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(ι⊗ Γ) ◦ Γ = (Γ⊗ ι) ◦ Γ.

Commutative case:

Γ(f )(s, t) = f (st), f ((st)u) = f (s(tu)),

for f ∈ L∞(G), and s, t ,u ∈ G.
Cocommutative case:

Γ(λs) = λs ⊗ λs
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3. κ is an involutive anti-automorphism of L∞(G) satisfying

(κ⊗ κ) ◦ Γ = ζ ◦ Γ ◦ κ,

where ζ(a⊗ b) = b ⊗ a for all a,b ∈ L∞(G).

Commutative case:

κ(f )(s) = f (s−1), f ((st)−1) = f (t−1s−1),

for f ∈ L∞(G), and s, t ∈ G.
Cocommutative case:

κ(λs) = λs−1 , s ∈ G.
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5. ψ is a nsf weight on L∞(G) satisfying

(ψ ⊗ ι)Γ(x) = ψ(x)1, for all x ∈ L∞(G)+.

Commutative case: right Haar measure ds:∫
f (st) ds =

∫
f (s) ds,

for f ∈ L∞(G), and s, t ∈ G.
Cocommutative case:
Plancherel weight for G.
If G is discrete, this is the canonical trace.

ψ(λ(f )∗λ(f )) = ‖f‖22 , f ∈ L1(G) ∩ L2(G)
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5. ψ is a nsf weight on L∞(G) satisfying

(ψ ⊗ ι)Γ(x) = ψ(x)1, for all x ∈ L∞(G)+.

6. (ψ ⊗ ι)((y∗ ⊗ 1)Γ(x)) = κ((ψ ⊗ ι)(Γ(y∗)(x ⊗ 1)) for all
x , y ∈ Nψ;

7. κσψt = σψ−tκ for all t ∈ R;

which implies

Γ(σψt (x)) = (ι⊗ σψt )Γ(x) = (σψt ⊗ ι)Γ(x)

Kac algebra L∞(G) acting standardly on Hψ.
L∞(G)∗ = L1(G).



Tom Cooney 5 Kac Algebras

Right fundamental unitary operator V on Hψ ⊗Hψ:

V (Λψ(x)⊗ Λψ(y)) = (Λψ ⊗ Λψ)(Γ(x)(1⊗ y)),

for all x , y ∈ Nψ. This operator V satisfies the pentagonal
relation

V12V13V23 = V12V23,

Comultiplication Γ on L∞(G) is given by

Γ(x) = V (x ⊗ 1)V ∗.

Commutative case:

(Vf )(s, t) = f (st , t),

for f ∈ L2(G ×G), s, t ∈ G.
Cocommutative case:

V (δs ⊗ δt ) = δs ⊗ δst .
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Representing L1(G) on Lp(G)

Let G be a locally compact group with right Haar measure ds.
Then L1(G) acts contractively by right convolution on Lp(G):

Θr
p(f ) :Lp(G)→ Lp(G)(

Θr
p(f )(g)

)
(t) =

∫
G

g(ts)f (s) ds∥∥Θr
p(f )

∥∥ ≤ ‖f‖1
for f ∈ L1(G), and g ∈ Lp(G).
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Dual version: Fourier algebra acting on Lp(L(G))

(Daws: locally compact group case)
Let G be a discrete group.

L(G) = {λg : g ∈ G}′′ ⊆ B(`2(G))

Fourier algebra A(G) = L(G)∗:

A(G) = {ωξ,η : ξ, η ∈ `2(G)}
‖a‖A(G) = inf{‖ξ‖2 ‖η‖2 : a = ωξ,η}.

with ∗-algebra structure inherited from the following inclusion
into C0(G):

ωξ,η(s) = (λsξ | η) =

∫
ξ(s−1t)η(t) dt
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The noncommutative Lp-space Lp(L(G))

Canonical trace on L(G):

τ(λg) = (λgδe | δe).

Tracial noncommutative Lp-spaces:

Lp(L(G)) = L(G)
‖·‖p ,

where ‖x‖p = τ(|x |p)1/p.
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Terp’s Interpolation Method

Inclusion j1 of L(G) into A(G):

〈j1(λs), λt〉 = τ(λsλt ) =

{
1 t = s−1

0 t 6= s−1 ,

for s, t ∈ G.
This allows us to interpolate between L(G) and A(G).
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Operator space structure of Lp(L(G))

Operator space structure: L1(L(G)) = A(G)op = L(G)op
∗ .

The map
κ : λg 7→ λg−1

is a ∗-isomorphism of L(G) onto L(G)op and thus we can
completely isometrically identify L1(L(G)) with κ∗(A(G)):

[aij ]Mn(L1(L(G))) = [κ∗(aij)]Mn(A(G)).

Operator space structure on Lp(L(G)) obtained by interpolation:

Mn(Lp(L(G)) = (Mn(L(G)),Mn(L1(L(G))))1/p.
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CB-multipliers

A function ϕ : G→ C is in M0A(G) if the map

mϕ : a 7→ ϕa

maps A(G) into A(G) and mϕ is completely bounded.
Equivalently,

λs 7→ ϕ(s)λs, s ∈ G

extends to a cb map Mϕ : L(G)→ L(G) and then

m∗ϕ = Mϕ.

Given f ∈ A(G), we have that Mf is a cb multiplier.
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CB-multipliers on Lp(L(G))

Suppose mϕ ∈ M0A(G). Let ϕ̌ denote the function
ϕ̌(s) = ϕ(s−1). It is easily checked that

mϕ̌ = κ∗mϕκ∗,

and thus mϕ̌ is a cb map from L1(L(G)) to L1(L(G)).
Then Mϕ and mϕ̌ are a compatible pair of maps as

〈j1(Mϕλs), λt〉 = 〈j1(ϕ(s)λs), λt〉 = ϕ(s)τ(λsλt )

and

〈mϕ̌(j1(λs)), λt〉 = 〈j1(λs),Mϕ̌(λt )〉 = ϕ(t−1)τ(λsλt ) = ϕ(s)τ(λsλt ),

and thus
j1(Mϕλs) = mϕ̌(j1(λt )).

We can thus interpolate to get an action of M0A(G) on
Lp(L(G)).
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Interpolation and the inclusion of Mψ into Lp(G)

The intersection of L∞(G)∗ and L∞(G) is given by:

L ={x ∈ L∞(G) : ∃ψx ∈ L∞(G)∗ such that
ψx (y∗z) = (xJΛ(y) | JΛ(z)) , ∀y , z ∈ Nψ}.

‖x‖L = max{‖x‖ , ‖ψx‖1}

L∞(G) ↪→ L∗ and L∞(G)∗ ↪→ L∗ given by for
x ∈ L∞(G), ψ ∈ L∞(G)∗,

〈x , y〉L∗,L = 〈ψy , x〉, y ∈ L
〈ψ, y〉L∗,L = 〈ψ, y〉, y ∈ L.

Then
Lp(G) ' (L∞(G),L∞(G)∗)1/p.
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The noncommutative Lp-spaces Lp(G) = Lp(L∞(G), ψ)

Notation: Mψ = span {x ∈ L∞(G)+ : ψ(x) <∞}.

For a certain positive, self-adjoint, invertible operator D, we
have that

{D1/2pxD1/2p : x ∈Mψ}
‖·‖p = Lp(G)

Inclusion of Mψ ⊂ L∞(G) into L1(G):

〈µ1(x), y〉 = 〈D1/2xD1/2, y〉 = ψ(σψi/2(x)y),

for all x ∈Mψ ∩N∞ and y ∈ Nψ.
N∞ = {x ∈ L∞(G), x analytic and σψα(x) ∈ Nψ,∀α ∈ C}

The inclusion of Mψ into Lp(G) is given by

µp : Mψ → Lp(G), µp(x) = D1/2pxD1/2p,

and these inclusions are compatible with Terp’s interpolation
method.

Operator space structure as mentioned before:
L1(G) = L∞(G)op

∗ , . . .
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The map Θr (f )

Proposition (Junge, Neufang, Ruan)

Let G be a locally compact quantum group. Let f ∈ L1(G) and
define the map Θr (f ) by

Θr (f )(x) = 〈ι⊗ f ,V (x ⊗ 1)V ∗〉, x ∈ B(H).

Then Θr is an injective completely contractive homomorphism
from L1(G) into CBσ,L∞(G)

L∞(Ĝ)
(B(H)).

In fact, there exists a completely isometric algebra isomorphism

M r
cb(L1(G)) ' CBσ,L∞(G)

L∞(Ĝ)
(B(H)) .

Let f ∈ L∞(G)∗.
We define Θr (f ) : L∞(G)→ L∞(G) by

Θr (f )(x) = (ι⊗ f )Γ(x) = (ι⊗ f )V (x ⊗ 1)V ∗.

Commutative case: right convolution operator.
Group von Neumann algebra case: Θr (f ) = Mf = (mf )∗.

Let f ≥ 0, f ∈ L∞(G)∗. For some ξ ∈ H, we have f = ωξ,ξ.
We can write Θr (f ) = (ι⊗ ξ∗)V (x ⊗ 1)V ∗(ι⊗ ξ).
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Extending Θr (f ) to Lp(G)

Let a ∈Mψ. Then x = D1/2paD1/2p is an operator on
L2(R)⊗H, affiliated to L∞(G) oσψ R.
With some work, it can be shown that

(ι⊗ ι⊗ ξ∗)(ι⊗V )(x⊗1)(ι⊗V ∗)(ι⊗ ι⊗ ξ) = D1/2pΘr (f )(a)D1/2p.

Thus our extension of Θr (f ) to Θr
p(f ) : Lp((G))→ Lp(G) should

satisfy

Θr
p(f )(D1/2paD1/2p) = D1/2pΘr (f )(a)D1/2p, a ∈Mψ.

We know Θr (f ) is bounded as a map from L∞(G)→ L∞(G). If
we show it is bounded as a map from L1(G)→ L1(G), then we
can interpolate to get bounded maps Θr

p(f ) : Lp(G)→ Lp(G).
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The pre-adjoint of Θr (f ) and the boundedness of Θr
1(f )

Theorem

For f ∈ L1(G), Θr
1(f )∗ = Θr (f ◦ κ). Thus

‖Θr
1(f )‖ = ‖Θr (f ◦ κ)‖ ≤ ‖f ◦ κ‖ = ‖f‖ .

Thus we have bounded maps Θr
p(f ) : Lp(G)→ Lp(G) satisfying

Θr
p(f )(D1/2paD1/2p) = D1/2pΘr (f )(a)D1/2p, a ∈Mψ.

This yields a contractive representation of L∞(G)∗ on
CB(Lp(G)).

〈D1/2Θr (f )(x)D1/2, y〉 = ψ(σi/2(Θr (f )(x))y),
(ψ ⊗ ι)((y∗ ⊗ 1)Γ(x)) = κ((ψ ⊗ ι)(Γ(y∗)(x ⊗ 1))

Compatible with inclusions of Terp’s interpolation method.
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Convolution and the inclusion of L into L1(G)

For f ∈ L1(G) and y ∈ L∞(G), we have

〈ψx ∗ f , y〉 = 〈ψx ,Θ
r (f )(y)〉

= 〈µ1(x),Θr (f )(y)〉
= 〈Θr (f )∗µ1(x), y〉
= 〈µ1(Θr (f ◦ κ)(x)), y〉
= 〈ψΘr (f◦κ)(x), y〉
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Application

(Kraus & Ruan: AP for Kac algebras
Junge & Ruan: AP for noncommutative Lp-spaces associated
with discrete groups)

An element a in L∞(G) is a left multiplier if

aλ̂(ω̂) ∈ λ̂(A(G)) for all ω̂ ∈ A(G) = L∞(Ĝ)∗.

The set of all left multipliers will be denoted by M l(A(G)). Given
a ∈ M l(A(G), we have a bounded map ml

a on A(G) given by

ml
a(ω̂) = λ̂−1(aλ̂(ω̂))

for all ω̂ ∈ A(G).
The set of completely bounded left multipliers of A(G) will be
denoted by M l

0(A(G)) ⊂ CB(A(G)).
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We then have
M l

a = (ml
a)∗ ∈ CB(L∞(Ĝ)),

and
M l

a

∣∣∣
C∗λ(G)

∈ CB(C∗λ(G))

There is a contractive inclusion of A(G) into M l
0(A(G)) given by

ml
ω̂(ω̂′) = ω̂ ∗ ω̂′,

for ω̂, ω̂′ ∈ A(G).
We have that for ω̂ ∈ A(G)

M l
ω̂ = (ml

ω̂)∗ = Θ̂l(ω̂), and

ml
ω̂ = Θ̂l(ω̂)∗.
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AP for Kac algebras

M l
0A(G) = Ql(G)∗

Definition

G has the approximation property if A(G) has a left stable
weak∗ approximate identity (i.e., a net {ω̂i} in A(G) such that
Θ̂l(ω̂i)→ idL∞(Ĝ) in the stable point weak∗ topology of

CB(L∞(Ĝ)).

G has the weak approximation property if 1 is in the
σ(M l

0(A(G),Ql(G))-closure of A(G) in M l
0(A(G)).

If G is a discrete Kac algebra, these conditions are equivalent.

Ac(G) = {ω̂ ∈ A(G) : Θl
∞(ω̂) ∈ F (L∞(Ĝ))}

= {ω̂ ∈ A(G) : Θl
∞(ω̂) ∈ F (C∗λ(Ĝ))},
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Definition

G is said to be weakly amenable if A(G) has a left approximate
identity {ω̂i} such that

sup
∥∥∥λ̂(ω̂i)

∥∥∥
M l

0(A(G))
≤ L

for some positive number L.
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Definition

An operator space V has the operator space approximation
property (OAP) if there exists a net of finite rank maps
Tα : V → V such that Tα → idV in the stable point-norm
topology; that is, we have ‖(Tα ⊗ id∞)(x)− x‖ → 0 for all
x ∈ V ⊗̌K∞.

An operator space V has the completely bounded
approximation property (CBAP) if there exists a net of finite
rank maps Tα : V → V with ‖Tα‖cb ≤ λ for some positive λ
such that Tα → idV in the point-norm topology on V .
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Theorem

Let G be a discrete Kac algebra with the AP. Then there exists
a net {ω̂α}in Ac(G) ∩ Z (A(G)) such that Θ̂l

1(ω̂α)→ idA(G) in the
stable point-norm topology on A(G) and Θ̂l

∞(ω̂α)→ idC∗λ(Ĝ) in

the stable point-norm topology on C∗λ(Ĝ).

(and a similar version for weak-amenability)

The map Θ̂l
1(ω̂ ◦ κ̂) ∈ CB(L1(Ĝ)) as

Θ̂l
1(ω̂ ◦ κ̂) = κ∗Θ

r
1(ω̂)κ∗ = κ∗Θ

l
1(ω̂)κ∗.

Given x ∈ L ⊂ L∞(Ĝ), we have that the corresponding element
in L∞(G)∗ is ϕx and Θ̂l

∞(ω̂)(x) corresponds to ϕ̂Θ̂l
∞(ω̂)(x).

By earlier proposition about the preadjoint of Θl(f ), we have

Θ̂l
1(ω̂ ◦ κ̂)(ϕ̂x ) =(ω̂ ◦ κ̂) ∗ (ϕ̂x )

=ϕ̂Θ̂l
∞(ω̂)(x).
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Theorem

Let 1 < p <∞. If G is a discrete Kac algebra with the
approximation property, then Lp(Ĝ) has the operator space
approximation property.

Let G be a weakly amenable discrete Kac algebra and let
1 < p <∞. Then Lp(Ĝ) has the completely bounded
approximation property.
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Thanks!!

Thanks for your attention!

Fourier multipliers acting on noncommutative
Lp-spaces
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