⊗ id)Z .

Za’s span a quantum Lie algebra Lq(g) ⊂ Uq(g) which is a
deformation of g and isomorphic to the adjoint representation of
Uq(g).
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Definition

I Let σ : V ∗ → V and θ : V → Lq(g) be module isomorphisms

I Let N ′ be a constant. Define

D′q = (θ ⊗ γq ◦ σ)Ω + N ′ ⊗
∑
n

γq(|n〉)ãd(σ(〈n|) ∈ Uq(g)⊗ clq(g).

I D′q commutes with the image of x 7→ (id⊗ ãdq)4q(x):

I

(x ′ ⊗ ãdq(x ′′))(θ ⊗ γq ◦ σ)(Ω)

=
∑
n

x ′′′θ(|n〉)Sop
q (x ′′)x ′ ⊗ ãdq(x (4))(γq ◦ σ(〈n|))ãdq(Sq(x (5))x (6))

=
∑
n

(θ ⊗ γq ◦ σ)((x ′′ ⊗ x ′′′)
ad
. Ω)(x ′ ⊗ ãdq(x ′′′′))

= (θ ⊗ γq ◦ σ)(Ω)(x ′ ⊗ ãdq(x ′′)),

for all x ∈ Uq(g). Above we used x = x ′εq(x ′′) = x ′′εq(x ′) and
εq(x) = Sq(x ′)x ′′ = Sop

q (x ′′)x ′.
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(x ′ ⊗ ãdq(x ′′))(θ ⊗ γq ◦ σ)(Ω)

=
∑
n

x ′′′θ(|n〉)Sop
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Geometric Dirac Operator: Neshveyev, Tuset (2010)
I Denote by W ∗(G ) the Hopf von Neumann algebra of G generated

by the operators πλ of (fixed) irreducible representations of G .
(W ∗(G ) is the l∞ sum of B(Vλ).)

I Define U(G ) =
∏
λ B(Vλ): densely defined unbounded operators

affiliated with W ∗(G ),
I The representations of U(g) and Uq(g) are in one to one

correspondence: There exists an isomorphism of algebras

φ : W ∗(Gq)→W ∗(G ),

The algebra Uq(g) is a subalgebra in U(Gq). φ extends to an
isomorphism Uq(G )→ U(Gq).

I The coproducts are related by a unitary F ∈ U(G ⊗ G ), x ∈ U(G ):

(φ⊗ φ)4q(x) ◦ φ−1 = F4(x)F−1

I Let D denote the classical operator. Define

Dq = (φ−1 ⊗ id)
(

(id⊗ ãd)(F )D(id⊗ ãd)(F ∗)
)
∈ Uq(g)⊗ cl(g).

I Dq commutes with the image of the homomorphism

x 7→ (id⊗ (ãd ◦ φ))4q(x) in Uq(g)⊗ cl(g) which is a consequence
of the corresponding property of D and the definition of F .
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x 7→ (id⊗ (ãd ◦ φ))4q(x) in Uq(g)⊗ cl(g) which is a consequence
of the corresponding property of D and the definition of F .



Geometric Dirac Operator: Neshveyev, Tuset (2010)
I Denote by W ∗(G ) the Hopf von Neumann algebra of G generated

by the operators πλ of (fixed) irreducible representations of G .
(W ∗(G ) is the l∞ sum of B(Vλ).)

I Define U(G ) =
∏
λ B(Vλ): densely defined unbounded operators

affiliated with W ∗(G ),
I The representations of U(g) and Uq(g) are in one to one

correspondence: There exists an isomorphism of algebras

φ : W ∗(Gq)→W ∗(G ),

The algebra Uq(g) is a subalgebra in U(Gq). φ extends to an
isomorphism Uq(G )→ U(Gq).

I The coproducts are related by a unitary F ∈ U(G ⊗ G ), x ∈ U(G ):

(φ⊗ φ)4q(x) ◦ φ−1 = F4(x)F−1

I Let D denote the classical operator. Define

Dq = (φ−1 ⊗ id)
(
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Geometry of Gq

I Define C[Gq] the Hopf-algebra of representative functions on Gq: It
is spanned by the matrix elements of irreducible finite dimensional
representations of Uq(g), and the product is determined from C-G
coefficients. We can idetify

C[Gq] =
⊕
λ∈P+

Vλ ⊗ V ∗λ .

I C[Gq] accepts a Haar state. Denote by L2(Gq) the completion and
by ρ the representation of C[Gq] on L2(Gq).

I Uq(g) acts on the orthonormal basis of L2(Gq) by

∂(x)|λ, n〉 ⊗ 〈λ,m| = (πλ,q(x)|λ, n〉)⊗ 〈λ,m|.

I Theorem (Nesyenev, Tuset): The triple

(C[Gq],Dq,H)

is a spectral triple; Dq = (∂ ⊗ s)Dq and H = L2(Gq)⊗ Σ.
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Example: SUq(2)

I Choose the generators {j±, j0} of su2 so that

[j0, j±] = ±j±, [j+, j−] = 2j0

I The irreducible representations {(Vl , πl) : l ∈ 1
2N0} are

πl(j±)|l ,m〉 =
√
l(l + 1)−m(m ± 1)|l ,m ± 1〉,

πl(j0)|l ,m〉 = m|l ,m〉.

where the basis is chosen by {|l ,m〉 : −l ≤ m ≤ l} for each Vl .

I The Killing form is normalized so that the vectors

x1 = j+ + j−, x2 = −i(j+ − j−), x3 = 2j0

form an orthonormal basis of g.
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I The representations of the algebras cl(su2) and su2 on Σ = V1/2 are

s : γ(xi ) 7→ π1/2(xi ), ãd(xi ) 7→ π1/2(xi ).

I The classical Dirac operator is

D = (∂ ⊗ s)D = 2∂

(
j0 j−
j+ −j0

)
+ 3N1.

I Eigenvalues of D on irreducible components of
Vl ⊗ Σ ' Vl−1/2 ⊕ Vl+1/2

D|l +
1

2
,m〉0 = (2l + 3N)|l +

1

2
,m〉0,

D|l − 1

2
, n〉0 = (−(2l + 2) + 3N)|l − 1

2
, n〉0.

for each m, n.
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I The irreducible representations (Vl , πl,q) of Uq(su2) are (l ∈ 1
2N0):

πl,q(k)|l ,m〉= qm|l ,m〉

πl,q(e)|l ,m〉=
√

[l −m]q[l + m + 1]q|l ,m + 1〉

πl,q(f )|l ,m〉=
√

[l −m + 1]q[l + m]q|l ,m − 1〉

I Dq acts on Vl ⊗ Σ ' Vl−1/2 ⊕ Vl+1/2 by

Dq|l +
1

2
,m〉 = (2j + 3N)|l +

1

2
,m〉

Dq|l −
1

2
, n〉 = (−(2j + 2) + 3N)|l − 1

2
, n〉, .

where the tensor product is reduced to Uq(g) invariant components.
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I How is Dq defined in Uq(g)⊗ cl(g)?. In the following let us put
N = 0. The following relation holds:

(φ⊗ φ)(R tR) = Fq
∑

i xi⊗xiF ∗

Therefore, (recall γ = ãd now)

qDq = (∂ ◦ φ−1 ⊗ s ◦ γ)(Fq
∑

i xi⊗xiF ∗) = (∂ ⊗ π1/2,q)(R tR)

= ∂
[(t2 0

0 −t2

)
+ (q − q−1)

(
(1− q−2)fe q−1/2ft−1

q−1/2t−1f 0

)]
.



Algebraic Operator on SUq(2)
I The adjoint module of Uq(su2) is (V1, π1,q). Then

V1 ⊗V1 = V2 ⊕V1 ⊕V0 where V2 and V0 are q-symmetric modules.
Then

ψ1ψ1 = ψ−1ψ−1 = 0

q−1ψ1ψ0 + qψ0ψ1 = 0

q−2ψ1ψ−1 + [2]qψ0ψ0 + q2ψ−1ψ1 = 0

ψ0ψ−1 + q2ψ−1ψ0 = 0

ψ1ψ−1 + ψ−1ψ1 = b,

where ψi = γq(|1, i〉) and b is some constant fixed from the
normalization of the form Bq.

I The irreducible representation on (Σ = V1/2, sq) are

sq(ψ1) =

(
0
√
q

0 0

)
, sq(ψ0) = − 1√

[2]q

(
q−1 0

0 −q

)
sq(ψ−1) =

(
0 0

−
√
q−1 0

)
, sq(ãdq(x)) = π1/2,q(x).
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I The isomorphism V → L(su2) is defined by

θ(|1, 1〉) = t−1e, θ(|1, 0〉) =
1√
[2]q

(q−1fe − qef ),

θ(|1,−1〉) = −t−1f .

I For N ′ = 0 we have

D ′q = ∂

(
ef − q−2fe q−1/2[2]qt

−1f
q1/2[2]qt

−1e −q2ef + fe

)
.

I The relation to geometric approach:

D ′q = [Dq]q =
qDq − q−Dq

q − q−1
.

which can be checked using the formula

q−Dq = (∂ ⊗ π1/2,q)(R−1(R t)−1).
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Geometry of SUq(2)

I Denote by H the completion of the prehilbert space

(
∞⊕

2l=0

Vl ⊗ V ∗l )⊗ Σ ' (
∞⊕

2l=0

Vl ⊗ Vl)⊗ V1/2

and the representation of Uq(g) on H is defined by

x 7→ (∂ ⊗ ãd ◦ φ)4q(x).

I The prehilbert space reduces into irreducible components under this
action as

(
∞⊕

2l=0

Vl ⊗ Vl)⊗ Σ ' V1/2 ⊕
∞⊕

2j=1

(Vj+1/2 ⊗ Vj)⊕ (Vj−1/2 ⊗ Vj)

= W ↑0 ⊕
∞⊕

2j=1

W ↑j ⊕W ↓j .
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I The orthonormal basis of H is chosen by

{|jµn ↑〉, |j ′µ′n ↓〉 : j ∈ 1

2
N0, j

′ ∈ 1

2
N, |µ| ≤ j + 1, |µ′| ≤ j − 1, |n| ≤ j}

where |jµn ↑〉 ∈W ↑j and |jµn ↓〉 ∈W ↓j .’

I The action of the Dirac opeator:

Dq|jµn ↑〉 = (2j + 3N)|jµn ↑〉
Dq|jµn ↓〉 = (−(2j + 2) + 3N)|jµn ↓〉.

I The algbra C[SUq(2)] has a faithful ∗-representation on H.

I For N = 1/2 the spectral triple (C[SUq(2)],Dq,H) coincides with
the isospectral deformation in ”Dabrowski, Landi, Sitarz, van
Suijlekom, Varilly (2005)”. Thefore it is regular with dimension
spectrum {1, 2, 3}.
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spectrum {1, 2, 3}.
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I For N ′ = 0 the triple (C[SUq(2)],F ′q,H) defines a Fredholm module,

where F ′q = D ′q(1 + (D ′q)2)−1/2 and

D ′q|jµn ↑〉 = [2j ]q|jµn ↑〉
D ′q|jµn ↓〉 = −[2j + 2]q|jµn ↓〉.

I The Fredholm modules (C[SUq(2)],F ′q,H) and (C[SUq(2)],Fq,H)
are homotopy equivalent:

(0, 1]→ B(H), t 7→ [Dq]qt

(1 + [Dq]2
qt )1/2

, f (0) = Fq =
Dq

(1 + (Dq)2)1/2
,

where [Dq]qt = (qtDq − q−tDq )/(qt − q−t).

I Questinon: Is this true in general?
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Example: Uq(2)

I u2 is spanned by xi (0 ≤ i ≤ 3)

[x0, xi ] = 0, x1, x2, x3 generate su2

Fix the normalization of the bilinear form so that these xi form an
orthonormal basis.

I The irreducible representations are parametrized by the pairs (l , k),
where l ∈ 1

2N0 and k ∈ l + Z (l is the highest weight for su2 and k
fixes the action of the center.)

I The deformed algebra Uq(u2) is defined by adding the linearly
independent generator ξ = qc to Uq(su2) which is central in Uq(g).
The extension of the Hopf structure is defined by

4q(ξ) = ξ ⊗ ξ, Sq(ξ) = ξ−1, ε(ξ) = 1.

I Uq(u2) differs from Uq(su2) only by an element in the center, so the
twist F and braiding Ř are defined as for Uq(su2). The isomorphism
φ is extended to an isomorphism Uq(u2)→ U(u2) by setting
φ(ξ) = qx0 .
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I The Clifford algebra cl(u2) has 4 dimensional irreducible
representation Σ̂ given by

s(γ(x0)) =

(
0 1
1 0

)
, s(γ(xn)) = i

(
0 π1/2(xn)

−π1/2(xn) 0

)
, 1 ≤ n ≤ 3.

I The corresponding representation ãd of u2 has two irreducible
components Σ̂ = V+

(1/2,0) ⊕ V−(1/2,0)

ãd(x0) = 0, ãd(xi ) =

(
π1/2(xi ) 0

0 π1/2(xi )

)
, x ∈ {1, 2, 3}, (1)

where we have fixed the action of the center to be zero.

I Denote by D and Dq the Dirac operators on SU(2) and SUq(2),
Define

D̂ =

(
0 iD + ∂(x0)

−iD + ∂(x0) 0

)
, D̂q =

(
0 iDq + ∂(c)

−iDq + ∂(c) 0

)
.

where we have applied the twist F ⊕ F with (1) and the fact that x0

is central.
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I As a vector space C[Uq(2)] is spanned by

t l,km,n = |l , k, n〉 ⊗ 〈l , k ,m| ∈ V(l,k),q ⊗ V ∗(l,k),q ' V(l,k),q ⊗ V(l,k),q

where (l , k) parametrize the representatitions.

I The Hilbert space decomposes into irreducible compenents

H = L2(Uq(2))⊗ Σ̂ =

W ↑0,+ ⊕W ↑0,− ⊕
∞⊕

2j=1

⊕
k

W ↑j,k,+ ⊕W ↓j,k,+ ⊕W ↑j,k,− ⊕W ↓j,k,−.

For fixed k and ±, the decomposition is given exactly as in the
SUq(2) case. Thus, we can fix a basis

{|jµn ↑ k±〉, |j ′µ′n ↓ k±〉 : j , j ′, µ, µ′, n; k ∈ Z + j}

so that j , j ′, µ, µ′ and n are restricted as earlier.
I Action of D̂q:

D̂q|jµn ↑ k±〉 = ∓i(2j + 3N + k)|jµn ↑ k∓〉
D̂q|jµn ↓ k±〉 = ∓i(−(2j + 2) + 3N + k)|jµn ↓ k∓〉
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I Theorem: The triple (C[Uq(2)], D̂q,H) is a regular 4+-summable
and regular spectral triple.


