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locally compact group G with left Haar measure p
Commutative case: Lo (G)
Cocommutative case: L(G), group von Neumann algebra
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Kac algebras

G = (Lwo(G), T, k,v) is a Kac algebra if
1. L(G) is a von Neumann algebra;

2. T is an injective normal unital *-homomorphism from
Lo(G) — Loo(G)RLso(G) such that

(telMNol=(T®¢t)orl.
Commutative case:
r(f)(s,t) = f(st), f((st)u) = f(s(tu)),

for felo(G),and s, t,u € G.
Cocommutative case:

r()\s) == )\S ® )\s
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3. kis an involutive anti-automorphism of L.(G) satisfying
(k@kK)olN=(_ol ok,
where ((a® b) = b® aforall a,b € L(G).
Commutative case:
r(f)(s)=1f(s7"),  f((s)) =£(t""sT),

for felo(G),and s t € G.
Cocommutative case:

K(As) = Ag-1, se G.
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5. ¢ is a nsf weight on L. (G) satisfying

(v @ )M (x) = (x)1, forall x € Lo(G)™.

Commutative case: right Haar measure ds:

/ f(st) ds — / (s) ds,

for f € Lo(G),and s, t € G.
Cocommutative case:

Plancherel weight for G.

If Gis discrete, this is the canonical trace.

VO A = Ifll.  feL(G)NLA(G)
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5. ¢ is a nsf weight on L..(G) satisfying

(1 @ )M (x) = ¥(x)1, forall x € Lo(G)™.

6. (W@ )((y* @ 1)(x))=r((¢v @) (y*)(x=1))forall
X,y € Ny,

7. /@Uqf = G%tm for all t € R;
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5. ¢ is a nsf weight on L. (G) satisfying
(Y @ )M(x) = p(x)1, forall x € Lo(G)™.

6. (V@ )((y* @ 1)I(x)) =r((v @ )(M(y*)(x 1)) forall
X,y € Ny,

7. KJO’;/} = Uipt:‘i for all t € R;
which implies

Mo} (X)) = (t @ o )T (x) = (o} ® ) (x)

Kac algebra L. (G) acting standardly on .
Lo(G)s = L1(G).



Tom Cooney 5 Kac Algebras

Right fundamental unitary operator V on H,, @ H:

V(Ay(x) @ Ay (y)) = (A @ Ay )(T)(1 @ ),

for all x, y € M. This operator V satisfies the pentagonal
relation
Via Vi Voz = Vo Vo,

Comultiplication I on L. (G) is given by
Nx)=Vkxe1)v.
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Right fundamental unitary operator V on H,, @ H:

V(Ay(x) @ Ay (y)) = (A @ Ay )(T)(1 @ ),

for all x, y € M. This operator V satisfies the pentagonal
relation
Via Vi Voz = Vo Vo,

Comultiplication I on L. (G) is given by
rx)=Vkxe1)v.
Commutative case:
(Vf)(s, t) = f(st, 1),

forf e L,(G x G), s, t € G.
Cocommutative case:

V((SS & 5[) = 63 & (Sst.
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Representing Li(G) on L,(G)

Let G be a locally compact group with right Haar measure ds.
Then L1(G) acts contractively by right convolution on L,(G):

er(f) Lp( )—’LP(G)
(©p(f(9)) (1) /g (ts)f
H@E (O =< 11715

for f € L1(G), and g € Ly(G).
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Dual version: Fourier algebra acting on L,(L(G))

(Daws: locally compact group case)
Let G be a discrete group.

L(G) ={)\g : g € G}" C B((2(G))
Fourier algebra A(G) = L(G).:

A(G) =A{wey = §m € L2(G)}
1allag) = inf{ligl2 lInllz = @=wen}-
with x-algebra structure inherited from the following inclusion
into Co(G):

wen(S) = (As [ 1) = / (s t)n(t) dt
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The noncommutative L,-space Ly(L(G))

Canonical trace on L(G):
7(Ag) = (Agde | de).
Tracial noncommutative Ly-spaces:
Tl
Lp(L(G)) = L(G)" *,

where || x|, = 7(|x[P)"/P.
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Terp’s Interpolation Method

Inclusion j; of L(G) into A(G):

1 t=s"1

030 =0 = { § 153

fors, t € G.
This allows us to interpolate between L(G) and A(G).
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Operator space structure of L,(L(G))

Operator space structure: Ly(L(G)) = A(G)%? = L(G).
The map
K Ag > Ag-t

is a x-isomorphism of L(G) onto L(G)°° and thus we can
completely isometrically identify L1(L(G)) with k.(A(G)):

[@j] MLy (L(G)) = [F+(@))ImnacG))-

Operator space structure on L,(L(G)) obtained by interpolation:

Mn(Lp(L(G)) = (Mn(L(G)), Mn(L1(L(G)))1/p-
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CB-multipliers

A function ¢ : G — Cis in MyA(G) if the map
my:am pa

maps A(G) into A(G) and m,, is completely bounded.
Equivalently,
As — ©(S)As, seG

extends to a cb map M,, : L(G) — L(G) and then
m;, = M.

Given f € A(G), we have that M is a cb multiplier.
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CB-multipliers on L,(L(G))

Suppose m, € MyA(G). Let  denote the function
®(s) = (s~ ). ltis easily checked that

m¢ = K« m@/i*,

and thus my is a cb map from L1(L(G)) to Ly(L(G)).
Then M, and my are a compatible pair of maps as

(1(MgAs), At) = (j1(0(S)As): Ar) = @(S)T(AsAt)

and

(Ma(j1(As)), Ae) = (1 (As), Mp(Ae)) = (t ) T(AsAe) = @(8)T(AsAr),
and thus
J1(MpAs) = my(ji(Ar))-

We can thus interpolate to get an action of MyA(G) on
Lp(L(G)).
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Interpolation and the inclusion of 9t into L,(G)

The intersection of L (G). and L (G) is given by:

L={x € Lo(G) : Fx € L(G). such that
Ux(y72) = (WJNY) [ IN2)), ¥y, Zz € Ny}
1/l = max{ x| s [[¢xll+ }

Loo(G) — L* and Lo (G), — L* given by for
X € Lo(G), 9 € Loo(G)4,

(X, ¥ oL = (y,X), yelL
<¢,,V>L*,L = <w7y>a ye L.

Then
Lp(G) = (Loo(G), Loo(G)i)1/p-
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The noncommutative Ly-spaces Ly(G) = Lp(Lo(G), )

Notation: 9, = span {x € Lo(G)+ : ¥(x) < oco}.
For a certain positive, self-adjoint, invertible operator D, we
have that
(D'2PxD"20 - x e, T e = 1 (@)
Inclusion of My, C Lo(G) into L1(G):
(11(x),y) = (D'2xD'2, y) = y(0],,(X)y),

forall x € My, NN and y € Ny.
Moo = {X € Loo(G), x analytic and o&(x) € Ny, Va € C}

The inclusion of M, into Ly(G) is given by
pp My — Lp(G),  pp(x) = D'/2PxD"/?P,

and these inclusions are compatible with Terp’s interpolation
method.
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The map ©'(f)

Proposition (Junge, Neufang, Ruan)

Let G be a locally compact quantum group. Let f € L1(G) and
define the map ©'(f) by

O (H(x) =@ f, V(x@ )V*),  xe B(H).

Then ©" is an injective completely contractive homomorphism
from L1(G) into CBZ’LE};)G ) (B(H)).
In fact, there exists a completely isometric algebra isomorphism

Mip(Ls(G)) = CB %) (B(H)).

Let f € Loo(G)sx.
We define ©'(f) : Loo(G) — Loo(G) by
)

O (NX)=(Hl(X)=(@HV(xx1)V*.
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Extending ©'(f) to Lp(G)

Let a € M. Then x = D/2PaD'/2P is an operator on
Lo(R) ® H, affiliated to Loo(G) x v R.
With some work, it can be shown that

(@)@ V)(x@ 1)o@ V(o 1E) = DV2PO!(f)(a)D'/?P.

Thus our extension of ©(f) to ©,(f) : Lp((G)) — Lp(G) should
satisfy

©p(f)(D"/?PaD'/?P) = D'/2PQ' (f)(a)D'/?P,  ac My.

We know ©'(f) is bounded as a map from L, (G) — L (G). If
we show it is bounded as a map from L;(G) — L{(G), then we
can interpolate to get bounded maps ©5(f) : Lp(G) — Lp(G).
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The pre-adjoint of ©'(f) and the boundedness of ©/(f)

For f € Ly(G), ©'(f)* = ©'(f o k). Thus

1©1(NI = [1©"(for)ll < [Ifo sl =[]
Thus we have bounded maps ©;(f) : Lp(G) — Lp(G) satisfying
©p(f)(D'/?PaD'/?P) = D'/?PQ' (f)(a)D'/?%P,  ac My.

This yields a contractive representation of L.(G). on
CB(Lp(G)).

m (D'2O'(f)(x)D'2,y) = ¥(0i2(O"(H)(X))),
B (@)@ 1)(x) =r((¥ @)y )(x®1))
m Compatible with inclusions of Terp’s interpolation method.
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Convolution and the inclusion of L into L{(G)

For f € L1(G) and y € L(G), we have

(x * £, y) = (¥x, O (F)(¥))
(11(x), 0" (H)(¥))
(O (F)p1(x), )
(u
= (¢

1(0'(fo k)(X)), ¥)
o (for)(x) ¥)
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Application

(Kraus & Ruan: AP for Kac algebras
Junge & Ruan: AP for noncommutative L,-spaces associated
with discrete groups)

An element ain L.(G) is a left multiplier if
a\(®) € MA(G)) for all & € A(G) = Loo(G)..

The set of all left multipliers will be denoted by M/(A(G)). Given
ac M'(A(G), we have a bounded map m,, on A(G) given by

my(@) = A1 (a\(@))

forall & € A(G).
The set of completely bounded left multipliers of A(G) will be
denoted by M{(A(G)) C CB(A(G)).
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We then have A
M, = (m)* € CB(L(G)),
and
M. € CB(C;(G
2l () (CX(G))
There is a contractive inclusion of A(G) into M)(A(G)) given by

mi (&) =& =&,

for 0,0 € A(G).
We have that for & € A(G)

M., = (ml)* = &/(®), and
mly, = 8'(®).
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AP for Kac algebras

MA(G) = Q'(G)*

Definition

G has the approximation property if A(G) has a left stable
weak™ approximate identity (i.e., a net {&;} in A(G) such that
o) — idLoo(@) in the stable point weak* topology of
CB(Lso(G)).

G has the weak approximation property if 1 is in the
o(M(A(G), Q'(G))-closure of A(G) in M{(A(G)).

If G is a discrete Kac algebra, these conditions are equivalent.

Ac(G) = {& € AG) : OL(®) € F(L(G))}
= {& € AG) : 0 (&) € F(C(G))},
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Definition
G is said to be weakly amenable if A(G) has a left approximate
identity {&;} such that

A& <
supH)\(w,) ML(AG)) ~

for some positive number L.
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Definition

An operator space V has the operator space approximation
property (OAP) if there exists a net of finite rank maps

T, : V — V suchthat T, — idy in the stable point-norm
topology; that is, we have ||(T, ® idx)(x) — x|| — O for all

X € VEK,.

An operator space V has the completely bounded
approximation property (CBAP) if there exists a net of finite
rank maps T, : V — V with || T,/ < A for some positive
such that T,, — idy in the point-norm topology on V.
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Theorem

Let G be a discrete Kac algebra with the AP. Then there exists
a net {&q}in A:(G) N Z(A(G)) such that ©} (&q) — ida) in the
stable point-norm topology on A(G) and 6/ (&) — idC;(@) in
the stable point-norm topology on C;(@).

(and a similar version for weak-amenability)

The map &/ (& o &) € CB(L1(G)) as
Bl(D o k) = KO (O)kw = KO} (O)ks.
Givenx e L C LOO(G)A, we have that the corresponding element
in Loo(G). is ox and Of, (@)(x) corresponds 10 G (-
By earlier proposition about the preadjoint of ©’(f), we have

A

Ol (@0 R)(Px) =(@ o &) * (&x)

=PoL_(6)(x)-
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Theorem

Let1 < p < oco. IfG is a discrete Kac algebra with the
approximation property, then L,(G) has the operator space
approximation property.

Let G be a weakly amenable discrete Kac algebra and let
1 < p < c0. Then Ly(G) has the completely bounded
approximation property.
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Thanks!!

Thanks for your attention!

Fourier multipliers acting on noncommutative

L,-spaces
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