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Motivation

Asymptotic completeness in QFT attracted much attention during
the last two decades:
(a) Non-relativistic QED [Spohn 97, Dereziński-Gérard 99,

Fröhlich-Griesemer-Schlein 04]
(b) Local, relativistic QFT (massive models in 1+1 dim.) [Lechner 08]

A new class of interacting wedge-local, relativistic QFTs has been
constructed. [Grosse, Lechner, Buchholz, Summers 07-10]
(a) It contains massless models.
(b) We will show that (in 1+1 dim.) some of these massless models are

asymptotically complete.
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Borchers triple

Definition

A Borchers triple (R,U,Ω) w.r.t. W consists of
a von Neumann algebra R ⊂ B(H);
a unitary representation R2 3 x → U(x) s.t.

αx(R) = U(x)RU(x)−1 ⊂ R for x ∈ W,

sp U ⊂ V+;

a vacuum vector Ω, invariant under U, which is cyclic w.r.t. R and
R′. (We assume that Ω is a unique invariant vector).
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Single-particle spaces

We are interested in theories of massless particles.
H± = ker(H ∓ P) - single-particle spaces.
These are not particles in the sense of Wigner.

Wojciech Dybalski, Yoh Tanimoto Deformations of conformal field theories and the problem of asymptotic completeness



Wedge-local QFT in two-dimensional spacetime
Scattering theory for massless particles

Deformations, interaction and asymptotic completeness
Asymptotic completeness in chiral theories

Conclusions

Single-particle spaces

We are interested in theories of massless particles.
H± = ker(H ∓ P) - single-particle spaces.
These are not particles in the sense of Wigner.

Wojciech Dybalski, Yoh Tanimoto Deformations of conformal field theories and the problem of asymptotic completeness



Wedge-local QFT in two-dimensional spacetime
Scattering theory for massless particles

Deformations, interaction and asymptotic completeness
Asymptotic completeness in chiral theories

Conclusions

Single-particle spaces

We are interested in theories of massless particles.
H± = ker(H ∓ P) - single-particle spaces.
These are not particles in the sense of Wigner.

Wojciech Dybalski, Yoh Tanimoto Deformations of conformal field theories and the problem of asymptotic completeness



Wedge-local QFT in two-dimensional spacetime
Scattering theory for massless particles

Deformations, interaction and asymptotic completeness
Asymptotic completeness in chiral theories

Conclusions

Asymptotic fields

Scattering theory for such particles in local theories developed in
[Buchholz 75]
We generalize this theory to the wedge-local case:
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Asymptotic fields

Proposition

Let F ∈ R. Then the limits

Φout
+ (F ) := s- lim

T→∞

1
ln |T |

∫ T+ln |T |

T
dt α(t,t)(F ),

Φin
−(F ) := s- lim

T→−∞

1
ln |T |

∫ T+ln |T |

T
dt α(t,−t)(F )

exist and are elements of R. Operators Φout
− (F ′), Φin

+(F ′), where
F ′ ∈ R′, are constructed analogously.
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Asymptotic fields

Proposition

The asymptotic fields Φout
+ , Φin

− satisfy, for any F ∈ R, x ∈ W,

(a) αx(Φout
+ (F )) = Φout

+ (αx(F )),
(b) αx(Φin

−(F )) = Φin
−(αx(F )),

(c) Φout
+ (F )H+ ⊂ H+,

(d) Φin
−(F )H− ⊂ H−,

Analogous relations hold for Φout
− , Φin

+.
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Scattering states

Definition

Given F ∈ R, F ′ ∈ R′, we create two single-particle states:

Ψ+ = Φout
+ (F )Ω ∈ H+, Ψ− = Φout

− (F ′)Ω ∈ H−.

The corresponding (outgoing) scattering state is given by

Ψ+

out
× Ψ− := Φout

+ (F )Φout
− (F ′)Ω

and it depends only on Ψ+, Ψ−.

Remark 1: For arbitrary Ψ± ∈ H±, the scattering state Ψ+

out
× Ψ− is

constructed by an approximation procedure.

Remark 2: The incoming scattering states Ψ+

in
×Ψ− are obtained

analogously, using Φin
+ , Φin

− .

Wojciech Dybalski, Yoh Tanimoto Deformations of conformal field theories and the problem of asymptotic completeness



Wedge-local QFT in two-dimensional spacetime
Scattering theory for massless particles

Deformations, interaction and asymptotic completeness
Asymptotic completeness in chiral theories

Conclusions

Scattering states

Proposition

For any Ψ±,Ψ
′
± ∈ H±, there holds:

(a) (Ψ+

out
× Ψ−,Ψ

′
+

out
× Ψ′−) = (Ψ+,Ψ

′
+)(Ψ−,Ψ

′
−),

(b) U(x)(Ψ+

out
× Ψ−) = (U(x)Ψ+)

out
× (U(x)Ψ−), for x ∈ R2.

Analogous relations hold for the incoming scattering states.

Thus the asymptotic spaces Hin = H+

in
×H− and Hout = H+

out
× H−

have a tensor product structure.
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Scattering matrix

Definition

The scattering matrix S : Hout → Hin is given by

S(Ψ+

out
× Ψ−) = Ψ+

in
×Ψ−.

We say that:
(a) a theory is interacting, if S is not a multiple of identity;
(b) a theory is asymptotically complete, if Hin = Hout = H.
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Preliminaries on deformations

Let (R,U,Ω) be a Borchers triple (with scattering matrix S) and

Qκ =

(
0 κ
κ 0

)
Then, one can construct a deformed Borchers triple (RQκ

,U,Ω),
(with scattering matrix Sκ). [Grosse, Lechner, Buchholz, Summers,
07-10].

Question: What is the relation between Sκ and S?
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Deformation procedure

Definition
Given F ∈ R∞, one can define the "warped convolution"

FQκ
= lim

ε→0

1
(2π)n

∫
dx dy f (εx , εy)e−ixyαQx(F )U(y)

=

∫
dE (q)αQκq(F ) ∈ B(H),

where E is the spectral measure of (H,P). We set

RQκ = {FQκ |F ∈ R∞ }′′

Theorem (Buchholz-Lechner-Summers)

Let κ > 0. If (R,U,Ω) is a Borchers triple w.r.t. W, then (RQκ
,U,Ω) is

also a Borchers triple w.r.t. W. Moreover, (R′)−Qκ ⊂ (RQκ)′.
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Scattering states of the deformed theory

Main Theorem

For any Ψ± ∈ H± the following relations hold

Ψ+

out
× κ Ψ− = e−i 12κ(H

2−P2)(Ψ+

out
× Ψ−),

Ψ+

in
×κ Ψ− = e i 12κ(H

2−P2)(Ψ+

in
×Ψ−).
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Proof of the main theorem

Proof. Let F ∈ R∞, F ′ ∈ (R′)∞. Then FQκ ∈ RQκ , F
′
−Qκ
∈ (RQκ)′.

Ψ+

out
× κ Ψ− = Φout

+ (FQκ)Φout
− (F ′−Qκ

)Ω

=

∫
dE (q) Φout

+ (αQκq(F ))Φout
− (F ′)Ω

=

∫
dE (q) (U(Qκq)Ψ+)

out
× Ψ−

=

∫
dE (q) e−i 12κ(H+P)(q0−q1)(Ψ+

out
× Ψ−)

= e−i 12κ(H
2−P2)(Ψ+

out
× Ψ−). �
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Scattering matrix of the deformed theory

Corollary

Let S be the scattering matrix of (R,U,Ω) and let Sκ be the scattering
matrix of (RQκ

,U,Ω). Then

Sκ = e iκ(H2−P2)S .

Remark: If (R,U,Ω) is asymptotically complete, non-interacting and
sp U = V+, then (Rκ,U,Ω) is asymptotically complete and interacting.
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Local nets on R.

Definition

A local net of von Neumann algebras on R, denoted by (A0,U0,Ω0),
consists of

a map R ⊃ I → A0(I ) ⊂ B(H) s.t.

A0(I ) ⊂ A0(J) for I ⊂ J
[A0(I ),A0(J)] = 0 for I ∩ J = ∅;

a unitary representation R 3 s → U0(s) s.t.

sp U0 ⊂ R+

U0(s)A0(I )U0(s)−1 = A0(I + s) for s ∈ R;

a unique vacuum vector Ω0, invariant under U0, which is cyclic for
any A0(I ).
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Chiral nets on R2.
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Chiral nets on R2.

Definition

A chiral net of von Neumann algebras on R2 is given by

A(I × J) := A0(I )⊗A0(J)

U(t, x) := U0((
√
2)−1(t − x))⊗ U0((

√
2)−1(t + x))

Ω := Ω0 ⊗ Ω0

Remark: Setting R =
∨

I×J⊂W A(I × J), we obtain a Borchers triple
(R,U,Ω) with some scattering matrix S .
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Asymptotic fields in chiral theories

Proposition

For any A1 ∈ A(I ), A2 ∈ A(J) there holds

Φ
out/in
+ (A1 ⊗ A2) = A1 ⊗ (Ω0|A2Ω0)1,

Φ
out/in
− (A1 ⊗ A2) = (Ω0|A1Ω0)1⊗ A2.

Corollary

Any theory given by a chiral net is asymptotically complete and
non-interacting.

Proof. Φ
out/in
+ (A1 ⊗ 1)Φ

out/in
− (1⊗ A2)Ω = A1Ω0 ⊗ A2Ω0 �
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Conclusions

There exist relativistic theories of interacting, massless particles in
two-dimensional spacetime, which are asymptotically complete.
These theories can be constructed by deformations of chiral nets of
local algebras.
Open question: Do the deformed theories contain local observables?
Future direction: Particle aspects of CFT.
Preliminary results:
(a) Existence of infraparticles in charged sectors of chiral CFT.
(b) Asymptotic completeness for such infraparticles.
(c) Superselection of infraparticle’s velocity.

Preprints: arXiv:1006.5430, arXiv:1101.5700.
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