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In this paper, we give special uniform approximations of functions u from the
spaces Cx(T) and C (T, X), with elements # of the tensor products Cr(7) ® X,
respectively Co(7,I") ® X, for a topological space T and a I'-locally convex space X.
We call an approximation special, if # satisfies additional constraints, namely
suppv C u~' (X\{0}) and @(T) C co(u(T)) (resp. C co(u(T) U {0})). In Section 3,
we give three distinct applications, which are due exactly to these constraints: a
density result with respect to the inductive limit topology, a Tietze-Dugundji’s type
extension new theorem and a proof of Schauder-Tihonov’s fixed point theorem.
(© 2002 Elsevier Science (USA)
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1. INTRODUCTION

Throughout this paper, T is a topological space, X a locally convex space
over the field I' € {R,C} and Cx(T) the linear space of all X-valued
continuous functions on 7. Consider the vector subspaces

Co(T,X) ={ue Cx(T)|u(T) is bounded} C Cx(T),
Cow(T,X) ={ue Cx(T)|u(T) is totally bounded} C Cp(T, X).
Recall that a subset 4 C X is said to be totally bounded iff for every
W € ¥x(0), there exists a finite subset 4y C X, such that 4 C Ao+ W

(then, we can choose Ay C A). If T and X are both Hausdorff spaces, we
also use the standard notations

Coo( T, X) ={uc Cy(T)|VW € ¥"x(0), u ' (X\ W)is compact},

Co(T,X) = {uc Cx(T) |suppu = u~'(X\{0}) is compact}.
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It is obvious that Cy(T, X) C Coo(T, X) C Cin(T, X) C Co(T, X). We have
the natural inclusions

CHT)® X C Cx(T),  Co(T,I)& X C Co(T, X).

Various results concerning the uniform density of Cr(T)® X in Cx(T)
and Weierstrass—Stone’s type theorems are known (see [1,4-8]). Therefore,
we will restrict our attention to special uniform approximations and its
applications.

2. SPECIAL APPROXIMATIONS IN Cx(T)

2.1. The vector space (Cr(T) ® X)

loc

It is easily seen that if E is a I'-normed space and if u € Cy(7, E) has the
following uniform approximation property:

Ve >0, 3u, € Cr(T) ® E, such that |ju —ul| <¢,

then u € Cy (T, E). Therefore, to get ¢-uniform approximations of u for
arbitrary ¢ > 0, we have to accept u € Cy, (T, E) (Theorem 1 will prove that
this condition is also sufficient, even for special approximations) or to
replace the vector subspace Cr(T) ® E of Cg(T) by a larger one. This is a
reason for:

DEerFINITION 1.  Consider the “locally tensor product”
(Cr(T)@X)ye ={u:T—=X|VeeT, I3Ve v (),
Jve Cr(T) ® X, such thatu, = v‘V}.
ProrosiTION 1. (1) (Cr(T) ® X),.. is a I'-vector space and

loc

(2) If T is compact, then (Cr(T) ® X),. = Cr(T) ® X.

loc

Proof. Statement (1) is evident. The proof of (2) is immediate, using a
partition of unity (p.u.)on 7. 1

Remark 1. Ifue (Cr(T)®X)
U, € Cr(K)®X.

loc and K is a compact subset of 7', then
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2.2. The uniform density of (Cr(T) ® X),,. in Cx(T)

THEOREM 1. Consider u € Cx(T). If T or u(T) is paracompact or if
ue Cp(T,X), then for every W € ¥ x(0), there exists an approximant
uw € (Cr(T) @ X),,., such that:

() (u—uw)(T) C W, uw(T) C co(u(T)), suppuw C u~'(X\{0}),

Q) uw = ic; i(-)xi, with (x;i),c; C u(T) and (@;);c; p-u. on T. Moreover,
if ue Co(T,X), then I can be choosen as a finite set and, consequently,
Uy € CF(T) ®X.

Proof. Fix W € ¥ "x(0). We can certainly assume that W is open and
convex. Ifu € Cyp(T, X), then 34y C u(T), such that A is finite and u(T) C
Ay +27'W. Set A = Ay if u € Coo(T,X), and 4 == u(T), otherwise. Thus,
u(T)C A+ W, and so T =J,.,u '(x+ W). There are three cases to
consider:

(a) If T is paracompact, then 3(¢,) ., p-u. on T, subordinated to the
open covering (u~'(x + W)) ., of T.

(b) If u(T) is paracompact, then 3(y,),., p.u. on u(7T), subordinated to
the open covering ((x + W) Nu(T)),., of u(T). For x € 4, set ¢ =} cu.
Hence, supp ¢, C u~!(supp ) Cu~'(x + W) Vx € 4.

(c) If u e Cp(T,X), then A is finite and u(T) C A+ 2-'W. Define the
map o : X — [0,1], w(z) =0V [l —2py(z)], where pyr means Minkowski’s
functional associated to W. Clearly, w is continuous and suppw C 2~'W.
For every xe€ A, define w,:u(T)—[0,1], wy(z) =w(z—x). But
Vzeu(T)C A+27'W, 3x € A, such that z€ x+27'W, which gives
wy(z) = w(z —x) >0. Since 3, ., w, >0 on u(T), we can define the
map Y, = (3,4 (i)y)_la)x cu(T) — [0,1], ¢, =y,ouVxe A. Clearly,
Supp i, C (x + 2 W) Nu(T) € (x + W) (u(T), supp @, C u~ (supp ) C
ul(x+ W) Vx € A.

In all the above three cases, (¢, )., p.u. on T, subordinated to the open
covering (u™'(x+ W)),., of T. Now set v:==>__, o.(")x € (Cr(T)®
X)oe- Obviously, v(T) C co(u(T)). We next show that (u—v)(T) C W.
Fix 1 € T and set 4, = {x € 4| ¢, (1) #0}. Thus, 4, is finite, >, ¢.(t) =
1 and Vx € 4,, we have 1 € suppo, Cu '(x+ W), and so (u—v)(t) =
Yovea, Px(O)(u(t) = x) € >0y ()W = W. Therefore, (u—v)(T)C W.
We need consider two cases:

(i) If 0 ¢ u(T), then u~'(X\{0}) = T>supp v, and so uy = v satisfies all
required properties. N

(i) If 0€u(T), choose &€ (0,1). Clearly, epW C W= W. Define
the maps ¥ : X — [0, 1], y(x) = (0 v‘%) ANl =you:T — [0,1] and

uw = @v € (Cr(T) ® X),,.. For every t € T, we have the equivalences:
o(t) =1 pp()=1ult)e X\W o te T\u ' (W),
o(t) =0 ppu(t)<e < u(t) €eW < tcu (e W).
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Since v(T) C co(u(T)), 0 € u(T), 0<p<1 and uw—q)v—i-(l—gg)o
it follows that uW(T) C co (u(T)), suppuw C suppp = T\u"1(eW) C
T\u'(eW) =u'(X\eW) Ccu'(X\{0}). It remains to prove that
(u—uw)(T)C W. We have u—uW—u—qw_(l—(p)u—&-(p(u—v). If
te T\u ' (W), then (u—uw)(t)=@wu—v)(t)ew—-v)(T)CW. If te
w (W), then (u—uw)(t) € (1 — ()W +@(t)W = W. Therefore,
(u—uw)(T)CW. 1

COROLLARY 1. If T is quasi-compact, then for all ue Cy(T) and
W e 4 x(0), there exists an approximant uy € Cr(T) ® X, such that

(u—uw)(T) C W, uw(T) C co(u(T)), suppuy C u '(X\{0}).

COROLLARY 2. Cw(T,I') ® X is uniformly dense in Cu,(T,X).

2.3. The case of Co(T,I') @ X C Coo(T, X)

THEOREM 2. Assume that T and X are Hausdorff. If u € Coo(T, X)), then
forall W € ¥ x(0) and K a compact subset of T, there exists an approximant
uwx € Co(T,I') @ X, such that:

(1) (4 — 1) (T) € W, x(T) C 0(u(T)U{0}), uw x(K) C co(u(T)),
supp uw x C u~'(X\{0}),

@) uw k=@ > e @i()xi, with 1 finite, (xi);e; Cu(T), (@;);c; p-u. on T
and ¢ : T — [0,1] a continuous map, such that ¢| = 1.

Proof. We can assume that u=£0, that is 37y € T, with u(#y) #0. Now fix
W e ¥ x(0), W convex and K C T, K compact. Set M =K if 0¢ u(K),
and M = {1} if 0 € u(K). Since u € Coo(T,X) C Co(T, X ), by Theorem 1,
Jo=">"; ¢:()xi € Cr(T)® X, such that (u — v)(T) C W, v(T) C co(u(T)),
supp v C u~!(X\{0}), with I finite, (x;);c; C u(T) and (¢;),; p-u. on T.
Since 0 ¢ u(M) and u(M) is compact, IW, € ¥ x(0), such that Wy, C W,
Wy open and convex and u(M) N Wy =0, that is M C u~'(X\ W;). Now
define Y : X — [0,1],¢(x) =[0V (2p,, (x) = DAL, @ =yeu:T —10,1],
w:=@v € Cr(T) ® X. For every t € T, we have the following equivalences:

p()=1&2p, ()22 u(t)g Wyt € u Y (X\ W),
o(1) =04 2p, (u(t) <1 & 2u(t)e Wy 1eu (27 W,).

Clearly, w(T) C[0,1]-v(T) C co(u(T)U{0}). Since M C u~'(X\ W),
we have ¢ =1, and so w(M) = v(M) C v(T) C co(u(T)) and supp ¢ =
u\(X\2-1Wy) c u='(X\27'W,) compact. Hence, we Co(T,I® X,
suppw C supp ¢ C u~'(X\{0}). We next show that (u—w)(T)C W. If
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t € u " (X\Wy), then (u—w)(t) = (u—v)(t) € W and if t € u~' (W), then
(u—w)(1) = (1 = @(n)u(r) + (1) —v)(1) € (1 — () Wo + @()W C W.
Hence, (u —w)(T) C W. If M#K, then 0 € u(K), and so w(K) C w(T) C
co(u(T)U{0}) = co(u(T)) and w=1-(3 i (p@;)xi+ (1 —¢)-0). We
conclude that uy g == w satisfies all required properties. 1

3. APPLICATIONS OF SPECIAL APPROXIMATIONS

3.1. The density of Co(T,I') @ X in Co(T,X) with respect to the inductive
limit topology

The following theorem is due to the constraint on the approximant’s
support.

THEOREM 3.  Assume that T and X are Hausdorff. If u € Co(T,X), then
Sor every V € V"¢, x)(0) with respect to the inductive limit topology, there
exists an approximant u, € Co(T,I') ® X, such that:

(D) u—u, €V, u,(T)C co(T)), suppu, Cu~'(X\{0}),

(2) u, = e @i(-)xi, with I finite, (x;);c; C u(T) and (¢;),c; p-u. on T.

Proof. We can certainly assume that 0 € u(7T), since otherwise T is
compact and the conclusion is given by Theorem 1. Fix V € ¥ ¢ (7 x)(0)
and set K =suppu, Co(T,X)x ={we Cy(T,X)|suppw C K}. Since
VNCy(T,X), is a neighborhood of the origin in Cyo(7T,X), with
respect to the uniform convergence topology, W € ¥ x(0), such that
{we C(T,X)g |w(T)C W} CVNCy(T,X). Now Theorem 2 shows
that Jv=0 >, 0;(-)x; € C(T,I') ® X, with I finite, (x;),c; C u(T),
(@:)ic; Pu. on T, @:T —[0,1] continuous, ¢ =1, and such that
(u—v)(T)C W, v(T) C cow(T)), suppv Cu ' (X\{0}) C K. We thus
get u—ve Co(T,X)g, w—v)(T)C W, and so u—veV. Since
V=" s (@p)xi+ (1 — @) 0, u, = v satisfies all required properties. I

COROLLARY 3. If T,X are Hausdorff, then Co(T,I') @ X is dense in
Co(T,X) with respect to the inductive limit topology. Moreover, if X is
metrizable, then this density is sequential.

Proof. The proof is immediate, with Theorem 3. 1§

3.2. A Tietze—Dugundji’s type extension theorem

In this subsection, T denotes a topological space and X a I'-locally convex
Hausdorff space. The following two lemmas emphasize the existing
connection between approximation and extension theorems.
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LEMMA 1. Assume that X is also a Fréchet space. Then, for every subset
F C T, the following two statements are equivalent:

(1) Forallu € Cx(F) and W € ¥ x(0), there exists uy € Cx(T), such that
(u—uw)(F)CcW.

(2) For every u € Cx(F), there exists it € Cx(T), such that &, =u and
a(T) C co(u(F)).

Proof. 1t is to prove (1) = (2). Let us first show that Yu € Cx(F),
VW € +"x(0),3v € Cx(T), with (u—v)(F)C W,o(T) C co(u(F))+ W.
Fixu € Cx(F), W € 4" x(0) and choose Wy € ¥ x(0), W, balanced, convex,
such that 2W C W. According to our hypothesis, dw € Cx(T), with
(u—w)(F) C Wy. It follows that w(F) C w(F) + Wy C co (u(F)) +2Wy,

and so co(w(F )) C co(u(F))+2Wy C co(u(F)) + W. Now define the map

w(F) — X, f(x) = x. By Dugundji’s theorem, 3f € Cy(X), such that
f =/ and f(X) C co(w(F)). Set v:=fowe Cy(T). Tt follows that
v, —fow‘ =w,, W—0v)(F) = (u—w)(F) C Wy CW,o(T) Cf(X)C

co(w(F)) C co(u(F))+ W. To finally prove (2), fix again u € Cx(F).
Since X is metrizable, we can choose (W,),.n a fundamental system of
convex neighborhoods of the origin in X, with 2W,,; C W, Vn € N.
For uy = u € Cx(F), vy € Cx(T), such that (uy — vo)(F) C W, and vo(T)
C co(uy(F)) + Wy. Set uy = uy — vo|p € Cx(F). Thus, we can inductively
define (uy),en € Cx(F), (vn),en C Cx(T), such that Vn e N, we have:
(ty — v0)(F) C Wy, va(T) C co(uy(F)) + Wy,  tps1 =ty — Up|p. Hence,
Vi € Nyuyy 1 (F) = (ty — va)(F) C Wy, vp2(T) C co(upsa(F)) + Wiga C
Wit + Wiis C2W,y C Wy, Therefore, u, = 0 on F and ), v, is
uniformly convergent on 7. Set v:=> ., v, € Cx(T). But Vi€ F, we
have v(1) = limy, o Z;:O v;(1) = limy o 27:0 (w;(1) = w1 (1)) = u(1),
and so v, =u. As before, 3 € Cx(X), with g(x) = x Vx € u(F) and
g(X) C co(u(F)). For @ = gove Cx(T), we clearly have & =u and
a(T) C co(u(F)). 1

LEMMA 2.  Assume that X is also a Fréchet space. Then, for every subset
F C T, the following two statements are equivalent:

(1) For all ue Cy(F,X) and W € ¥ x(0), there exists uw € Cop(T, X),
such that (u —uw)(F) C W.

(2) For every u € Cy(F,X), there exists it € Coo(T, X ), such that @, = u

and w(T) C co(u(F)).

Proof. Itistoshow (1) = (2). The proof is similar to that of Lemma 1,
observing first that Vu € Cy(F,X),VW € ¥ x(0),3v € C(T, X), with
(u—v)(F)C W, o(T) C co(u(F))+ W. Consequently, u —v € Cp(F, X).
Thus, the same construction as in the previous proof finally leads to the
maps v:=y Uy € Coo(T,X) and it := Jov € Cn(T, X). 1
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The following lemma is a variant of Theorem 1.

LEMMA 3. Assume that T is normal. Consider a closed subset F C T and
u € Cx(F). If T is paracompact or u € Cy(F, X), then for every W € ¥ x(0),
there is a uw € (Cr(T) @ X))oy With (u—uw)(F) C W and uw(T) C
co(u(F)). Moreover, if u € Cu(F,X), then we can find uy € Cr(T) ® X.

Proof. Fix W € ¥ x(0), with W open and convex. If u € Cp(F,X),
then 34y C u(F), with Ay finite and u(F) C Ao+ W. Set 4= A, if
ue€ Cp(F,X), and 4 = u(F), otherwise. Therefore, u(F) C A+ W, F =
u N (A+ W) =U,ey u'(x+ W). For every x€ A, u'(x+ W) is open
in F, and so 3U, open in T, with u~!'(x+ W)=U,NF. Thus, T =
(T\F)U U,y Us =U,cp Ur, where B:=AU{A}, Uy =T\F. If ue
Ci(F,X), then (U,),.p is a finite open covering of T, which is a normal
space. If u ¢ Cp(F, X), then (U, ), is an open covering of the paracompact
space 7. In both cases, 3(¢,).p p-u. on T, subordinated to (Uy),.s.
Hence, ¢, =1-3 ., ¢., suppp, C T\F. Now choose z € u(F) and
consider uy =) ., ¢.()x+ ¢ (-)z € (Cr(T) ® X),,.. Obviously, uy (T) C
co(u(F)). We next show that (u—uw)(F)C W. Fix t€ F and set
J = {x € A 9 (1) #0}. Thus, ¥y 0,(1) = 1, (14— un)(1) = Yooy 0(0)
(u(t) — x). But Vx € J we have ¢,(¢)#0, and so # € supp ¢, C Uy, u(z) €
x+ W. We thus get (u—uw)(t) € > .., ¢.(t)W = W. Hence, uy satisfies
all required properties. 1

THEOREM 4. Assume that T is normal and X is Frechet. Consider a closed
subset F C T and u € Cx(F). If T is paracompact or u € Cy,(F,X), then
there exists it € Cx(T), such that @, = u and a(T) C co(u(F)).

Proof. By Lemma 3, F satisfies condition (1) of Lemma 1 or 2. In both
cases, 3it € Cy(T), such that & =wu and @#(T) C co(u(F)). 1

The above theorem is a strengthening of Theorem 3.6 [6], since u# need not
be a compact map (if 7" is paracompact) and X need not be a Banach space.
For a metrizable space T, we recover Dugundji’s extension theorem (see
[2, 3]). The following corollary is known (see [6, Corollary 3.5, p. 54]).

COROLLARY 4. Assume that T is completely regular and that X is
metrizable. Consider a compact subset F C T and u € Cx(F). Then, there
exists it € Cx(T), such that @), = u and #(T) C co(u(F)).

Proof.  Since T is completely regular, Elf: a compact topological space,
such that 7" is a dense subspace of 7. Let X denote the completion of X.
Since u € Cy(F) and F is compact in T, Theorem 4 shows that Jv € C3(T),
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such that v, = u, v(T) C co(u

(F)) =co(u(F)) C X. We thus get it == v|, €
Cx(T), fl‘F =u, fl(T) C CO(M(F

)

COROLLARY 5. Assume that T is o-compact and that X is metrizable.
Consider a closed subset F CT and u€ Cx(F). Then, there exists
i€ Cx(T), such that @, = u and a(T) C co(u(F)).

Proof. By hypothesis, 3(K, ) en @ family of compact subsets of 7', such
that 7 = J,.n K» and K, CKn+1 Vn € N. Set F, = FN K, Vn € N. Since
Fy is compact, Ky is normal and u, 5 € Cx(Fy), by Corollary 4, Juy €
Cx(Ko), with uo|g, =u,, up(Ko) C co(u(Fp)). For fixed n € N, assume
that Ju, € Cy(K,), such’ that Un|, = u|r ,un(Ky) C co(u(F,)). Define v €
Cx(K,UF,1) by v, =, v . By Corollary 4, it follows
that Ju,,; € Cy(K, n+13 =0 and w1 (Kypr) C

co(v(Ky U Fyi1)).  This  easily  gives un+1|F”H =U Uni1(Kny1) C

Fpy ‘ Foy

co(u,(K,) Uu(Fyy1)) = co(u(Fy11)) and u,,+1|K” = u,. Therefore, we can
inductively define u, € Cx(K,), such that Vi € N, we have w,1]g, = uy,
Un|g, = uy, and u,(K,) C co(u(F,)). It follows that 3 € Cx(T), defined
by &, = u, Vn € N. Obviously, #, = u and #(T) C co(u(F)). 1

3.3. A proof of Schauder—Tihonov’s fixed point theorem

LEMMA 4. Let T be a topological space, Y a I'-topological vector space
and (us)sey C Cy(T), (t5)sey C T nets, such that t5 — ¢t € T and us = u,
u:T — Y. Then, us(t5) — u(?).

Proof. The proof is standard. 1
The following proof is due to the constraint on the approximant’s range.

THEOREM 5 (Schauder-Tihonov). Let X be a I'-locally convex Hausdorff
space, M a closed convex subset of X and U: M — M a completely
continuous operator. Then, U has a fixed point.

Proof. Since U is completely continuous, K := U(M) is compact in X.
Clearly, K C M. On % = {W € ¥+ x(0) | W is balanced}, we consider the
usual order relation, given by: W, <X W, & W o> W,. Now fix W e ¥ .
Since U € Cp(M,X), by Theorem 1, 3Up =", ¢;(-)x; € Cr(M) ® X,
such that (U — Uwy)(M) C W, (x);c; C U(M), (9;);c; p-u. on M for some
finite set I. Set Ky == co({x;|i€I}) C co(UM)) C M, Xy = Sp(Kw).
But Xy is clearly normable since it is Hausdorff and has finite dimension,
Ky is convex and compact and Uy (Kw) C Uy (M) C K. Now Brouwer’s
fixed point theorem shows that Ixy € Ky, such that Uy (xy) = xp. This
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leads to xy=Uw(xw)e Up(M) CUM)+W CK+ W, and so
Jyw € K, such that xy —yy € W. We thus get (UW)WEﬂ C Cx(M),
(xw),., CM and (yw), , CK, nets with the above properties. But
(U—-Uw)M)C W and xy —yw € W YW € ¥, lead to Uy — U and
xw —yw — 0. As K is compact, (yw),_, C K has a subnet (yy(s))scas
convergent to an element ¢ € K. Therefore, U, % U and Xy(5) — €. Now
Lemma 4 gives X5 = Uy(s)(Xp5)) — U(E), and so U(E) =& 1
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