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Outline:

e Overview of the Cuntz algebras

Weyl groups

Permutative automorphisms and trees

Reduced Weyl groups and shift automorphisms

Exotic endomorphisms

Outlook: full Weyl group, the above for graph algebras



Cuntz algebras: I met

e Doplicher-Roberts duality (superselection structure of QFT)

Jones index and sector theory

Localized automorphisms, permutations and trees (today)

Representations (ITP-type)
e NCG: D =1logA



[sometries S play an important role in functional analysis and operator
theory/algebras
Coburn: C*(5), S proper isometry

Cuntz algebras:
O,=C*"(S1,...,5),2<n< o0

S8 =1
Xn: S8 =1
=1

In particular, S;S; = 6;;1, for all 1 <4,7 <n

H :=span{9Si,...,S,}, a Hilbert space of dimension n and support 1 in
Oy,



Notation/terminology:

Wk = {1,...;n}* (k > 1), set of k-tuples a = (ay,...,az), @ €
{1,...,n}, 1 <i<k

W, = Ure Wk WO = {0}
multi-indices: elements of W,

If « € WF then I(a) := k, the length of the word « in the alphabet

{1,...,n}

Given a = (aq,...,ax) € W, let Sy := Sy, ... Sq
(So = I by convention).
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Facts:

every word in {S;, Sf | i = 1,...,n} can be uniquely expressed as a normal
ordered monomial S,S%, for o, 3 € W,

O,, is the closed linear span of S,S%, for a, 3 € W,

O,, unital, simple, separable, nuclear and purely infinite with
Ko(O,) =2y, Ki(O,) =0

(in particular the K-theory of O is trivial)

O,, not type 1

O,, is a Doplicher-Roberts algebra, a Cuntz-Krieger algebra, a graph al-
gebra and a Pimsner algebra

Cuntz algebras in operator algebras: structure and classification of C*-
algebras and group actions, sectors, subfactors/index theory, entropy, dy-
namical systems, coding, self-similar sets, wavelets (signal processing), quan-
tum field theory, abstract group duality, twisted cyclic cocycles and Fredholm
theory



unital C*-subalgebras of Cuntz algebras:

O, D> F,O>D,

F,, core UHF-subalgebra
D,, diagonal, a canonical MASA with Cantor spectrum

FF = span{S,S5, (o) = U(B) = k}, k > 1 = FF C F* for all k

FF o~ My ~ M, ® -+ ® M, (k factors), compatile with embeddings
rT—r®1 _

Fni= <Uk Fff) ~ Q.- , M, UHF-algebra of Glimm type n®, 7 unique
trace

(in particular, F» ~ @, M, is the CAR algebra.)

E : O, — F, a faithful conditional expectation, obtained by averaging
over the canonical gauge action of T

Fo=0OF

D,,, the commutative C*-subalgebra of O,, generated by projections P, :=
SoSk, o € Wy; it is a regular MASA| both in F,, and O,

D, ~C(X,), X, == HN{l, ..., n} with product topology

P, < xo, characteristic function of cylindrical set of sequences starting
with «

The Gelfand spectrum X,,, equipped with the product topology, is a
Cantor set, i.e. a compact, metrizable, totally disconnected space with no
isolated points

DF := D, NFF, generated by projections P, with a € W, isomorphic to
the diagonal matrices in M

Then D, := (Uk Dg)

There exists a faithful conditional expectation from F,, onto D, and
whence from O,, onto D,, as well.



Endomorphisms of O,:
U(O,,), the unitary group of O,

End(Q,), the semigroup of unital #-endomorphisms of O,, (they are au-
tomatically injective)

Fact: there exists a one-to-one correspondence between elements of U (O,,)
and of End(O,,), denoted
U >\U )

where Ay is determined by

/\U(SZ'):USZ-, i=1,...,n.

U +— Ay is not a semigroup morphism, rather one has the “fusion rules”
AUAV = Mg (VU -

For all x € F) and m > r,
Mv(z) = UpzU

where

Un :=UpU)...o" HU)

satisfies the cocycle relation U,,., = U™ (U,) for all m,r



Example 0.1. The canonical endomorphism ¢ : O, — O,
o(a) == Z S;aS;}
i=1

(it restricts to the unilateral shift x — 1 ® x on the UHF subalgebra F,)
Then ¢ = Ng, where

0:= Y Si9SS;

1<i,j<n
is the unitary flip operator in O,,, switching the components of H> ~ H ® H

T > z — A,; =: «, provides the automorphic “gauge” action of T
(rescaled periodic modular automorphisms w.r.t. w = 7o E). As stated
before, O% = F,,. O, is a Z-graded C*-algebra.
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Definition 0.2. (Longo) Say that Ay is “localized” (or algebraic) if U € FF
for some k.

If U € F¥ then
Mo (FDy c Frtk=t r e N

Moreover, AyA,1 = gy =Ny forall ze T={z€C| |z| =1}.

Localized endomorphisms turn out to have finite index.
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Ind > 1 (subfactor theory)

Ind=17
(Notice that in this talk we will be concerned with C*-automorphisms)

Cuntz showed that the automorphism group of O,,, Aut(O,,), has features
similar to semisimple Lie groups, and proposed a definition of the Weyl group
as the normalizer of an infinite-dimensional maximal torus in this context.

Question: What can be said about the explicit structure of these Weyl
groups?
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Few simple and/or known facts about automorphisms of O,,:

Gauge automorphisms: induced by U = 21, z € C, |z| =1

Bogolubov automorphisms: if U € F}, then Ay € Aut(O,,), (\y) ™' =
Au= and, if U # 1, Ay is outer. For such unitaries, A\yAy = A\yy; this
is the quasi-free action of U(n) ~ U(F!) on O,

A notable example is Archbold’s “flip-flop” automorphism Ag of O,
where

F:SHS;—FSQSTG.?.QI

Inner automorphisms: Ay = Ad(V) € Inn(0,) if and only if U =
Vo(V*), Vel(O,).

Av € Aut(O,) if and only if U* € A\y(O,,). Therefore, in order to
check the surjectivity of Ay, it is enough to know that a single element,
namely U itself, is in the image. (However this statement is somewhat
self-referential and thus non terribly useful in practice!)

It may well be the case that Ay is an automorphism but Ay« is not!
Matsumoto-Tomiyama (outer) automorphism of Oy

All homeomorphisms of the full n-shift space X, commuting with the
shift transformation extend to automorphisms of O,

General problems: find conditions on U € U(O,,), verifiable in practice,
ensuring that Ay is an automorphism. Construct examples.

E.g., this is mandatory in order to get more insight into the structure
of Aut(O,,), Out(0,,) := Aut(0,,)/Inn(0,,) and some selected subgroups of
these groups (see below)
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Notation:

2 unital C*-algebra

Aut(21) group of *-automorphisms

Inn(2A) subgroup of inner automorphisms

Inn(2A) < Aut(2) so can define Out(2A) := Aut(A)/Inn(A),
7 Aut(2) — Out(2A) canonical projection

B C A unital C*-subalgebra

Aut(2A,B) = {a € Aut(A) | a(B) = B}
Autg(A) = {a € Aut(A) | a(b) =b,b € B}
Autg(A) < Aut(2A,B) C Naug(a (Autes(A))
Ngl( )={uel) | uBu* =B} (unitary) normalizer of B in A
No(B) — Aut(‘B)

Ny (B) — Aut(A,B) N Inn(A)
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The reduced and full Weyl groups:

Nzx(Dy) C Nprn(DEFY) C ... C Ng, (D,) (unitary) normalizers

Theorem 0.3. (Cuntz, 1980)

e U(D,) ~ \NU(D,)) = NU(D,))™" “mazimal torus” (mazimal abelian
subgroup, limit of finite-dimensional tori)

e O)UP) _p Autp, (O,) = NU(D,,)) Galois system

¢ Nauo,)AU(D,))) = Aut(0,,D,) = A(No, (D))" “Weyl group”
(before taking quotient)

o Aut(O,,D,) NAut(O,, F,) = M(Ng, (D))" “restricted Weyl group”

For E C U(O,),

ME)Y ™ = {\y | U € E}NAut(0,)

Problem (Weyl group): which elements of No, (D,,), resp. of Ng, (D),
induce automorphisms of O,, 7
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Structure of normalizers :

Theorem 0.4. (Power, 1998)

e No,(D,) =S8, -U(D,)
S, ={ueclO,) | u= f,:n Sa,Sp, + the subgroup of U(Oy) of uni-
taries that can be written as finite sum of words in S; and S}

o N5, (Dn) = (Up Nag(DE)) -U(D,) = P - U(D,)
Po={u € U(F,) | u= 3" Su, S5 lar) = U(B) Yk}

Nekrashevych: S, ~ G, ; Higman-Thompson group. In particular, a
copy of Thompson group sits naturally in Sy C U(O,)

P,, direct limit of permutation groups P,» w.r.t. strictly diagonal embed-
dings (see below)

Cuntz problem boils down to recognizing which unitaries in S, resp.
P, =S, NF, induce automorphisms of O,,. We will focus on P,,.

Let P* be the group of permutations of W¥, clearly isomorphic to P,.
To any o € P¥ one associates a unitary in F* via

Uy = Z SU(Q)S; .

aEWE

Then o — u, is an isomorphism of P* with its image P* = S, N FX, that
can be further identified with the set of permutation matrices in M, and

P, = U, P~

16



Proposition 0.5. Let w be a unitary in O,.

(a) If w € U(O,,) then A\y(F,) = Fn if and only if A, € Aut(O,,) and
weU(F,);

(b) If Ay € Aut(O,,) then \y(D,,) = D, if and only if w € No, (D,,).

(c) If A\p(D,) = D, then A\, is an irreducible endomorphism of O,, i.e.
Mo(O0n) NO, =C.

As the endomorphisms of O,, (with n < 4) considered below are all in-
duced by unitaries w in UyP*¥ C Ng, (D,) = No,(D,) N F,, when they are
automorphisms they also provide, by restriction, automorphisms of D,, and
Fn; when they only satisfy the weaker condition A\, (D, ) = D, they still act
irreducibly on O,,.
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Theorem 0.6. One has

e No,(D,) ~U(D,) xS, (action by conjugation)
® N7, (Dn) =~ U(Dy)
o Aut(0,,D,) =~ AU(D,)) x A(S,)™"
)71 is a subgroup of Aut(O,,D,,).
e Aut(O,,D,) NAut(O,, F,) ~ AU(D,)) x A(P,)~*
)Y is a subgroup of Aut(O,,, D,) N Aut(O,, F,).

In particular, \(S,,

In particular, A\(P
Proposition 0.7. Let w € P¥ and suppose that \,, € Aut(O,), then the
inverse \;' is also localized. More precisely, A\;' is induced by a unitary in

Ph . with h < n?k-1),

Proposition 0.8. Let w € P,. If A, € Inn(O,,) then there exists z € P,
such that w = z¢(z*). Moreover, for k > 2, if w € P¥ then z € PF*1.

There is an isomorphism P,, — A(P,,) ™' N Inn(O,), via u — Ad(u).
Thus there is a short exact sequence

L= Py S5 AP = 7(A(P) ) — 1

18



7(G,), n > 3 non-amenable; actually it contains a copy of Zy * Zz(~
SLy(Z))

7m(G2) non-amenable; (the class of) Archbold’s flip-flop is the simplest
nontrivial element, the next one being induced by a permutative unitary in

P}

7(Gy,) is residually finite, for every n

(see the next slide)
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Aut(X,)

N
OB > G, 5 6, - 6,/18,=7(G) — Au(S.)/(0)
N N N
Aut(O,,) Aut(D,,) Out(O0,,)

G, == \(P,)~! the restricted Weyl group of O,

Theorem 0.9. G,, is isomorphic (via restriction) with the group of homeo-
morphisms of the full n-shift space X,, which eventually commute, along with
their inverses, with the shift transformation

Theorem 0.10. For prime n, the restricted outer Weyl group n(G,,) is iso-

morhic with the automorphism group of the full two-sided n-shift 3, divided
by its center (generated by the shift)

20



Remarks on the automorphisms of D,, obtained from O,,:

there are proper endomorphisms of O,, that restrict to automorphisms of
D,

however, any unital endomorphism of O, which fixes the diagonal D,
point-wise is automatically surjective, i.e. it is an element of Autp, (O,)

the restriction map Aut(O,,D,) — Aut(D,) is not surjective (and its
image is not normal, as Aut(D,,) ~ Homeo(C,,) is a simple group)

there are product-type automorphisms of D,, that do not extend to (pos-
sibly proper) endomorphisms of O,; in case of Dy, consider e.g. @, Ad(u;),

where
1 1 even
U; =
(98) @ odd

and we have realized Dy as an infinite tensor product over N of diagonal
matrices of size 2.

In particular, it becomes important to characterize those automorphisms
of D,, that can be obtained by restricting automorphisms (or even endomor-
phisms) of O,,. As recalled above, the automorphisms of D,, obtained by
restriction of elements in A(P,)~! have been intrinsically characterized in
terms of their action on the Gelfand spectrum.
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Explicit computations:
#{o € P* |\, € Aut(0,)} = #\(PF)!
#{o € P¥ | \,|p, € Aut(D,)} (divisible by n!"" ")

completely determined for n + k& <6
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Localized automorphisms:
Let u € U(FF). Define

By = {u,p(u),...,¢" (W)} N F (1)

if £ > 2 and B, = C1 otherwise.
Then B, (= B,-) unital x-subalgebra of *~! and if b € B, then \,(b) = b.
For i,j € {1,...,n} define maps aj} : Fr=t — Frlhy

al () = Sfu*zuS;, x € Frt (2)

)

Denote V,, = F*~1/B,.
Since a}‘j(Bu) C B,, there are induced maps a;; : Vi, — V.

A, = the subring of L(V,) generated by {aj; | i,j =1,...,n}

Given u € F* let K := \,(H) = uH and define inductively
Eo=F", E=KE.,K,r>1, (3)
that is 2, = (K*)"FF1K".

Then (Z,), is nonincreasing sequence that stabilizes at the first value p
for which =, = =,.,. Let

a self-adjoint subspace of Fr~1

23



Theorem 0.11. Let u be a unitary in F* for some k > 1. Then the following
conditions are equivalent:

(1) A\ is invertible with localized inverse;

(2) the sequence of unitaries

(Ad(e™ ()™ () .. plupu) ()

m>1
eventually stabilizes;
(3) the ring A, is nilpotent;
(4) Eu € Bu;
(5) =, =Cl1.
Moreover, if the above equivalent conditions hold, then A7 ! is induced by

a unitary v € F with

Problem: is this exponential bound optimal?

Problem: if Ay is a localized automorphism, is /\51 still localized 7
(true for permutation automorphisms)

24



Localized automorphisms of the diagonal

u € .'Frlf ﬂN@n(Dn)
Then both D! and B, N D! are invariant subspaces for all the oper-
ators a;; associated with u. Denote the restriction of a;; to DF1 by by

Each b%; induces a linear transformation b%; : V.” — V.2, where VP =
DE1/B, N Dk, )

Denote by A the subring of L(V,”) generated by {bi; | 7,5 =1,...,n}.

Also, define a subspace of D! by

20 o= (K ) Di K"

u
r

Clearly =P Cc 2,

Theorem 0.12. Let u be a unitary in F* N No, (D,). If the ring AL is
nilpotent then \, restricts to an automorphism of D,,. More precisely, TFAE:

(1) Au(Dn) = Da;

(2) Ay restricts to an automorphism of the algebraic part UsD; of Dy,
(3) the ring AP is nilpotent;

(4) EP € B,ND;

(5) 2P = C1.

25



The Search of automorphisms
e Hierarchy of matrix equations (general)

e Labeled rooted trees (only for permutations), more precisely n-tuples
of such trees, satisfying conditions (b) and (d)
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Application to permutation automorphisms

For O,, at level k one has to consider n*! permutations. A case-by-case
brute force computation is unfeasible as it involves some manipulation of
large matrices (with size that could grow up to the order of n™" or so).
Moreover, there are simply too many cases to consider as the following figures
illustrate:

OQZ

21=2

221 =24

23! = 40320

241 = 20,922, 789, 888, 000, ...
031

31=6

32! = 362880

331 = 10, 888, 869, 450, 418, 352, 160, 768, 000, 000, ...

Some simplifications are possible, exploiting the action of inner and Bo-
golubov automorphisms, but they do not affect significantly the scale of the
problem.

Surprisingly enough, (n-tuples of) labeled rooted trees T' come to the
rescue, where

#V(T) = #E(T) =n"""

27



Why trees 7
Given o € P define functions
f‘U . Wk’—l N Wk—l
fori=1,...n by

f7(a) = B :& there exists m € {1,...,n} such that (i,a) = o(5,m) .

Then a necessary condition for o to give rise to an automorphism of O,
(actually of D,,) is that the “diagrams” of all the f7’s are rooted trees, where
the root is the unique fixpoint.

In particular, the vertices of these trees are labeled by W*-1.

Moreover, in order to get automorphisms, this labeling must also induce
a certain partial order relation on W1 x W1
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Examples:

Example 0.13. The pair of labeled trees corresponding to o = id in Py. All
the edges are downward oriented.

21 292 11 12
fi 12 f2 21
11 292

Example 0.14. Let u € P}, so that \, is a Bogolubov automorphism of O,.
If we view u as an element of P* then all n unlabeled trees corresponding
to u are identical; the root receives n — 1 edges from other vertices, each
other vertex receives either none or n edges, and the height of the tree (the
length of the longest path ending at the root) is minimal and equal to k — 1.
In particular, all such unitaries have the corresponding n-tuples of unlabeled

trees identical with those of the identity.
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Applications of labeled trees to automorphisms of O,:

If w € P¥ then the labeled trees associated with f* and f have the
following properties:

e « receives two edges in f/” if and only if a receives no edges in f3° ;
e « receives one edge in f* if and only if a receives one edge in f3” .

It follows that the numbers of leaves (0-receivers) on both trees are identical
and coincide with the number of 2-receivers (including the root) on these
trees. In such a case we say these two (unlabeled) trees are matched.

Given w € P¥ with corresponding functions f¥, f& and fixed i € {1,2},
we define

G(f")={oe B | affo™ = fI'}, (4)
and call it the stabilizing group of f/. Let T" be the unlabeled rooted tree
corresponding to . If ¢ € P! then we have G(f*) = G(¢f*¢~"), through
the map o +— ¢o¢~!. Thus the groups G(f*) do not depend on the choice
of labels and we have

G(fi") = Aut(T), ()

where Aut(7') is the automorphism group of the unlabeled rooted tree 7. Of
course, a similar construction can be carried over for any n.
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Case of P3

o #{oc e P?| )\, €Aut(0y)}=2-2=4
o #{0 € P2 | \ulp, € Aut(Dy)} =2-22 =8 =4 +4

The only pair of labeled trees satisfying our conditions is

A

Each is realized by 4 permutations and there are 2 such labelings. Thus
there are 2!-2? = 2.4 = 8 permutations in P} yielding elements of Aut(Dy).
Among these 8 only 4 give automorphisms of Oy. If F := 5155 + S557 € F,
denotes the flip-flop self-adjoint unitary, the four automorphisms are

id
Ap

Ad(F) = Ap(r)F = Arp(r)
Ad(F)Ar = Ag(r)

They form in Aut(Os) a copy of Klein’s four-group. In Out(O,), they give
Zy with nontrivial generator the class of Archbold’s flip-flop (Bogolubov)
automorphism Ap.
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Case of PJ

Only two graphs are possible (each self-dual), namely

However, there is no labeling of the first graph which yields correct partial
order < on pairs. So only the second graph remains. The only possible
labeling satisfying our conditions is

Y ) o 15}
Y e Y
o 0
Given a pair of labeled trees as above, there are 2% permutations o € P5
yielding that pair. There are 4! possible choices of labels. Hence

#{oc € P} | M|, € Aut(Dy)} =4!-2* =24 .16 = 324 (6)

Then considering 16 permutations giving rise to a fixed labeling, as above,
one finds that only two of them satisfy the right conditions. Thus, taking into
account the action of inner automorphisms corresponding to permutations
in P,

#{o € P3| A, € Aut(0y)} =24.2 = 48 (7)

These are precisely the automorphisms inner equivalent to the identity
or the flip-flop. Thus, very surprisingly, among 8! = 40, 320 endomorphisms
of Oy from \(P3) the only outer automorphism is the familiar flip-flop. This
is in stark contrast with the case of Cuntz algebras O, with n > 3, where
numerous new outer automorphisms appear already in A(P?).
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Case of PJ

Theorem 0.15. We have

#{\ | w € Py and \y|p, € Aut(Dy)} = 8!-2%-17 = 175,472,640 ,
#{\y | w € P) and M\, € Aut(Oy)} = 8!- 14 = 564, 480 .

Thus in \(P3)~! there are exactly 14 representatives of distinct inner equiv-
alence classes.

Proof. There are exactly 23 directed rooted trees (unlabeled) with 8 vertices
satisfying our conditions (i.e. each vertex other than the root emits one edge
and receives maximum 2 edges, the root is a minimal element and receives
one edge from a different vertex). There are only 3 matched pairs of such
trees admitting labelings satisfying condition (b): T4 — Ta, T4 — T, and
T; — Ta, where Ty and Ty are (downward oriented):

Ty Ty

We fix arbitrarily labels on one of the trees in each pair, taking it to be T’y in
the second and third case. Then calculation shows the following numbers of
labelings of the other tree which satisfy so-called condition (b): 40 for the pair
Ty—T, and 12 for each of the other two pairs. The groups of automorphisms
of the rooted trees T4 and T; have 8 and 2 elements, respectively. Thus,
taking into account that each pair of labeled trees under consideration is
realized by 2% distinct permutations, and factoring in the action of 8! inner
automorphisms (which permute the labels simultaneously on both trees), we
obtain the following number of distinct permutations in P; giving rise to
automorphisms of the diagonal:
8l

8! !
2. 40+ 2-28 —— . 12=28.81.17 = 175,472, 640.
ATy Aut(T))] » 12,

Among these permutations there are only 8!-14 = 564, 480 yielding automor-
phisms of Oy. Dividing out 8! inner automorphisms from level 3, we finally
get 14 inner equivalence classes of automorphisms in A(Py)~t. ]
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Explicit description of representatives of inner equivalence classes from
A(P3)~! and structure of some infinite subgroups of Out(0,) generated by
them.

Consider the permutations A and B of the set W, given by

A(1211) = 1211 A(1212) = 1212 A(1222) = 1222 A(1221) = 1221
A(1121) = 1121 A(1122) = 1122 A(1111) = 1112 A(1112) = 1111
A(2222) = 2111 A(2221) = 2121 A(2211) = 2112 A(2212) = 2122
A(2122) = 2222 A(2121) = 2221 A(2112) = 2212 A(2111) = 2211
B(1211) = 1211 B(1212) = 1212 B(1222) = 1222 B(1221) = 1221
B(1121) = 1121 B(1122) = 1122 B(1111) = 1112 B(1112) = 1111
B(2122) = 2111 B(2121) = 2112 B(2211) = 2121 B(2212) = 2122
B(2222) = 2212 B(2221) = 2221 B(2112) = 2222 B(2111) = 2211

Note that the first two rows of these two permutations are identical. That
is, A(1#%x) = B(1%#x). And of the first eight arguments, six are fixed points.
The labeled trees corresponding to A are:

211 212 221 222 111 121 112 122
121 122 222 221
i 15
112 212
111 211

For notational convenience, we equip WX with the reversed lexicographic
order and enumerate its elements as {1,2, ..., 2¥} accordingly. Then, the per-
mutations A and B above correspond to A = (1,9)(2,4, 10,12, 14,16)(6, 8)
and B = (1,9)(2,4,6,10,16,12,14). With a slight abuse of notation we also
denote simply by A and B the associated unitaries and by A4 and Ag the
corresponding endomorphisms of Os.

One can verify that A4 and A\g are automorphisms of @5. One checks by
computer calculation that the inverses of the automorphisms A4 and Ag are
induced by unitaries in PJ.
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Proposition 0.16. In Out(O,), one has
Aedadr = A = A .
Proof. One has Ad(2)As\p = id, where 2z € PS is given by

2 ~(2,4,8)(3,7,15)(5,13,29)(9, 25)(10, 12)
(18,20, 24)(19, 23)(26, 28)(34, 36, 40)
(35,39, 47)(37, 45)(42, 44) (50, 52, 56) (51, 55) (58, 60).

Also, one has Ad(y)ApAa = ApAp, where y ~ (1,3,5,7)(2,4,8) € P3. O
Proposition 0.17. A4 has infinite order in Out(Os).

Corollary 0.18. The subgroup of Out(Os) generated by Aa and \g is iso-
morphic to the infinite dihedral group 7 X Zs.

Let J be a transposition in Py which exchanges 2112 with 2212 (and fixes
all other elements of W.}):

J(2112) = 2212 and J(2212) = 2112.

The labeled trees corresponding to J are:

121 122
211 212 221 222
212 111
121 122 211 112
fi 1
112 221
111 222

With a slight abuse of notation, we denote by J the associated unitary and
by As the corresponding endomorphism of Oy. One checks that

A2 =id. (8)

The two trees corresponding to the identity in Py are both of type T'4. Like-
wise, both trees corresponding to the flip-flop A are also of type T)4. Since
15 is of type Ty # Ty, it follows that \; is an outer automorphism of O, not
inner equivalent to the flip-flop. (Incidentally, outerness of A; can also be

deduced from the fact that A;(S1) = S1).
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Proposition 0.19. Automorphisms Agp and \; generate a subgroup of Out(Os)
isomorphic to the free product Zg * Zs.

Let G be a 3-cycle in Wy such that
G(1112) = 1122, G(1122) =1222, and G(1222) =1112.

That is, in the shorthand notation, G' = (9,13, 15). The trees corresponding
to G are:

212 211
111 112 121 122
121 222
112 221 211 212
fe fs
122 291
111 222

One checks that
2 =1id (9)

but none of A\g, A%, A, is inner. Also note that Ag(S2) = Ss.

Theorem 0.20. The following automorphisms give a complete list of repre-
sentatives of distinct classes in Out(Qsy) appearing in A\(Pq)~t:

{id, Ar},

{A4, AadAp, ArAa, ArAadr},
{A7, AAE, ArAg, ARAJAR}),
{Aa, A\aAr, ArAg, AFAGAF}.

Problem: determine (Ap, Aa, As, Ag) in Out(Os). Is it amenable 7
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Case of 7332

There are only two rooted trees with three vertices. Condition (b) can
only be satisfied for the following four 3-tuples of unlabeled trees:

VooV
Y

and the other two permutations of the latter.

For each such 3-tuple, there are precisely 3! (3!3) = 6 - 216 permutations
in P} satisfying condition (b) and among them 3!24 permutations satisfying
also condition (d).

The corresponding labeled trees are of the form

a b c a b c
NN W
a a
b c c b
a\/ b c

etc., where a, b and ¢ are distinct elements in {1, 2, 3}.
In particular, for each fixed set of labels on a 3-tuple (and there are 3! of

them) there are 24 permutations satisfying both the conditions (b) and (d).
Summarizing:

#{oc € P} : M\, |p, € Aut(D3)} =4-3!-216 = 5184,
#{o € P} : N\, €Aut(O3)} =4-3!-24 = 576.

In particular, there are 4 - 24 = 96 distinct classes of automorphisms in
Out(O3) corresponding to permutations in P.
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Case of P}

There are four (unlabeled) rooted trees with four vertices:

SRR |

By “type” we mean an unordered set of four trees making up a 4-tuple
(two different 4-tuples belong to the same type if one can be obtained from
the other by a permutation of the unlabeled trees). One verifies that only
eight types of 4-tuples of such trees admit labelings satisfying condition (b);
they are listed in the first column of Table 1 below. The second column of
this table gives the number of distinct labelings satisfying condition (b) and
corresponding to each type. These numbers are factorized as X -Y - Z, where
X is the number of distinct 4-tuples of unlabeled trees of the given type,
Y = 4! is the number of permutations of labels (it corresponds to action of
inner automorphisms arising from P}), and Z is the number of orbits under
this action. The last column contains the number of all permutations in P?
satisfying both conditions (b) and (d) whose corresponding trees are of the
given type.

| type [ # (b) | #o (d) ]
acaa || 24=1-24-1 51,840
aaff || 576 =6-24-4 787,968
aayy || 288 =6-24-2 311,040
afpp || 768 =4-24-8 746,496

Table 1: aBB6 || 1152 =12-24-4 | 1,575,936

afyo || 1152 =24-24-2 | 1,244,160
BBy || 1152 =6-24 -8 787,968
YYyyy || 288 =1-24-12 266,112

total || 5400 | 5,771,520 |

The number of permutations satisfying condition (d) depends both on
the type of the corresponding 4-tuple of trees and on the specific labeling.
However, as it turns out, it does not depend on the permutation of unlabeled
trees within the type. Precise information to this effect is provided in Table
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2 below. The table has 19 rows, which correspond to all possible distinct
labelings (satisfying condition (b)) afforded by each type.

#{oc € P} : M\, |p, € Aut(Dy)} = 5400 - 41* = 1,791,590, 400,
#{oc € P} : )\, € Aut(O,)} = 5,771, 520.

In particular, there are 240, 480 distinct classes of automorphisms in Out(Qy)
corresponding to permutations in P7.
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Case of P3

In this case, there are 286 rooted trees with n*~! = 9 vertices, of which
171 satisfy our basic conditions: that each vertex has in-degree at most n = 3
(recall that there is a loop at the root, adding 1 to its in-degree). Let us define
the in-degree type of a rooted tree to be the multiset of the in-degrees of its
vertices.

We list the 171 rooted trees in Table 2; they are classified by the eleven
in-degree types {A... K} listed in Table 1.

Table 1: The in-degree types for P3.

GCJL In-Degree %

>~ 0 1 2 3| E

a Multiplicities: | 1=

A6 0 0 3 2
B |5 1 1 2| 18
C |5 0 3 1 8
D |4 3 0 2 14
E |4 2 2 1 46
F {4 1 4 0 9
G |3 4 1 1] 33
H |3 3 3 0] 24
1 2 6 0 1 4
J 12 5 2 0 12
K |1 7 10 1

We wish to find 3-tuples f of labeled trees such that

Vi€ {1.9}  fi(y) + fo(4) + f3(j) = 3.

For such an f we define the in-degree alignment matrix M where M;; is the in-
degree of the vertex labeled j in the tree f;. Every in-degree alignment matrix
has each row adding to n*~! = 9 and each column adding to n = 3. In order
to find all required f we first determine the possible in-degree alignments of
our 11 types.
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Table 2: In-degree types and trees.

Trees of given in-degree type
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Now the number of size three multisets with elements chosen from a set
of eleven is 286 (the eleventh tetrahedral number)!. Of the 286 size three
multisets of in-degree types, we compute that 100 have at least one alignment.
The number of alignments (up to consistent relabeling) is 133.

After about 200 processor days we report that condition (b) is satisfied
for a set F of 7390 three-tuples of labeled trees, up to permutation of tree
position (action of S3) and consistent relabeling of all trees (action of Sy).
Only 110 of the 171 unlabeled trees appear in F (those which do not appear
in F are marked in Table 2 with a dotted backslash); they have the first
eight, {A... H}, of the eleven in-degree types. In these F there occur 474
multisets of three unlabeled trees; they have the six distinct three element
multisets of in-degree types listed in the first column of Table 3. The second
column contains the number of three element multisets of unlabeled trees
having the respective types; the third column, Fiypes, is the partition of F
according to the respective types; the fourth column of each row in Table 3,
# f covered, is the inner product of the last two columns of the corresponding
table in the Appendix.

Table 3: Three element multisets of in-degree types.

’ ID types ‘ # tree triples ‘ # Fiypes ‘ #f covered ‘

A A A 4 2 168 12924 - 9!
A B B 176 2 782 16650 - 9!
A C D 75 950 5700 - 9!
A E FE 180 1072 6396 - 9!
A F G 31 392 2352 - 9!
A H H 8 26 150 - 9!

Total 474 7390 | 44172 -9!

In total, we have
44172 x 9! = 16 029 135 360

three-tuples of labeled trees satisfying condition (b). Therefore we have

44172 x 90 x nI™ " = 44172 x 9! x 6° = 161 536 753 300 930 560

'Ts it just a combinatorial accident that the eleventh tetrahedral number is the same
as the number of all (unordered) rooted trees on nine-vertices.
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permutations o € P satisfying condition (b).

With additional work, one can even determine the precise number of
permutations satisfying condition (d), i.e. providing automorphisms of O3

Some examples of 3-tuples of labeled trees satisfying condition (b) are
listed in the first column of Table 4; the second column contains the size of
the orbit of the combined actions of S35 and Sy on the first entry of each row;
the third column is a count of the number of permutations corresponding
to f that satisfy condition (d); the last column contains (when one exists)
an example permutation satisfying condition (d) with labels (a,b,¢c,..., 1)
chosen to be (1,2,3,...,9) = ((1,1), (2,1), (3,1), ...,(3,3)).
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Table 4: Examples for Ps

Labeled Trees (# () | # ()] Example
A A ]
heder wmeoni aerens (1, 6, 26, 7, 22, 17)
\i(v>¢} \k;;j/ > 1 1o a10 | (212, 24,20, 18,13, 14)
@ ‘ (3, 27, 16, 25, 19, 9, 10)
(4, 11, 15, 23, 8)
bge abcghi def9hi
W C ] 6-9 0
. (1, 25, 24, 23, 2, 19)
diki?@‘ abeqhi abcde (3, 16, 27, 15, 26)
NSO 609 240 (4,17, 9, 18, 12, 10)
(6, 20, 22, 14, 8)
(7,21, 13, 11)
). . (1, 3, 27, 4, 26, 10, 9)
e Ngp  defqni (2, 18, 7, 16, 19, 6)
T 39| 216 (5, 20, 12, 21, 24)
(8, 25, 22, 11, 15)
(13, 14, 17)
ab;e degh abcghi
W K X 6l 0
b ¢ € 7
a 9 h d 9 h abcgef
fed ‘ cba ’ }l<9>ll/ 6-9! 0
b ¢ b c T 7
ﬂl def af ghZ dc ghi
D N N 6 - 9! 0
A F G |
N
a 9, &h (ch
abcdef exd " f 3/
W : ; 6-9! 0
g ho
a. 9, & N
apcdef eNd~f 2
w ; ) 6-9! 0
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More examples:
The following examples, show that G, is non-amenable for n > 2.
Wé = R; U...U R, nontrivial r-partition, 1 <r <n

(0:)j—, € P} such that 0;0; '(Rp) = Ry, Vi, j,m
Then define ¢ € P? by

U(a, B) = (a,0i(B), a€Ri,BeW,
Claims:
e )\, invertible, with inverse induced by an element 1 in P2, namely
U(a, B,7) = (o, 07 (8), 0503 (7))
where a € R;, 3 € Ry, 0, (3) € R;
o )\ € Inn(0,) if and only if ¢ = id
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Example 0.21. n =r = 2, Wy = {1}U{2}, 01 = 09 # id, then Ad(uy,)\y =
Au,, 18 Archbold flip-flop automorphism of Oy

Example 0.22. n =4, W] = {1,2} U {3,4}, 01 = (23), 00 = (1243), then
Ad(ug, )Ny is Matsumoto-Tomiyama outer automorphism of Oy, namely:
S1— 51,
Sy — Ss,
S3 — 525155 + 52525 + 525357 + 525455,
Sy — 545155 + 545255 + 545357 + 545455

All the associated trees are the same as for Bogolubov automorphisms

48



A family of matrix equations:
Let U € F¥ and V € F" be such that
AvAdy = Ay Ay =id
ie. \g(V)=U* \y(U) =V*

Therefore
uvu; =0, VUV;=V"*

and thus
V=U,UU,, U=V V"'V

Now replace both h and k with hV k
For r €e Nand U € F/, get an equation for U alone:

(U U*U,) U UU(USUT,), = U

(where U} = (U,)")
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Example:

r =2

(U (U)p(o(UHU*o(U))) (U U*p(U)) = U,
- Up(Up(U)U*) = p(Up(U)U)U
r=3:

U commutes with

> (Up(U)*(U))p (> (U (U Up(U)*(U))*(U*)p(U*)

It is quite intriguing that in the case of permutation matrices the solutions
to the above equations can be described in terms of rooted trees.

We are not aware of any other occurrence of these polynomial matrix
equations...
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Tabulated results (small values of n and k)

d¥ .= #\(P*)~1, number of permutative automorphisms of O, at level k

c® number of classes modulo inner equivalence; it holds

ko k1) k
d, =n""lc .

bE = #{u € Pk \|p, € Aut(D,)}
s® number of square-free automorphisms in \(P*)~!
dy /(b))
(k\n]2 E | 4
1 2 6 24
) (6) (24)
2 4 276 5,771,520
(8) (5184) (1,791,590,400)
3 48 329,148,126,720
(324) (161,536,753,300,930,560)
4 564,480
(175,472,640)
AV EENE .
1 2 |6 |24
ck: 2 2 196 | 240,480
3 2
4 14
JAV PR ENE
1 2 4 110
sk 12 4 52 | 2,032
3 20
4 1,548
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Entropy vs. Index (cf. Kawamura, Skalski-Zacharias)

Table 1. Entropy and index of the ‘rank 2’ permutation endomorphisms of Os.

Po Po(s1) Po(s2)  property ht(ps) ht(po|p,) Ind(p,)
Pid S1 S2 inn 0 0 1
P12 S12,1 + S11,2 S2 irr log 2 0 )
P13 S21,1 + S12,2  S11,1 + S22.2 irr log 2 log 2 2
P14 S22,1 + S12,2  S21,1 + S11,2 red log 2 log 2 4
P23 s11,1 +S21,2  S12,1 + S22.2 red log 2 log 2 4
P24 S11,1 + 8222 S21,1 + 8122 irr log 2 log 2 2
P34 S1 $22.1 + 521,2 irr lOg 2 0 2
P123 S12,1 + 8212 S11,1 1 S22.2 red log 2 log 2 4
P132 S21,1 + 8112 S12,1 + S22.2 red log 2 log 2 4
Pl2a S121 t 8222 S21,1 + S11,2 red log 2 log 2 4
P4z S22.1 + 8112 S21,1 + S12,2 irr log 2 log 2 4
pP134  S211 + 8122 S22,1 + 8112 irr log 2 log 2 4
P143 S22,1 + 8122 S11,1 1 S212 red log 2 log 2 4
0234 $11,1 + S21,2  S22,1 + S12,2 red log 2 log 2 4
p243  S11,1 +S222  S12,1 + 8212 red log 2 log 2 4
p1234  S12,1 t 212 S22.1 + 8112 irr log 2 log 2 2
p1243  S121 t 8222 S11,1 + S21,2 red log 2 log 2 4
p1324 52 S12,1 + 8112 irr log 2 0 2
P1342  S21,1 T S11,2  S22,1 + 5122 red log 2 log 2 4
P1423  S22,1 1 8212 S1 irr log 2 0 2
P1az2 S221 + S112  S12,1 + 8212 irr log 2 log 2 2
P(12)(34) S12,1 T S11,2  S22,1 + 521,2 out 0 0 1
P(13)(24) S2 $1 out 0 0 1
P14)(23) S22,1 T 8212 S12,1 + 8112 inn 0 0 1

Remark: ht = 0 precisely when Ay (resp. Ay|p,) is an automorphism (4
+ 4 cases)
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“Exotic” endomorphisms of O,:

see arXiv:0910.1304 (JFA 2010)
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Full Weyl group A(S,)~! and outer full Weyl group
Problem: find necessary and sufficient conditions for w € §,, such that

e )\, € Aut(0,)
e \,(D,) =D,

e characterize intrinsically the group of homeomorphisms of X,, arising
in this way

.. work in progress ...
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The above for graph algebras C*(E), with F finite (CK-algebras):
see e.g. arXiv:1101.4210 for a first set of results
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