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> Let G be a simple, simply connected and compact Lie group, g its
Lie algebra with orthonormal basis {x; : 1 < i < n}.

» The symmetric,nondegenerate bilinear form of g defines a Clifford
algebra cl(g). Denote by 7 : g — cl(g) the canonical embedding and
(X, s) an irreducible representation of cl(g).

» A homomorphism from g to cl(g) is given by
x — ad(x Z’yxk ([x, x«]) € cl(g).

For all x,y € g:

V(I y]) = [ad(x),7(y)]-
» The classical Dirac operator D € U(g) ® cl(g) is defined by

D= (x ®v(x) + N @y(xc)ad(x)) € U(g) @ cl(g).
k

(D" Xk ® xi is invariant under the adjoint action of g.), N € R.
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1. D commutes with the algebra homomorphism
x i (id ® ad)A(x) = X’ @ ad(x")

The square of D is a sum of Casimir elements in U(g) ® cl(g).

2. Denote by D the Dirac opeator acting on H = L>(G) ® ¥. The
spectral triple (C*°(G), D, H) recovers the structure of Riemannian
manifold G. The spectrum of D behaves as

ID|7™" € L14(H), n=dim(G).



Quantum Group Preliminaries

» The quantum group U,(g) is the unital associative algebra with
generators kj, ki ', e;, f; (1 < i < n) subject to
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{d; : 1 <i < n} coprime positive integers such that (d;a;); is a
symmetric matrix.) Choose g € (0,1).
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generators kj, ki ', e;, f; (1 < i < n) subject to

ki k]l =0, kik ' =1 kigk ' =q"%e,  Kifik =g ",

1
2 -2
[ei, fi] = 5:’1’7& ki,l . qi=q"

i—q;
and the quantum Serre relations. (aj is the cartan matrix of g and
{d; : 1 <i < n} coprime positive integers such that (d;a;); is a
symmetric matrix.) Choose g € (0,1).

» The structure of Hopf x-algebra can be chosen by
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Quantum Group Preliminaries

» The quantum group U,(g) is the unital associative algebra with
generators kj, ki ', e;, f; (1 < i < n) subject to

ki k] =0, kik''=1 kek'=q"%e, kifk'=q *°f

i J
k? — k2 .
e 1 = b5~ 5, = q°
ai —q;
and the quantum Serre relations. (aj is the cartan matrix of g and
{d; : 1 <i < n} coprime positive integers such that (d;a;); is a
symmetric matrix.) Choose g € (0,1).
» The structure of Hopf x-algebra can be chosen by
Ng(k)=ki@ ki Dgler) =e@ki+ kT @e, N(f)=Ffi@k+k'®f
Sq(ei) = —qei, Sq(fi) = _q_lfh Sqlki) = kflv
k) =1, eqle)=cgf)=0, e =f, f=e Kk =k

» The comultiplication is noncocommutative but there exists
R € Uy(g) ® Uq(g) so that

X" ®@x = AP(x) = RAG(X)R™,
Equipped with R, the Hopf algebra Uq(g) is quasitriangular.
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Algebraic Dirac Operator: Harju 2010

> Let (V,?ll>d) denote the adjoint representation of Ugy(g) with a basis
{|n) : n € 1} and let V* be its dual with an orthonormal dual basis

{(n| :nel}.
» Put Q=3 |n) ® (n|. Q spans the singlet of V & V*:

(X' @ x") Ya= e(x)Q,

for all x € Uq(g).
» We would like to define

D; = (0 ® 74)2 € Uq(g) ® clq(9)

where cl,(g) is a deformation of cl(g) and a Uy(g)-module algebra,
g 0 V* — clg(g) an embedding and 0 : V — £4(g) C Uq(g) are
module isomorphisms.
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Clifford Algebra cly(g)

> Denote by B, the nondegenerate bilinear form V ® V — C which is
invariant

Ba(Lq(x) B (1® v)) = eq(x)Ba(u @ v),

for all x € Uq(g). Since A4 is noncocommutative By is
nonsymmetric.

» The braid operator R = oR is an automorphism of V ® V and
commutes with the representation. ¢ is the flip automorphism.

» Each irreducible component of V ® V is an eigenspace of R. The
eigenvalues are real because R is self adjoint and do not reach zero
because R is automorphism.
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Clifford Algebra cly(g)

» Denote by T(V) the tensor algebra of V.

» Denote by BC", and R; the bilinear form and braid operator acting on
i'th and (i 4+ 1)'th tensor component and {b; « : k € J} the positive
eigenvalues of R;. Define an ideal J of T(V) by

J={@1d - Bc’;)t it € Ker(R; — bjx) forsome €N, kelJ}

» Define

> clg(g) is Uq(g)-module algebra.
» Denote by 74 : V — cly(g) the canonical embedding.
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Spinor module

» There exists a homomorphism ;L?lq : Ug(g) — clg(g) so that

Ya(x B ) = adg(x)vg(1)ady(Sq(x")),

for all x € Uq(g).
» Denote by (X, s;) an irreducible representations of clg(g).
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Quantum Lie algebra: Delius, Gould (1997)

> Define the opposite adjoint action of Ug(g) on itself by
ad
x py=x"ySP(x").
> Let (U, 7) denote the defining reprsentation of U,(g) and

Z = H7H((R")P R — 1) € Uq(g) ® Ug(a),
Zi = (i ®1d)Z € C® Uqg(g) =~ Uqg(g).

» The vectors Zj transform covariantly under the adjoint action

ad
x W Zy = Zimi (X mu(x"),  forall  x € Ug(a).

» Pick the C-G coefficients of the module homomorphism
V — U* ® U. Define

Z, = Ci(r; ®id)Z.

Z,'s span a quantum Lie algebra £4(g) C Uq(g) which is a
deformation of g and isomorphic to the adjoint representation of

Uq(g)-
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Definition

» Leto: V* = Vand 6: V — £,(g) be module isomorphisms

» Let N/ be a constant. Define

Dy =(0®7500)2+ N @ vq(In))ad(o((n]) € Ug(s) @ clq(g)-

» D, commutes with the image of x — (id ® ad4)Ag(x):
>

(X' @ adg(x")(0 @74 © 7)()
—Zm DSP(X")x' @ adg(x®) (g © o ((n]))adq(Sq(xD)x®)

=3 (0@ g0 0) (¥ ®x") E Q)(x @ adg(x""))

= (0 ® 740 0)(Q)(x ®adg(x")),

for all x € Uq(g). Above we used x = x'eq(x”) = x"¢€4(x’) and

cqlx) = Sy )" = SgP(x")’
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» Denote by W*(G) the Hopf von Neumann algebra of G generated
by the operators ) of (fixed) irreducible representations of G.
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> Define U(G) =[], B(V\): densely defined unbounded operators
affiliated with W*(G),

> The representations of U(g) and U,(g) are in one to one
correspondence: There exists an isomorphism of algebras

¢ W(Gq) = W*(G),
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Geometric Dirac Operator: Neshveyev, Tuset (2010)

>

Denote by W*(G) the Hopf von Neumann algebra of G generated
by the operators ) of (fixed) irreducible representations of G.
(W*(G) is the [*° sum of B(V)).)

Define U(G) =[], B(V\): densely defined unbounded operators
affiliated with W*(G),

The representations of U(g) and Ug(g) are in one to one
correspondence: There exists an isomorphism of algebras

¢ W*(Gq) = W*(G),
The algebra Uy(g) is a subalgebra in U(G,). ¢ extends to an
isomorphism U, (G) — U(Gy).
The coproducts are related by a unitary F € U(G ® G), x € U(G):
(0 ® ¢)Aq(x) 0™ = FA(x)F

Let D denote the classical operator. Define
Dy = (67! @id)((id @ ad)(F)D(id @ ad)(F*)) € Uy(a) @ cl(g).

Dy commutes with the image of the homomorphism

x> (id® (ad o $))Ag(x) in Ug(g) @ cl(g) which is a consequence
of the corresponding property of D and the definition of F.
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Geometry of Gq

> Define C[Gq] the Hopf-algebra of representative functions on Gg: It
is spanned by the matrix elements of irreducible finite dimensional
representations of Uy(g), and the product is determined from C-G
coefficients. We can idetify

ClGl = P Va® V;.
AeP.

» C[G,] accepts a Haar state. Denote by L?(G,) the completion and
by p the representation of C[G,] on L?(G,).

» Uqy(g) acts on the orthonormal basis of L2(G,) by
AX)A, m) @ (A, m| = (mxg(x)|A, m)) @ (A, m|.
» Theorem (Nesyenev, Tuset): The triple
(C[Gql, Dg, H)

is a spectral triple; D, = (0 ® s)Dy and H = L?(G,) ® .
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Example: SU,(2)

» Choose the generators {ji, jo} of su, so that
Vo,jxl = Hjx,  Ussd-]= 2o

> The irreducible representations {(V;, ) : | € $No} are

mGe)|l, m) = I(1+ 1) — m(m £ 1)|/, m £ 1),
77/(]0)“7 m> - m“: m>

where the basis is chosen by {|/, m) : —/ < m < [} for each V.

» The Killing form is normalized so that the vectors
xi=j++j-, xe=-i(4—j-), x3=2jp

form an orthonormal basis of g.



> The representations of the algebras cl(su,) and su, on ¥ = V;, are

s y(x) = mpp(x),  ad(x) e ().



> The representations of the algebras cl(su,) and su, on ¥ = V;, are
s:iy(x) — 7T1/2(X,-), g&(x,-) — 711/2()(,-).

» The classical Dirac operator is

D=(0®s)D =20 (J.O f—.) +3N1.
J+ —Jo



> The representations of the algebras cl(su,) and su, on ¥ = V;, are

s y(x) = mpp(x),  ad(x) e ().

» The classical Dirac operator is

D=(0®s)D =20 (J.O f—.) +3N1.
J+ —Jo

» Eigenvalues of D on irreducible components of
Vi =Vi_1® Vii1

1 1
D|/ + 5, m>0 = (2/+ 3N)|/ + 5, m>0,

DIl = £, nvo = (=(21 + 2) + 3W)|1 — % nbo.

55

for each m, n.



> The irreducible representations (V},7,q) of Ug(su,) are (I € 1No):
71,q(K)|, m) = g™, m)
m1.q(€)l1,m) = /Ul = mlgll + m+ 1gll, m +1)

T1q(F) 1 m) =\ /1 = m -+ 1ll + mlgll, m — 1)




> The irreducible representations (V},7,q) of Ug(su,) are (I € 1No):
71,q(K)|, m) = g™, m)
m1.q(€)l1,m) = /Ul = mlgll + m+ 1gll, m +1)

T1g(F)1 m) =/ = m -+ 10l + mlgll, m — 1)

» Dgactson Vi@L >~V 1, Vi 1/ by

1 . 1
Dqll + 5, m) = (2_] + 3N)|/ + 57 m)

L = (2 +2) 13N — 1.y,

Dall = 2’ 2

where the tensor product is reduced to Uq(g) invariant components.



» How is Dg defined in Uy(g) ® cl(g)?. In the following let us put
N = 0. The following relation holds:

(¢ ® ¢)(RfR) — qu,x,-@X,F*
Therefore, (recall v = ad now)

g% = (00 ¢ ! ®s07)(Fq=i®F*) = (0@ m12,4)(R'R)

- t2 0 1 [(L—qg72)fe q V2t
—3[<0_t2>+(qq )<q_1/2t_1f 0 ]



Algebraic Operator on SU,(2)

> The adjoint module of Ug(su,) is (Vi,m1,4). Then
ViV =Vo@ Vi@ Vo where V, and V are g-symmetric modules.
Then

1y =191 =0

g "p1tbo + qiorpy =0

g 211 + [2qotbo + ¢*Y_1¢1 =0
Porh—1 + q*h_1h =0

Y11 + 191 = b,

where 9; = v4(]1, 7)) and b is some constant fixed from the
normalization of the form B,.



Algebraic Operator on SU,(2)

> The adjoint module of Ug(su,) is (Vi,m1,4). Then
ViV =Vo@ Vi@ Vo where V, and V are g-symmetric modules.
Then

Y1y =191 =0
g "p1tbo + qiorpy =0
g 1p_1 + [2gtotho + ¢ Y_1h1 =0
Porh—1 + q*h_1h =0
Y11 + 191 = b,
where 9; = v4(]1, 7)) and b is some constant fixed from the
normalization of the form B,.
> The irreducible representation on (¥ = V;/,5s4) are

salv0) = (%) o) = - J[lf (% %)

salv-1) = (_ fimro)  e(edalx)) = /2l




» The isomorphism V — £(su,) is defined by

9(|1> 1>) = t_le7 9(|170>) = 2] (q_lfe - qef)7
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» The isomorphism V — £(su,) is defined by

9(|1> 1>) = t_le7 9(|170>) = (q_lfe - qef)7

1
[2q
01, 1)) = —t'f.

» For N/ = 0 we have

D — ef — g %fe q‘1/2[2]qt‘1f
a7 T\ g2t e —qlef +fe )

» The relation to geometric approach:
D -D,
q q — q q
D =D, = *1—* |
q [ q]q q-— q71
which can be checked using the formula

G P = (0@ myq)(RTHR) ).



Geometry of SUq4(2)
» Denote by H the completion of the prehilbert space

(@ V/®V/*)®ZE(®V/®V/)®V1/2
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Geometry of SUq4(2)
> Denote by H the completion of the prehilbert space

(@ v,®\/,*)®z:(@v,®v,)®v1/z
2/=0 2/=0
and the representation of Uy(g) on H is defined by
x = (0 ®@ad o ¢)Ag(x).
» The prehilbert space reduces into irreducible components under this
action as

(@ VieVi)@X~ V) EB(VJ'H/z @ V)@ (Vi-12® V)
2/=0 2j=1

~weQwew!

2j=1



» The orthonormal basis of H is chosen by
. .y 1 g 1 . p . .
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where |jun 1) € WjT and |junl) € Wf



» The orthonormal basis of H is chosen by
. .y 1 g 1 . p . .
{Upn 1) i'w'nd):j e sNo, j € SN, |l < j+1, [@'| <j =1, [n] < j}

where |jun 1) € WjT and |junl) € Wf
» The action of the Dirac opeator:
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The orthonormal basis of H is chosen by
: o1 : 1 -/ 1 : / : :
{Upn 1) i'w'nd):j e sNo, j € SN, |l < j+1, [@'| <j =1, [n] < j}

where |jun 1) € WjT and |junl) € Wf
The action of the Dirac opeator:

Dgljun 1) = (2j + 3N)|jun 1)
Dgljpn 1) = (=(2j +2) + 3N)ljpn |).

The algbra C[SU,(2)] has a faithful *-representation on H.

For N = 1/2 the spectral triple (C[SU4(2)], Dq, H) coincides with
the isospectral deformation in " Dabrowski, Landi, Sitarz, van
Suijlekom, Varilly (2005)". Thefore it is regular with dimension
spectrum {1,2,3}.



> For N’ = 0 the triple (C[SU,(2)], F,, H) defines a Fredholm module,
where F, = D;(1+ (D})?)~*/? and

Dglinn 1) = [2jlqlinn 1)
Dglinn 1) = —[2j + 2lqlipn 1).



» For N’ = 0 the triple (C[SU,(2)], Fy,
where F, = D;(1+ (D})?)~*/? and

Dgljipn 1) = [2f]qljipn 1)
Dglipn 1) = —[2j + 2]gljun ).

H) and (C[SUq(2)], Fg, H)

H) defines a Fredholm module,

» The Fredholm modules (C[SU4(2)], F,
are homotopy equivalent:

) q7

[DQ]qt Dq

(0,1 = B(H), t+ FESGNATES f(0) = Fq = 1+ (D))

where [Dglqe = (g% —q ™) /(" — q7).



» For N’ = 0 the triple (C[SU,(2)], Fy,
where F, = D;(1+ (D})?)~*/? and
Dglinn 1) = [2]qljipn 1)
Dglinn 1) = —[2j + 2lqlipn 1).

> The Fredholm modules (C[SU,4(2)], Fy, H) and (C[SU4(2)], Fq, H)
are homotopy equivalent:

H) defines a Fredholm module,

Dq

[Dq]qf _ —
(0,1 = B(H), t— —2L _—  f(0)=F,= 1+ (D))

(1+ [Dglg )/’

where [Dglqe = (g% —q ™) /(" — q7).
> Questinon: Is this true in general?
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orthonormal basis.
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> u, is spanned by x; (0 </ <3)
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Fix the normalization of the bilinear form so that these x; form an
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» The irreducible representations are parametrized by the pairs (/, k),
where | € %No and k € I + Z (I is the highest weight for su, and k
fixes the action of the center.)

» The deformed algebra Uy(u,) is defined by adding the linearly
independent generator { = g¢ to Ug(su,) which is central in Ugy(g).
The extension of the Hopf structure is defined by
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Example: Ugy(2)
> u, is spanned by x; (0 </ <3)
[x0,x] =0,  x1,x2,x3 generate su,

Fix the normalization of the bilinear form so that these x; form an
orthonormal basis.

» The irreducible representations are parametrized by the pairs (/, k),
where | € %No and k € I + Z (I is the highest weight for su, and k
fixes the action of the center.)

» The deformed algebra Uy(u,) is defined by adding the linearly
independent generator { = g¢ to Ug(su,) which is central in Ugy(g).
The extension of the Hopf structure is defined by

Ng(§) =E®E, S =¢1 e =1

> Ugy(u,) differs from Ug(su,) only by an element in the center, so the
twist F and braiding R are defined as for Uy(su,). The isomorphism
¢ is extended to an isomorphism Ug(u,) — U(u,) by setting

(&) = q*.
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» The Clifford algebra cl(u,) has 4 dimensional irreducible
representation X given by

s = (35). b =i(_, 0 ). 1sas<s

*7T1/2(Xn)

> The corresponding representation ad of u, has two irreducible
components Y. = V(T/z,o) ® V(120

ad(x) =0, ad(x) = (m/%(x,')m/g(Xl_)) . xe{1,2,3},(1)

where we have fixed the action of the center to be zero.



» The Clifford algebra cl(u,) has 4 dimensional irreducible
representation X given by

S(V(Xo))=(21>, s(’y(xn)):i( 0 Wl/z(xn))

, 1<n<s3.
—m12(xa) 0 -

The corresponding representation ad of u, has two irreducible
components Y. = V(T/z,o) ® V(120

ad(x0) =0, ad(x) = (m/a(x;)m/g(Xl_)> C xe{1,2,3}, (1)

where we have fixed the action of the center to be zero.

Denote by D and D, the Dirac operators on SU(2) and SU,4(2),
Define

—iDgq + 0(c) 0

where we have applied the twist F & F with (1) and the fact that xp
is central.

B ( 'D+Oa( )iD +08(X0)>’ B, = ( 0 iDq—l—B(c)>.
iy X0



> As a vector space C[U4(2)] is spanned by
tf =1L k,n) @ (I, k,m| € V(4 ® Viik),a = Vik)a @ Viik).q

where (/, k) parametrize the representatitions.



As a vector space C[U,4(2)] is spanned by
tht = |1, k1) @ (I k,m| € Vi1i.0 © Vi ky.q = Vitig @ Viik).a

where (/, k) parametrize the representatitions.
The Hilbert space decomposes into irreducible compenents

H:L2( (2))@2:
o © WG @EB@ ke © Wi @ W @ Wi .
2j=1 k

For fixed k and 4, the decomposition is given exactly as in the
SUq(2) case. Thus, we can fix a basis

{ipnt k), 1/'1'n k=) < j,J's s iy ik € Z+ j}

so that j, ', u, ' and n are restricted as earlier.



As a vector space C[U,4(2)] is spanned by
tht = |1, k1) @ (I k,m| € Vi1i.0 © Vi ky.q = Vitig @ Viik).a

where (/, k) parametrize the representatitions.
The Hilbert space decomposes into irreducible compenents

H= LU (2))®i=
W W QY EDW L oW, W], e W
2j=1 k

For fixed k and 4, the decomposition is given exactly as in the
SUq(2) case. Thus, we can fix a basis

{ipnt k), 1/'1'n k=) < j,J's s iy ik € Z+ j}

so that j, ', u, ' and n are restricted as earlier.
Action of [A)q:

Dqljpn + k=) = Fi(2j + 3N + k)|jun T kF)
Dylipn | k%) = Fi(—(2j +2) + 3N + k)|jun | k=)



» Theorem: The triple (C[Uy4(2)], Dq, H) is a regular 4*-summable
and regular spectral triple.



