Fourier multipliers acting on noncommutative L_{ρ} -spaces

Tom Cooney

Universidad Complutense de Madrid

EU - NCG 4, Bucharest, April 30, 2011

$$\mathbb{G} = (L_{\infty}(\mathbb{G}), \Gamma, \kappa, \psi)$$
 is a *Kac algebra* if
1. $L_{\infty}(\mathbb{G})$ is a von Neumann algebra;

$$\mathbb{G}=(\mathit{L}_{\infty}(\mathbb{G}),\mathsf{\Gamma},\kappa,\psi)$$
 is a *Kac algebra* if

1. $L_{\infty}(\mathbb{G})$ is a von Neumann algebra;

locally compact group G with left Haar measure μ Commutative case: $L_{\infty}(G)$ Cocommutative case: L(G), group von Neumann algebra

- $\mathbb{G} = (L_{\infty}(\mathbb{G}), \Gamma, \kappa, \psi)$ is a *Kac algebra* if
 - 1. $L_{\infty}(\mathbb{G})$ is a von Neumann algebra;
 - 2. Γ is an injective normal unital *-homomorphism from $L_{\infty}(\mathbb{G}) \to L_{\infty}(\mathbb{G}) \overline{\otimes} L_{\infty}(\mathbb{G})$ such that

$$(\iota \otimes \Gamma) \circ \Gamma = (\Gamma \otimes \iota) \circ \Gamma.$$

- $\mathbb{G} = (L_{\infty}(\mathbb{G}), \Gamma, \kappa, \psi)$ is a *Kac algebra* if
 - 1. $L_{\infty}(\mathbb{G})$ is a von Neumann algebra;
 - 2. Γ is an injective normal unital *-homomorphism from $L_{\infty}(\mathbb{G}) \to L_{\infty}(\mathbb{G}) \overline{\otimes} L_{\infty}(\mathbb{G})$ such that

$$(\iota \otimes \Gamma) \circ \Gamma = (\Gamma \otimes \iota) \circ \Gamma.$$

Commutative case:

$$\Gamma(f)(s,t) = f(st), \qquad f((st)u) = f(s(tu)),$$

for $f \in L_{\infty}(G)$, and $s, t, u \in G$. Cocommutative case:

$$\mathsf{F}(\lambda_{\mathcal{S}}) = \lambda_{\mathcal{S}} \otimes \lambda_{\mathcal{S}}$$

3. κ is an involutive anti-automorphism of $L_{\infty}(\mathbb{G})$ satisfying

 $(\kappa \otimes \kappa) \circ \Gamma = \zeta \circ \Gamma \circ \kappa,$

where $\zeta(a \otimes b) = b \otimes a$ for all $a, b \in L_{\infty}(\mathbb{G})$.

Commutative case:

 $\kappa(f)(s) = f(s^{-1}), \qquad f((st)^{-1}) = f(t^{-1}s^{-1}),$

for $f \in L_{\infty}(G)$, and $s, t \in G$. Cocommutative case:

$$\kappa(\lambda_s) = \lambda_{s^{-1}}, \qquad s \in G.$$

3. κ is an involutive anti-automorphism of $L_{\infty}(\mathbb{G})$ satisfying

 $(\kappa \otimes \kappa) \circ \Gamma = \zeta \circ \Gamma \circ \kappa,$

where $\zeta(a \otimes b) = b \otimes a$ for all $a, b \in L_{\infty}(\mathbb{G})$.

Commutative case:

$$\kappa(f)(s) = f(s^{-1}), \qquad f((st)^{-1}) = f(t^{-1}s^{-1}),$$

for $f \in L_{\infty}(G)$, and $s, t \in G$. Cocommutative case:

$$\kappa(\lambda_s) = \lambda_{s^{-1}}, \qquad s \in G.$$

 $(\psi \otimes \iota)\Gamma(x) = \psi(x)\mathbf{1}, \text{ for all } x \in L_{\infty}(\mathbb{G})^+.$

Commutative case: right Haar measure ds:

$$\int f(st) \, ds = \int f(s) \, ds$$

for $f \in L_{\infty}(G)$, and $s, t \in G$. Cocommutative case: Plancherel weight for *G*. If *G* is discrete, this is the canonical trace.

 $\psi(\lambda(f)^*\lambda(f)) = \|f\|_2^2, \qquad f \in L_1(G) \cap L_2(G)$

 $(\psi \otimes \iota)\Gamma(x) = \psi(x)\mathbf{1}, \text{ for all } x \in L_{\infty}(\mathbb{G})^+.$

Commutative case: right Haar measure ds:

$$\int f(st) \, ds = \int f(s) \, ds$$

for $f \in L_{\infty}(G)$, and $s, t \in G$. Cocommutative case: Plancherel weight for *G*. If *G* is discrete, this is the canonical trace.

$$\psi(\lambda(f)^*\lambda(f)) = \|f\|_2^2, \qquad f \in L_1(G) \cap L_2(G)$$

$$(\psi \otimes \iota)\Gamma(x) = \psi(x)\mathbf{1}, \text{ for all } x \in L_{\infty}(\mathbb{G})^+.$$

6. (ψ ⊗ ι)((y* ⊗ 1)Γ(x)) = κ((ψ ⊗ ι)(Γ(y*)(x ⊗ 1)) for all x, y ∈ 𝔅_ψ;
7. κσ^ψ_t = σ^ψ_{-t}κ for all t ∈ ℝ;

$$(\psi \otimes \iota)\Gamma(x) = \psi(x)\mathbf{1}, \text{ for all } x \in L_{\infty}(\mathbb{G})^+.$$

- 6. $(\psi \otimes \iota)((y^* \otimes 1)\Gamma(x)) = \kappa((\psi \otimes \iota)(\Gamma(y^*)(x \otimes 1))$ for all $x, y \in \mathfrak{N}_{\psi};$
- 7. $\kappa \sigma_t^{\psi} = \sigma_{-t}^{\psi} \kappa$ for all $t \in \mathbb{R}$;

which implies

$$\Gamma(\sigma_t^{\psi}(\mathbf{x})) = (\iota \otimes \sigma_t^{\psi}) \Gamma(\mathbf{x}) = (\sigma_t^{\psi} \otimes \iota) \Gamma(\mathbf{x})$$

Kac algebra $L_{\infty}(\mathbb{G})$ acting standardly on \mathcal{H}_{ψ} . $L_{\infty}(\mathbb{G})_* = L_1(\mathbb{G}).$ *Right fundamental unitary operator* V on $\mathcal{H}_{\psi} \otimes \mathcal{H}_{\psi}$:

$$V(\Lambda_{\psi}(x)\otimes\Lambda_{\psi}(y))=(\Lambda_{\psi}\otimes\Lambda_{\psi})(\Gamma(x)(1\otimes y)),$$

for all $x, y \in \mathfrak{N}_{\psi}$. This operator *V* satisfies the pentagonal relation

$$V_{12}V_{13}V_{23}=V_{12}V_{23},$$

Comultiplication Γ on $L_\infty(\mathbb{G})$ is given by

$$\Gamma(x) = V(x \otimes 1) V^*$$

Commutative case:

$$(Vf)(s,t)=f(st,t),$$

for $f \in L_2(G \times G)$, $s, t \in G$. Cocommutative case:

$$V(\delta_{s}\otimes\delta_{t})=\delta_{s}\otimes\delta_{st}.$$

Right fundamental unitary operator V on $\mathcal{H}_{\psi} \otimes \mathcal{H}_{\psi}$:

$$V(\Lambda_{\psi}(x)\otimes \Lambda_{\psi}(y))=(\Lambda_{\psi}\otimes \Lambda_{\psi})(\Gamma(x)(1\otimes y)),$$

for all $x, y \in \mathfrak{N}_{\psi}$. This operator *V* satisfies the pentagonal relation

$$V_{12}V_{13}V_{23}=V_{12}V_{23},$$

Comultiplication Γ on $L_{\infty}(\mathbb{G})$ is given by

$$\Gamma(x) = V(x \otimes 1) V^*$$

Commutative case:

$$(Vf)(s,t)=f(st,t),$$

for $f \in L_2(G \times G)$, $s, t \in G$. Cocommutative case:

$$V(\delta_{\boldsymbol{s}}\otimes\delta_{\boldsymbol{t}})=\delta_{\boldsymbol{s}}\otimes\delta_{\boldsymbol{st}}.$$

Representing $L_1(G)$ on $L_p(G)$

Let *G* be a locally compact group with right Haar measure *ds*. Then $L_1(G)$ acts contractively by right convolution on $L_p(G)$:

$$egin{aligned} \Theta^r_{
ho}(f) :& L_{
ho}(G) o L_{
ho}(G) \ igl(\Theta^r_{
ho}(f)(g)igr)(t) = \int_G g(ts)f(s) \ ds \ & igl\|\Theta^r_{
ho}(f)ig\| \le \|f\|_1 \end{aligned}$$

for $f \in L_1(G)$, and $g \in L_p(G)$.

Dual version: Fourier algebra acting on $L_{\rho}(L(G))$

(Daws: locally compact group case) Let *G* be a discrete group.

$$L(G) = \{\lambda_g : g \in G\}'' \subseteq B(\ell_2(G))$$

Fourier algebra $A(G) = L(G)_*$:

$$A(G) = \{ \omega_{\xi,\eta} : \xi, \eta \in \ell_2(G) \}$$
$$\|a\|_{A(G)} = \inf\{ \|\xi\|_2 \|\eta\|_2 : a = \omega_{\xi,\eta} \}.$$

with *-algebra structure inherited from the following inclusion into $C_0(G)$:

$$\omega_{\xi,\eta}(\boldsymbol{s}) = (\lambda_{\boldsymbol{s}}\xi \mid \eta) = \int \xi(\boldsymbol{s}^{-1}t)\eta(t) \, dt$$

The noncommutative L_{ρ} -space $L_{\rho}(L(G))$

Canonical trace on L(G):

$$\tau(\lambda_g) = (\lambda_g \delta_e \mid \delta_e).$$

Tracial noncommutative L_p -spaces:

$$L_{\rho}(L(G)) = \overline{L(G)}^{\|\cdot\|_{\rho}},$$

where $||x||_{p} = \tau (|x|^{p})^{1/p}$.

Terp's Interpolation Method

Inclusion j_1 of L(G) into A(G):

$$\langle j_1(\lambda_s), \lambda_t \rangle = \tau(\lambda_s \lambda_t) = \begin{cases} 1 & t = s^{-1} \\ 0 & t \neq s^{-1} \end{cases},$$

for $s, t \in G$. This allows us to interpolate between L(G) and A(G).

Operator space structure of $L_p(L(G))$

Operator space structure: $L_1(L(G)) = A(G)^{op} = L(G)^{op}_*$. The map

$$\kappa: \lambda_{g} \mapsto \lambda_{g^{-1}}$$

is a *-isomorphism of L(G) onto $L(G)^{op}$ and thus we can completely isometrically identify $L_1(L(G))$ with $\kappa_*(A(G))$:

$$[a_{ij}]_{M_n(L_1(L(G)))} = [\kappa_*(a_{ij})]_{M_n(A(G))}.$$

Operator space structure on $L_p(L(G))$ obtained by interpolation:

 $M_n(L_p(L(G)) = (M_n(L(G)), M_n(L_1(L(G))))_{1/p}.$

CB-multipliers

A function $\varphi : G \to \mathbb{C}$ is in $M_0A(G)$ if the map

$$m_{arphi}$$
 : $oldsymbol{a}\mapsto arphioldsymbol{a}$

maps A(G) into A(G) and m_{φ} is completely bounded. Equivalently,

$$\lambda_{s} \mapsto \varphi(s) \lambda_{s}, \qquad s \in G$$

extends to a cb map $M_{\varphi}: L(G) \rightarrow L(G)$ and then

$$m_{\varphi}^* = M_{\varphi}.$$

Given $f \in A(G)$, we have that M_f is a cb multiplier.

CB-multipliers on $L_p(L(G))$

Suppose $m_{\varphi} \in M_0A(G)$. Let $\check{\varphi}$ denote the function $\check{\varphi}(s) = \varphi(s^{-1})$. It is easily checked that

 $m_{\check{\varphi}} = \kappa_* m_{\varphi} \kappa_*,$

and thus $m_{\check{\varphi}}$ is a cb map from $L_1(L(G))$ to $L_1(L(G))$. Then M_{φ} and $m_{\check{\varphi}}$ are a compatible pair of maps as

$$\langle j_1(M_{\varphi}\lambda_s),\lambda_t\rangle = \langle j_1(\varphi(s)\lambda_s),\lambda_t\rangle = \varphi(s)\tau(\lambda_s\lambda_t)$$

and

$$\langle m_{\check{\varphi}}(j_1(\lambda_s)), \lambda_t \rangle = \langle j_1(\lambda_s), M_{\check{\varphi}}(\lambda_t) \rangle = \varphi(t^{-1})\tau(\lambda_s\lambda_t) = \varphi(s)\tau(\lambda_s\lambda_t),$$

and thus

$$j_1(M_{\varphi}\lambda_s) = m_{\check{\varphi}}(j_1(\lambda_t)).$$

We can thus interpolate to get an action of $M_0A(G)$ on $L_p(L(G))$.

Interpolation and the inclusion of \mathfrak{M}_{ψ} into $L_{\rho}(\mathbb{G})$

The intersection of $L_{\infty}(\mathbb{G})_*$ and $L_{\infty}(\mathbb{G})$ is given by:

$$L = \{ x \in L_{\infty}(\mathbb{G}) : \exists \psi_x \in L_{\infty}(\mathbb{G})_* \text{ such that} \\ \psi_x(y^*z) = (xJ\Lambda(y) \mid J\Lambda(z)), \quad \forall y, z \in \mathfrak{N}_{\psi} \}. \\ \|x\|_L = \max\{\|x\|, \|\psi_x\|_1\}$$

 $L_{\infty}(\mathbb{G}) \hookrightarrow L^*$ and $L_{\infty}(\mathbb{G})_* \hookrightarrow L^*$ given by for $x \in L_{\infty}(\mathbb{G}), \psi \in L_{\infty}(\mathbb{G})_*$,

$$\begin{split} \langle \boldsymbol{x}, \boldsymbol{y} \rangle_{L^*, L} &= \langle \psi_{\boldsymbol{y}}, \boldsymbol{x} \rangle, \quad \boldsymbol{y} \in \boldsymbol{L} \\ \langle \psi, \boldsymbol{y} \rangle_{L^*, L} &= \langle \psi, \boldsymbol{y} \rangle, \quad \boldsymbol{y} \in \boldsymbol{L}. \end{split}$$

Then

$$L_p(\mathbb{G}) \simeq (L_\infty(\mathbb{G}), L_\infty(\mathbb{G})_*)_{1/p}.$$

The noncommutative L_{ρ} -spaces $L_{\rho}(\mathbb{G}) = L_{\rho}(L_{\infty}(\mathbb{G}), \psi)$

Notation:
$$\mathfrak{M}_{\psi} = \operatorname{span} \{ x \in L_{\infty}(\mathbb{G})_{+} : \psi(x) < \infty \}.$$

For a certain positive, self-adjoint, invertible operator *D*, we have that

$$\{D^{1/2p}xD^{1/2p}: x \in \mathfrak{M}_{\psi}\}^{\|\cdot\|_p} = L_p(\mathbb{G})$$

Inclusion of $\mathfrak{M}_{\psi} \subset L_{\infty}(\mathbb{G})$ into $L_{1}(\mathbb{G})$:

$$\langle \mu_1(\mathbf{x}), \mathbf{y} \rangle = \langle D^{1/2} \mathbf{x} D^{1/2}, \mathbf{y} \rangle = \psi(\sigma_{i/2}^{\psi}(\mathbf{x}) \mathbf{y}),$$

for all $x \in \mathfrak{M}_{\psi} \cap \mathfrak{N}_{\infty}$ and $y \in \mathfrak{N}_{\psi}$. $\mathfrak{N}_{\infty} = \{x \in L_{\infty}(\mathbb{G}), x \text{ analytic and } \sigma_{\alpha}^{\psi}(x) \in \mathfrak{N}_{\psi}, \forall \alpha \in \mathbb{C}\}$

The inclusion of \mathfrak{M}_{ψ} into $L_{\rho}(\mathbb{G})$ is given by

$$\mu_{\mathcal{P}}:\mathfrak{M}_{\psi}\rightarrow L_{\mathcal{P}}(\mathbb{G}),\qquad \mu_{\mathcal{P}}(x)=D^{1/2p}xD^{1/2p},$$

and these inclusions are compatible with Terp's interpolation method.

The map $\Theta^r(f)$

Proposition (Junge, Neufang, Ruan)

Let \mathbb{G} be a locally compact quantum group. Let $f \in L_1(\mathbb{G})$ and define the map $\Theta^r(f)$ by

$$\Theta^{r}(f)(x) = \langle \iota \otimes f, V(x \otimes 1) V^* \rangle, \qquad x \in B(\mathcal{H}).$$

Then Θ^r is an injective completely contractive homomorphism from $L_1(\mathbb{G})$ into $CB_{L_{\infty}(\widehat{\mathbb{G}})}^{\sigma,L_{\infty}(\mathbb{G})}(B(\mathcal{H}))$.

In fact, there exists a completely isometric algebra isomorphism

$$M^{r}_{cb}(L_{1}(\mathbb{G}))\simeq CB^{\sigma,L_{\infty}(\mathbb{G})}_{L_{\infty}(\hat{\mathbb{G}})}\left(B(\mathcal{H})
ight).$$

Let $f \in L_{\infty}(\mathbb{G})_*$. We define $\Theta^r(f) : L_{\infty}(\mathbb{G}) \to L_{\infty}(\mathbb{G})$ by $\Theta^r(f)(x) = (\iota \otimes f)\Gamma(x) = (\iota \otimes f)V(x \otimes 1)V^*$.

Extending $\Theta^r(f)$ to $L_p(\mathbb{G})$

Let $a \in \mathfrak{M}_{\psi}$. Then $x = D^{1/2p} a D^{1/2p}$ is an operator on $L_2(\mathbb{R}) \otimes \mathcal{H}$, affiliated to $L_{\infty}(\mathbb{G}) \rtimes_{\sigma^{\psi}} \mathbb{R}$. With some work, it can be shown that

 $(\iota \otimes \iota \otimes \xi^*)(\iota \otimes V)(x \otimes 1)(\iota \otimes V^*)(\iota \otimes \iota \otimes \xi) = D^{1/2p}\Theta^r(f)(a)D^{1/2p}.$

Thus our extension of $\Theta^r(f)$ to $\Theta^r_p(f) : L_p((G)) \to L_p(\mathbb{G})$ should satisfy

$$\Theta_p^r(f)(D^{1/2p}aD^{1/2p})=D^{1/2p}\Theta^r(f)(a)D^{1/2p}, \qquad a\in\mathfrak{M}_\psi.$$

We know $\Theta^{r}(f)$ is bounded as a map from $L_{\infty}(\mathbb{G}) \to L_{\infty}(\mathbb{G})$. If we show it is bounded as a map from $L_{1}(\mathbb{G}) \to L_{1}(\mathbb{G})$, then we can interpolate to get bounded maps $\Theta_{p}^{r}(f) : L_{p}(\mathbb{G}) \to L_{p}(\mathbb{G})$.

The pre-adjoint of $\Theta^{r}(f)$ and the boundedness of $\Theta_{1}^{r}(f)$

Theorem

For
$$f \in L_1(\mathbb{G})$$
, $\Theta_1^r(f)^* = \Theta^r(f \circ \kappa)$. Thus

$$\left\|\Theta_{1}^{r}(f)\right\| = \left\|\Theta^{r}(f \circ \kappa)\right\| \leq \left\|f \circ \kappa\right\| = \left\|f\right\|.$$

Thus we have bounded maps $\Theta_p^r(f): L_p(\mathbb{G}) \to L_p(\mathbb{G})$ satisfying

$$\Theta_p^r(f)(D^{1/2p}aD^{1/2p}) = D^{1/2p}\Theta^r(f)(a)D^{1/2p}, \qquad a \in \mathfrak{M}_{\psi}.$$

This yields a contractive representation of $L_{\infty}(\mathbb{G})_*$ on $CB(L_p(\mathbb{G}))$.

$$(\psi \otimes \iota)((y^* \otimes 1)\Gamma(x)) = \kappa((\psi \otimes \iota)(\Gamma(y^*)(x \otimes 1)))$$

Compatible with inclusions of Terp's interpolation method.

Convolution and the inclusion of *L* into $L_1(\mathbb{G})$

For $f \in L_1(\mathbb{G})$ and $y \in L_\infty(\mathbb{G})$, we have

$$\begin{split} \langle \psi_{\mathbf{x}} * f, \mathbf{y} \rangle &= \langle \psi_{\mathbf{x}}, \Theta^r(f)(\mathbf{y}) \rangle \\ &= \langle \mu_1(\mathbf{x}), \Theta^r(f)(\mathbf{y}) \rangle \\ &= \langle \Theta^r(f)_* \mu_1(\mathbf{x}), \mathbf{y} \rangle \\ &= \langle \mu_1(\Theta^r(f \circ \kappa)(\mathbf{x})), \mathbf{y} \rangle \\ &= \langle \psi_{\Theta^r(f \circ \kappa)(\mathbf{x})}, \mathbf{y} \rangle \end{split}$$

Application

(Kraus & Ruan: AP for Kac algebras Junge & Ruan: AP for noncommutative L_p -spaces associated with discrete groups)

An element *a* in $L_{\infty}(\mathbb{G})$ is a *left multiplier* if

$$a\hat{\lambda}(\hat{\omega})\in\hat{\lambda}(\mathcal{A}(\mathbb{G}))$$
 for all $\hat{\omega}\in\mathcal{A}(\mathbb{G})=\mathcal{L}_{\infty}(\hat{\mathbb{G}})_{*}.$

The set of all left multipliers will be denoted by $M^{l}(A(\mathbb{G}))$. Given $a \in M^{l}(A(\mathbb{G}))$, we have a bounded map m_{a}^{l} on $A(\mathbb{G})$ given by

$$m_a^l(\hat{\omega}) = \hat{\lambda}^{-1}(a\hat{\lambda}(\hat{\omega}))$$

for all $\hat{\omega} \in A(\mathbb{G})$. The set of completely bounded left multipliers of $A(\mathbb{G})$ will be denoted by $M'_0(A(\mathbb{G})) \subset CB(A(\mathbb{G}))$.

We then have

$$M_a^{\prime}=(m_a^{\prime})^*\in {\it CB}(L_{\infty}(\hat{\mathbb{G}})),$$

and

$$M_a^{\prime}\Big|_{\mathcal{C}^*_\lambda(\mathbb{G})}\in \mathcal{CB}(\mathcal{C}^*_\lambda(\mathbb{G}))$$

There is a contractive inclusion of $A(\mathbb{G})$ into $M'_0(A(\mathbb{G}))$ given by

$$m_{\hat{\omega}}^{\prime}(\hat{\omega}^{\prime})=\hat{\omega}*\hat{\omega}^{\prime},$$

for $\hat{\omega}, \hat{\omega}' \in A(\mathbb{G})$. We have that for $\hat{\omega} \in A(\mathbb{G})$

$$egin{aligned} M_{\hat{\omega}}^{l} &= (m_{\hat{\omega}}^{l})^{*} = \hat{\Theta}^{l}(\hat{\omega}), ext{ and } \ m_{\hat{\omega}}^{l} &= \hat{\Theta}^{l}(\hat{\omega})_{*}. \end{aligned}$$

AP for Kac algebras

$$M_0'A(\mathbb{G})=Q'(\mathbb{G})^*$$

Definition

 \mathbb{G} has the *approximation property* if $A(\mathbb{G})$ has a left stable weak* approximate identity (i.e., a net $\{\hat{\omega}_i\}$ in $A(\mathbb{G})$ such that $\hat{\Theta}^{l}(\hat{\omega}_i) \rightarrow id_{L_{\infty}(\hat{\mathbb{G}})}$ in the stable point weak* topology of $CB(L_{\infty}(\hat{\mathbb{G}}))$.

 \mathbb{G} has the *weak approximation property* if 1 is in the $\sigma(M'_0(\mathcal{A}(\mathbb{G}), \mathcal{Q}'(\mathbb{G})))$ -closure of $\mathcal{A}(\mathbb{G})$ in $M'_0(\mathcal{A}(\mathbb{G}))$.

If $\ensuremath{\mathbb{G}}$ is a discrete Kac algebra, these conditions are equivalent.

$$\begin{split} \boldsymbol{A}_{\boldsymbol{\mathcal{C}}}(\mathbb{G}) &= \{ \hat{\omega} \in \boldsymbol{A}(\mathbb{G}) \, : \, \Theta_{\infty}^{l}(\hat{\omega}) \in \boldsymbol{F}(\boldsymbol{L}_{\infty}(\hat{\mathbb{G}})) \} \\ &= \{ \hat{\omega} \in \boldsymbol{A}(\mathbb{G}) \, : \, \Theta_{\infty}^{l}(\hat{\omega}) \in \boldsymbol{F}(\boldsymbol{C}_{\lambda}^{*}(\hat{\mathbb{G}})) \}, \end{split}$$

Definition

 \mathbb{G} is said to be weakly amenable if $A(\mathbb{G})$ has a left approximate identity $\{\hat{\omega}_i\}$ such that

$$\sup \left\| \hat{\lambda}(\hat{\omega}_i) \right\|_{M'_0(\mathcal{A}(\mathbb{G}))} \leq L$$

for some positive number L.

Definition

An operator space *V* has the *operator space approximation* property (*OAP*) if there exists a net of finite rank maps $T_{\alpha} : V \to V$ such that $T_{\alpha} \to id_{V}$ in the *stable point-norm topology*; that is, we have $||(T_{\alpha} \otimes id_{\infty})(x) - x|| \to 0$ for all $x \in V \otimes K_{\infty}$.

An operator space *V* has the *completely bounded* approximation property (*CBAP*) if there exists a net of finite rank maps $T_{\alpha} : V \to V$ with $||T_{\alpha}||_{cb} \leq \lambda$ for some positive λ such that $T_{\alpha} \to id_V$ in the *point-norm topology* on *V*.

Theorem

Let \mathbb{G} be a discrete Kac algebra with the AP. Then there exists a net $\{\hat{\omega}_{\alpha}\}$ in $A_{c}(\mathbb{G}) \cap Z(A(\mathbb{G}))$ such that $\hat{\Theta}_{1}^{l}(\hat{\omega}_{\alpha}) \to id_{A(\mathbb{G})}$ in the stable point-norm topology on $A(\mathbb{G})$ and $\hat{\Theta}_{\infty}^{l}(\hat{\omega}_{\alpha}) \to id_{C_{\lambda}^{*}(\hat{\mathbb{G}})}$ in the stable point-norm topology on $C_{\lambda}^{*}(\hat{\mathbb{G}})$.

(and a similar version for weak-amenability)

The map
$$\hat{\Theta}_1^{\prime}(\hat{\omega}\circ\hat{\kappa})\in CB(L_1(\hat{\mathbb{G}}))$$
 as
 $\hat{\Theta}_1^{\prime}(\hat{\omega}\circ\hat{\kappa})=\kappa_*\Theta_1^{\prime}(\hat{\omega})\kappa_*=\kappa_*\Theta_1^{\prime}(\hat{\omega})\kappa_*.$

Given $x \in L \subset L_{\infty}(\hat{\mathbb{G}})$, we have that the corresponding element in $L_{\infty}(\mathbb{G})_*$ is φ_x and $\hat{\Theta}_{\infty}^{l}(\hat{\omega})(x)$ corresponds to $\hat{\varphi}_{\hat{\Theta}_{\infty}^{l}(\hat{\omega})(x)}$. By earlier proposition about the preadjoint of $\Theta^{l}(f)$, we have

$$\hat{\Theta}_1^{\prime}(\hat{\omega}\circ\hat{\kappa})(\hat{\varphi}_{\mathbf{X}}) = (\hat{\omega}\circ\hat{\kappa})*(\hat{\varphi}_{\mathbf{X}}) = \hat{\varphi}_{\hat{\Theta}_{\infty}^{\prime}(\hat{\omega})(\mathbf{X})}.$$

Theorem

Let $1 . If <math>\mathbb{G}$ is a discrete Kac algebra with the approximation property, then $L_p(\hat{\mathbb{G}})$ has the operator space approximation property.

Let \mathbb{G} be a weakly amenable discrete Kac algebra and let $1 . Then <math>L_p(\hat{\mathbb{G}})$ has the completely bounded approximation property.

Thanks for your attention!

Fourier multipliers acting on noncommutative L_{ρ} -spaces

Tom Cooney

Universidad Complutense de Madrid

EU - NCG 4, Bucharest, April 30, 2011