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CQG

Compact Quantum Groups: definition

Definition (Woronowicz)

A compact quantum group G is a pair (A, A), where A is a
unital C*-algebra, A : A — A® A is a unital, *-homomorphism

which is coassociative, i.e.
(A®idp)o A = (ida ® A)o A
such that the quantum cancellation rules are satisfied

Lin((1 ® A)A(A)) = Lin((A ® 1)A(A)) = A® A.
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CQG

Unitary corepresentations

» n-dimensional unitary corepresentation of G = (A, A) :
U= (ujk) <j.k<n € Mp(A) a unitary such that for all
Jyk=1,...,n we have

A(ujk) E : Ujp & Upk-

> Let (U®))scz be a complete family of mutually inequivalent
irreducible unitary correpresentations of A

» The algebra of the “polynomial” functions of A = Pol(G) is
defined as

A =Lin{ul);s € 7,1 <j, k < g},

where ng is the dimension of ul®),
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CQG

Unitary corepresentations

» n-dimensional unitary corepresentation of G = (A, A) :
U= (ujk) ik<n € Mp(A) a unitary such that for all
Jyk=1,...,n we have

A(ujk) E : Ujp & Upk-

> Let (U®))scz be a complete family of mutually inequivalent
irreducible unitary correpresentations of A

» The algebra of the “polynomial” functions of A = Pol(G) is
defined as

A =Lin{ul);s € 7,1 <j, k < g},

where ns is the dimension of u(%).

A is a dense *- sulalgebra of A, which |(s a Hopf *) algebra with
Jk)—éjk and S(u ) (ukj).
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CQG

Example SU,(N)

The quantum group SUg(N) is generated by the matrix elements
of U = [ujj]i j=1,..n satisfying the relations

U,‘j ukj
u,-j uj
U,'J' Uyl

Ujj Uy

quyjuij  for i < k,

qujuj  for j < I,

uuj fori < k,j>1,

uguii + q N1 — ¢ uguy; fori < k,j <1,

with the additional requirement on the quantum determinant

D=DU):=> (-9 uyo1y... tpom = 1.

The involution is determined by the relation UU* = U*U = 1.

O'ESn
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CQG

Example SU,(N)
We have
A =xAlg{uj;i,j=1,...,N}

A(ujk) Z ujp @ Upk,  (uj) =, S(uj) = u

The matrix U is a corepresenatation and the family of irreducible,
inequivalent, unitary corepresetations is indexed by (%N)N_l.
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CQG

Example SU,(N)
We have
A =xAlg{uj;i,j=1,...,N}

A(ujk) Z Ujp @ tpk, (i) = gk, S(ujie) = uji

The matrix U is a corepresenatation and the family of irreducible,

inequivalent, unitary corepresetations is indexed by ( N)V-1,

E.g., for SUy(2), U = (1), U = U = ( : 2] ),with
& = U11, 7y = U21,

a? —q\/1+ ¢*7*a ()
U = 1+g%ya 1—-(1+¢*)v"y —qv/1+q2ay*
7 14 q2a*y ()?
etc.
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CQG

The Haar state

Notation: for a € A and £,¢& € A’

Ex&(a) = (E@&)Aa)
Exa = (Id®¢&)A(a)
ax&{ = (E®id)A(a)

Theorem (Woronowicz)

Let (A, A) be a compact quantum group. There exists unique
state (called the Haar measure) h on A such that

axh=hxa=h(a)l, acA.
In general h is not a trace!
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Woronowicz characters

Theorem (Woronowicz)

Then there exists a unique family (7;),cc of linear multiplicative
functionals on A, called the Woronowicz characters, such that:

1.

I T o

f,(1)=1forzeCand fy=¢

C > z+ f;(a) € C is an entire holomorphic function.

fz, % f, = fz 44, for any z;,z, € C.

f,(S(a)) = f_,(a) and fz(a*) = f_,(a), forany z € C, a € A.
S%(a) =f_1xaxf forac A

h(ab) = h(b(fi x ax f1)) for a, b € A.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



CQG

Woronowicz characters

Theorem (Woronowicz)

Then there exists a unique family (7;),cc of linear multiplicative
functionals on A, called the Woronowicz characters, such that:

1.

I T o

f,(1)=1forzeCand fy=¢

C > z+ f;(a) € C is an entire holomorphic function.

fz, % f, = fz 44, for any z;,z, € C.

f,(S(a)) = f_,(a) and fz(a*) = f_,(a), forany z € C, a € A.
S%(a) =f_1xaxf forac A

h(ab) = h(b(fi x ax f1)) for a, b € A.

Example for SU,(2): fz(u},f)) = q?Uth§,,
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NC Lévy Proc.

Noncommutative Lévy Processes

Let A be a *-bialgebra and let (P, ®) be a noncommutative
probability space.
» a random variable on A over (P, ®) is a *-algebra
homomorphism from A into the space (P, ®)
» the distribution of the random variable j : A — P is the
state p; = P o
» a quantum stochastic process on A is a family of random
variables (j)¢cs on A indexed by a set J
» the convolution product of ji, > : A — P is the random
variable j1 x o = mp o (j1 ® j2) o A, where mp denotes the
product in P.
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NC Lévy Proc.

Noncommutative Lévy Processes

A quantum stochastic process (jst)o<s<e<T (T € Ry U{oo}) on a
«-bialgebra A over (P, ®) is called Lévy process if it satisfies:
» (increment property)

Jrsxjst = Jjrr forall0<r<s<t<T

and jy =elpforall 0 <t < T,
> the increments (js;) are (tensor) independent, i.e. for disjoint
intervals (t;, s;]

¢(j51t1 (al)"'.jsntn(an)) = (D(jsltl (al)) "'d>(j5ntn(an))

and Usi,ti(al)vjsj,tj(a2)] =0 for i;ﬁj,

» the increments (js;) are stationary, i.e. ps = ® o js depends
onlyont—s,

» (weak continuity) js; converges to jss in distribution for

t\,Ss.
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NC Lévy Proc.

The convolution semigroup and the generator of a NC
Lévy process

The marginal distributions ps_; := s = ® o ji; of a Lévy process
(JstJo<s<t form a convolution semigroup of states, i.e.

> 0o =€, Ps* Pt = Pstt, limeg pe(b) = e(b) for all b € A,
> (1) =1, pr(b*b) >0 for all b€ A and t > 0.

There exists a unique functional L : A — C, called the generating
functional, such that

d
pr=exp,tL and L= EWL:O'
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NC Lévy Proc.

Lévy Processes and Markov semigroup

Given a convolution semigroup of states (¢t)¢>0, we can define a
semigroup of operators

T,=(id®p) oA, t>0.

Its infinitesimal generator G : A — A is the convolution operator
associated to the generating functional L, i.e.

G(a)=(d®L)oA(a) = Lxa.

Notation: G = T;.
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NC Lévy Proc.

Lévy Processes and Markov semigroup

Given a convolution semigroup of states (¢t)¢>0, we can define a
semigroup of operators

T,=(id®p) oA, t>0.

Its infinitesimal generator G : A — A is the convolution operator
associated to the generating functional L, i.e.

G(a)=(d®L)oA(a) = Lxa.

Notation: G = T;.

Remark

G : A — Ais a convolution operator if and only if
Ao G=(id® G) o A. In this case L(a) = € o G(a).
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Characterisation of Generators of Convolution Semigroups

Theorem (Schoenberg correspondence):

The functional L: A — C is a generating functional of a
convolution semigroup of states if and only if L is

» hermitian, i.e. L(b*) = L(b),
» conditionally positive, i.e. L(b*b) > 0 provided (b) =0,

» and L(1) = 0.
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Lévy Processes and the Generators

noncommutative Lévy process

(st )o<s<t
)
convolution semigroup semigroup of
of states (¢¢)t>0 —  Markov operators (T¢)t>0
) )
generating functional infinitesimal generator
L:A—C — T, :A— A

!

hermitian, cond. positive
L:A—C, st L(1)=0
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Lévy Processes and the Generators

noncommutative Lévy process

(st Jo<s<t
!
convolution semigroup semigroup of
of states (¢)t>0 —  Markov operators (T¢)>0
) !
generating functional infinitesimal generator
L:A—C > T, - A— A

!

hermitian, cond. positive
L:A—C, st L(1)=0
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Aim of the project: study the noncommutative geometry
of a quantum group via its Lévy processes

|deas / Problems / Questions :
» Which processes (and their generators) give interesting

information about the nc geometry?

» Are nc Brownian motions (i.e. Gaussian generators) useful for
that?

» What other conditions (symmetries) on the generators would
be appropriate?
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NC Lévy Proc.

Aim of the project: study the noncommutative geometry
of a quantum group via its Lévy processes

|deas / Problems / Questions :

» Which processes (and their generators) give interesting
information about the nc geometry?

» Are nc Brownian motions (i.e. Gaussian generators) useful for
that?

» What other conditions (symmetries) on the generators would
be appropriate?

» Extend the theory of Dirichlet forms associated to Markov
semigroups and the construction of their derivations to the
non-tracial case (cf. Cipriani & Sauvageot)
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Translation invariance

Translation invariance

Definition
We call a linear cb map T : A — A translation invariant if

AoT=(d® T)oA.

Lemma
If a linear cb map T : A — A is translation invariant, then for all

sel,
T(Vs) C Vs

where V, = Lin{u}:); 1 <j, k < ns}, and therefore

T(A) C A.
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Translation invariance

Proposition

A semigroup (T¢)¢>0 of CP unital maps is the Markov semigroup
of a (unique) Lévy process if and only if all T; are translation
invariant.
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Translation invariance

Translation invariance

Proposition

A semigroup (T¢)r>0 of CP unital maps is the Markov semigroup
of a (unique) Lévy process if and only if all T; are translation
invariant.

See also
M.J. Lindsay and A. Skalski, Convolution semigroups of states,

arXiv:0905.1296v2, 2009.
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5Uq(n)

Let

Ki = kereg,

Ky = Lin{aja: a1,as € kere},
K, = Lin{ajay...a,:a1,az,...,a, € kere},
Ko = []Kn

n>1

i
i
N
o
P

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



CQG NC Lévy Proc.  Translation invariance  Gaussian functionals GNS/KMS-Symmetry  ad-Invariance  Dirichlet forms

'Commutative’ part of SUy(n)
Description of K for SU,(n)

> uj, uf € Koo for i # j
> Uil = U, WU = U UG (modulo K, for i # j)

> ujui = uru; =1 (modulo Ky)

> 111...Upp = 1 (modulo Ky)
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Gaussian functionals

'Commutative’ part of SU,(n)
Description of K., for SU,(n)

ujj, uj; € Koo for i #
ujjljj = ujujj, u,-,-ul-’;- = UE-U,',' (modulo KOO, for i 75_/)
ujur; = vt =1 (modulo Ko)

vV v v Y

u11 ... Upp = 1 (modulo K)

Proposition
The ideal K is also a coideal in A, A/Ky is a x-bialgebra and

A/Kyo =2 C(T™ ).

All processes for which L|k_ = 0 are isomorphic to processes on
the (n — 1)-dimensional torus.
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Gaussian functionals

'Commutative’ part of SU,(n)

Definition

A generator L is called a Gaussian generator if L|x, = 0.
Observation

The gaussian processes on SU,(n) encode the structure of

(n — 1)-dimensional torus, i.e. they give no information on the
noncommutative geometry of SUq(n).

For SUq(2) this was shown by
M. Schiirmann and M. Skeide'1998.
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GNS/KMS-Symmetry

Symmetric generators
We shall consider the inner product induced by the Haar state h

(a, b) := h(a*b).
Recall: each generator L of a Lévy process induces the operator
Ti(a)=Lxa=(id®L)oA(a), ac A

Proposition

Each operator T; : A — A admits unique adjoint, i.e. there exists
a unique linear map T}/ : A — A such that

h(a"Tu(b)) = h(T[(a)"b)
for all a,b € A.
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GNS/KMS-Symmetry

Symmetric generators on quantum groups

We say that a generating functional L is symmetric if the operator
T, is self-adjoint, i.e. if

h(a*Tu(b)) = h(TL(a)*b), a,be A

(— GNS-symmetry).
One shows

T} = Ti405, where [#(a) = L(a),

(if L is hermitian, then L# = L).
Proposition: T, = T} iff L=LoS

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups
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The Haar state is KMS

Theorem (Woronowicz):

The formula
O't(a) =Tik*kax f;‘t

defines a one parameter group of modular automorphisms of A
and the Haar measure his a (0, —1)-KMS state, i.e.,

h(ab) = h(b(fi x a* 1)) = h(boi(a)), a,be A.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups
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Translation invariance  Gaussian functionals ~ GNS/KMS-Symmetry
KMS-symmetry

ad-Invariance

Dirichlet forms

We say that T, is KMS-symmetric if

h(aTu(b)) = h((o

NI~

o Troo,)(a) b).

=] = = = = DAl
. e e e L
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KMS-symmetry
We say that T; is KMS-symmetric if

h(a*Tu(b) = h((o_s 0 Teoa)(a)" b).

Using Tp = Lxa, T} = (L¥ o S)x a and 04(a) = fir x a % fir, we
have
L*a:f_l*(L#os)*ﬂ*a.
2 2
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GNS/KMS-Symmetry

KMS-symmetry
We say that T; is KMS-symmetric if

h(a*Tu(b) = h((o_s 0 Teoa)(a)" b).

Using T, = L % a, TL*:(L#OS)*a and o¢(a) = fir x ax fir, we
have
L*a:f_l*(L#os)*ﬂ*a.
2 2

If L is hermitian, this reduces to

L(a)=co(Lxa)= (LoS)(f%*a*ff

)

1
2
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GNS/KMS-Symmetry

KMS-symmetry
We say that T; is KMS-symmetric if

h(a*Tu(b) = h((o_s 0 Teoa)(a)" b).

Using T, = L % a, TL*:(L#OS)*a and o¢(a) = fir x ax fir, we
have
L*a:f_l*(L#os)*ﬂ*a.
2 2

If L is hermitian, this reduces to

L(a)=co(Lxa)= (LoS)(f%*a*ff

)= (Lo R)(a).

1
2

Recall: S = Ror; R(a)=S(fixaxf_1)

1
2
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Translation invariance  Gaussian functionals ~ GNS/KMS-Symmetry
KMS-symmetry

ad-Invariance

Dirichlet forms

Proposition

Let L € A’ be hermitian. Then

T, is self-adjoint iff Lo S =L.

=] = = = = DAl
. e e e L
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Translation invariance  Gaussian functionals ~ GNS/KMS-Symmetry
KMS-symmetry

ad-Invariance

Dirichlet forms

Proposition
Let L € A’ be hermitian. Then

T, is self-adjoint

iff LoS=1L.
T, is KMS-symmetric

iff LoR=L.

=] = = = = DAl
. e e e L
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GNS/KMS-Symmetry

KMS-symmetry

Proposition
Let L € A’ be hermitian. Then

T, is self-adjoint iff Lo S =L.
T, is KMS-symmetric iff Lo R = L.

Remark
If L is a generating functional, then

» L+ Lo R is a generating functional (it is conditionally
positive!)

> Tii1or is KMS-symmetric.
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ad-Invariance
Relations between symmetry and KMS-symmetry
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Relations between symmetry and KMS-symmetry

Theorem
For L € A’ the following are equivalent:

1. T; commutes with the modular group 0: Ty o0y =00 Ty,

2. L commutes with the Woronowicz characters: Lxf, = f, % L
for z € C,

3. Lis invariant under 7;: i.e. Lo7;, = L.
2 2
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GNS/KMS-Symmetry

Relations between symmetry and KMS-symmetry

Theorem
For L € A’ the following are equivalent:

1. Ty commutes with the modular group o: Ty ooy =00 Ty,

2. L commutes with the Woronowicz characters: Lxf, = f, % L
for z € C,

3. L is invariant under Ti: ie. Lo Ti = L.

Remark

» If L is symmetric, then L commutes with the Woronowicz
characters and is also KMS-symmetric.

> If the algebra is of Kac type (52 =id), then R = S and the
symmetric and KMS-symmetric generators coincide.
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ad-Invariance

Another symmetry: ad-Invariance

Definition
The adjoint action of a Hopf algebra is defined by ad : A — A® A,

ad(a) = a(1)5(3(3)) ®ap), ac A.

Remarks

» The adjoint action is a left corepresentation, i.e. we have

(d®ad)oad = (A®id)oad,
(e®id)oad = id.

» ad is not an algebra homomorphism.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



ad-Invariance

ad-Invariance

Definition
A linear map T € Lin(A) is called ad-invariant, if

(id® T)oad=ado T.
A linear functional L € A’ is called ad-invariant, if

(id® L)oad = L14.

Remarks

» The counit € and the Haar state h are ad-invariant.
» For L € A', T, is ad-invariant if and only if L is ad-invariant.

» If L, L' € A’ are ad-invariant then L x L’ is ad-invariant.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups



ad-Invariance

ad-Invariance

Denote by adp € Lin(.A) the linear map given by

ady = (h®id) o ad.

Properties

» L oady is ad-invariant for all L € A,
» L e A'is ad-invariant if and only if L = L o ady,.

» A functional L is ad-invariant iff it is of the form
L(u},f)) = ¢s0j, for some ¢ € C.

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups
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ad-Invariance

Remarks

» If L is ad-invariant and hermitian, then L is symmetric if and
only if ¢ € R for all s € 7.

» L — L oady does not preserve the hermitianity, neither
positivity!

Uwe Franz: Symmetries of Lévy Processes on compact quantum groups
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Translation invariance  Gaussian functionals

GNS/KMS-Symmetry

ad-Invariance
From Lévy Processes to Dirichlet Forms and beyond...
What next?

Dirichlet forms

Lévy process

—  Markov semigroup

=] = = = = DAl
. e e e L
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Translation invariance  Gaussian functionals ~ GNS/KMS-Symmetry

ad-Invariance

Dirichlet forms
From Lévy Processes to Dirichlet Forms and beyond..
What next?

Lévy process

—  Markov semigroup
——  Dirichlet form &
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Translation invariance  Gaussian functionals ~ GNS/KMS-Symmetry

ad-Invariance

Dirichlet forms
From Lévy Processes to Dirichlet Forms and beyond.
What next?

Lévy process

—  Markov semigroup
— Dirichlet form £
— derivation 9

=] = = = = DAl
. e e e L
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Dirichlet forms

From Lévy Processes to Dirichlet Forms and beyond...
What next?

Lévy process —— Markov semigroup
——  Dirichlet form &
— derivation 0
—  Dirac operator D

Open problems

» Find interesting explicit examples of symmetric or
KMS-symmetric generators on SUq(n).

» Construct the related derivations and Dirac operators (need to
extend Cipriani & Sauvageot’s construction to the non-tracial
case).
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