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In this paper, we give special uniform approximations of functions u from the

spaces CX ðTÞ and C1ðT ;XÞ; with elements %uu of the tensor products CGðTÞ � X ;

respectively C0ðT ;GÞ � X ; for a topological space T and a G-locally convex space X :

We call an approximation special, if %uu satisfies additional constraints, namely

supp v � u�1ðX =f0gÞ and %uuðTÞ � coðuðTÞÞ (resp. � coðuðTÞ [ f0gÞ). In Section 3,

we give three distinct applications, which are due exactly to these constraints: a

density result with respect to the inductive limit topology, a Tietze–Dugundji’s type

extension new theorem and a proof of Schauder–Tihonov’s fixed point theorem.
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1. INTRODUCTION

Throughout this paper, T is a topological space, X a locally convex space
over the field G 2 fR;Cg and CX ðTÞ the linear space of all X -valued
continuous functions on T : Consider the vector subspaces

CbðT ;XÞ :¼ fu 2 CX ðTÞ j uðTÞ is boundedg � CX ðTÞ;

CtbðT ;XÞ :¼ fu 2 CX ðTÞ j uðTÞ is totally boundedg � CbðT ;XÞ:

Recall that a subset A � X is said to be totally bounded iff for every
W 2 VX ð0Þ; there exists a finite subset A0 � X ; such that A � A0 þ W

(then, we can choose A0 � A). If T and X are both Hausdorff spaces, we
also use the standard notations

C1ðT ;XÞ :¼ fu 2 CX ðTÞ j 8W 2 VX ð0Þ; u�1ðX =W
8
Þ is compactg;

C0ðT ;XÞ :¼ fu 2 CX ðTÞ j supp u :¼ u�1ðX =f0gÞ is compactg:
291
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It is obvious that C0ðT ;XÞ � C1ðT ;X Þ � CtbðT ;XÞ � CbðT ;X Þ: We have
the natural inclusions

CGðTÞ � X � CX ðTÞ; C0ðT ;GÞ � X � C0ðT ;XÞ:

Various results concerning the uniform density of CGðTÞ � X in CX ðTÞ
and Weierstrass–Stone’s type theorems are known (see [1, 4–8]). Therefore,
we will restrict our attention to special uniform approximations and its
applications.

2. SPECIAL APPROXIMATIONS IN CX ðTÞ

2.1. The vector space ðCGðTÞ � XÞloc

It is easily seen that if E is a G-normed space and if u 2 CbðT ;EÞ has the
following uniform approximation property:

8e > 0; 9ue 2 CGðTÞ � E; such that jju � uejj15e;

then u 2 CtbðT ;EÞ: Therefore, to get e-uniform approximations of u for
arbitrary e > 0; we have to accept u 2 CtbðT ;EÞ (Theorem 1 will prove that
this condition is also sufficient, even for special approximations) or to
replace the vector subspace CGðTÞ � E of CEðTÞ by a larger one. This is a
reason for:

Definition 1. Consider the ‘‘locally tensor product’’

ðCGðTÞ � XÞloc :¼ fu : T ! X j 8t 2 T ; 9V 2 VTðtÞ;

9v 2 CGðTÞ � X ; such that ujV ¼ vjV g:

Proposition 1. (1) ðCGðTÞ � X Þloc is a G-vector space and

CGðTÞ � X � ðCGðTÞ � XÞloc � CX ðTÞ:

(2) If T is compact, then ðCGðTÞ � XÞloc ¼ CGðTÞ � X :

Proof. Statement (1) is evident. The proof of (2) is immediate, using a
partition of unity (p.u.) on T : ]

Remark 1. If u 2 ðCGðTÞ � X Þloc and K is a compact subset of T ; then
ujK 2 CGðKÞ � X :
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2.2. The uniform density of ðCGðTÞ � XÞloc in CX ðTÞ

Theorem 1. Consider u 2 CX ðTÞ: If T or uðTÞ is paracompact or if

u 2 CtbðT ;X Þ; then for every W 2 VX ð0Þ; there exists an approximant

uW 2 ðCGðTÞ � X Þloc; such that:
(1) ðu � uW ÞðTÞ � W ; uW ðTÞ � coðuðTÞÞ; supp uW � u�1ðX =f0gÞ;
(2) uW ¼

P
i2I jið�Þxi; with ðxiÞi2I � uðTÞ and ðjiÞi2I p.u. on T : Moreover,

if u 2 CtbðT ;XÞ; then I can be choosen as a finite set and, consequently,
uW 2 CGðTÞ � X :

Proof. Fix W 2 VX ð0Þ: We can certainly assume that W is open and
convex. If u 2 CtbðT ;XÞ; then 9A0 � uðTÞ; such that A0 is finite and uðTÞ �
A0 þ 2�1W : Set A :¼ A0 if u 2 CtbðT ;X Þ; and A :¼ uðTÞ; otherwise. Thus,
uðTÞ � A þ W ; and so T ¼

S
x2A u�1ðx þ WÞ: There are three cases to

consider:
(a) If T is paracompact, then 9ðjxÞx2A p.u. on T ; subordinated to the

open covering ðu�1ðx þ WÞÞx2A of T :
(b) If uðTÞ is paracompact, then 9ðcxÞx2A p.u. on uðTÞ; subordinated to

the open covering ððx þ WÞ \ uðTÞÞx2A of uðTÞ: For x 2 A; set jx :¼ cx8u:
Hence, supp jx � u�1ðsupp cxÞ � u�1ðx þ WÞ 8x 2 A:

(c) If u 2 CtbðT ;XÞ; then A is finite and uðTÞ � A þ 2�1W : Define the
map o : X ! ½0; 1�; oðzÞ ¼ 0 _ ½1 � 2pW ðzÞ�; where pW means Minkowski’s
functional associated to W : Clearly, o is continuous and supp o � 2�1 %WW :
For every x 2 A; define ox : uðTÞ ! ½0; 1�; oxðzÞ ¼ oðz � xÞ: But
8z 2 uðTÞ � A þ 2�1W ; 9x 2 A; such that z 2 x þ 2�1W ; which gives
oxðzÞ ¼ oðz � xÞ > 0: Since

P
y2A oy > 0 on uðTÞ; we can define the

map cx ¼ ð
P

y2A oyÞ�1ox : uðTÞ ! ½0; 1�; jx :¼ cx8u 8x 2 A: Clearly,
supp cx � ðx þ 2�1 %WWÞ \ uðTÞ � ðx þ WÞ \ uðTÞ; supp jx � u�1ðsupp cxÞ �
u�1ðx þ WÞ 8x 2 A:

In all the above three cases, ðjxÞx2A p.u. on T ; subordinated to the open
covering ðu�1ðx þ WÞÞx2A of T : Now set v :¼

P
x2A jxð�Þx 2 ðCGðTÞ �

XÞloc: Obviously, vðTÞ � coðuðTÞÞ: We next show that ðu � vÞðTÞ � W :
Fix t 2 T and set At :¼ fx 2 A j jxðtÞa0g: Thus, At is finite,

P
x2At

jxðtÞ ¼
1 and 8x 2 At; we have t 2 supp jx � u�1ðx þ WÞ; and so ðu � vÞðtÞ ¼P

x2At
jxðtÞðuðtÞ � xÞ 2

P
x2At

jxðtÞW ¼ W : Therefore, ðu � vÞðTÞ � W :
We need consider two cases:

(i) If 0 =2 uðTÞ; then u�1ðX =f0gÞ ¼ T*supp v; and so uW :¼ v satisfies all
required properties.

(ii) If 0 2 uðTÞ; choose e 2 ð0; 1Þ: Clearly, ep %WW � W8 ¼ W : Define
the maps c : X ! ½0; 1�; cðxÞ ¼ ð0 _ pW ðxÞ�e

1�e Þ ^ 1;j ¼ c8u : T ! ½0; 1� and
uW ¼ jv 2 ðCGðTÞ � X Þloc: For every t 2 T ; we have the equivalences:

jðtÞ ¼ 1 , pW ðuðtÞÞ51 , uðtÞ 2 X =W , t 2 T =u�1ðWÞ;
jðtÞ ¼ 0 , pW ðuðtÞÞ4e , uðtÞ 2 e %WW , t 2 u�1ðe %WWÞ:
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Since vðTÞ � coðuðTÞÞ; 0 2 uðTÞ; 04j41 and uW ¼ jv þ ð1 � jÞ0;
it follows that uW ðTÞ � co ðuðTÞÞ; supp uW � supp j ¼ T =u�1ðe %WWÞ �
T =u�1ðeWÞ ¼ u�1ðX =eWÞ � u�1ðX =f0gÞ: It remains to prove that
ðu � uW ÞðTÞ � W : We have u � uW ¼ u � jv ¼ ð1 � jÞu þ jðu � vÞ: If
t 2 T =u�1ðWÞ; then ðu � uW ÞðtÞ ¼ ðu � vÞðtÞ 2 ðu � vÞðTÞ � W : If t 2
u�1ðWÞ; then ðu � uW ÞðtÞ 2 ð1 � jðtÞÞW þ jðtÞW ¼ W : Therefore,
ðu � uW ÞðTÞ � W : ]

Corollary 1. If T is quasi-compact, then for all u 2 CX ðTÞ and

W 2 VX ð0Þ; there exists an approximant uW 2 CGðTÞ � X ; such that

ðu � uW ÞðTÞ � W ; uW ðTÞ � coðuðTÞÞ; supp uW � u�1ðX =f0gÞ:

Corollary 2. CtbðT ;GÞ � X is uniformly dense in CtbðT ;XÞ:

2.3. The case of C0ðT ;GÞ � X � C1ðT ;XÞ

Theorem 2. Assume that T and X are Hausdorff. If u 2 C1ðT ;XÞ; then

for all W 2 VX ð0Þ and K a compact subset of T, there exists an approximant

uW ;K 2 C0ðT ;GÞ � X ; such that:
(1) ðu � uW ;KÞðTÞ � W ; uW ;KðTÞ � coðuðTÞ[ f0gÞ; uW ;KðKÞ � coðuðTÞÞ;

supp uW ;K � u�1ðX =f0gÞ;
(2) uW ;K ¼ j �

P
i2I jið�Þxi; with I finite, ðxiÞi2I � uðTÞ; ðjiÞi2I p.u. on T

and j : T ! ½0; 1� a continuous map, such that jjK � 1:

Proof. We can assume that uc0; that is 9t0 2 T ; with uðt0Þa0: Now fix
W 2 VX ð0Þ;W convex and K � T ; K compact. Set M :¼ K if 0 =2 uðKÞ;
and M :¼ ft0g if 0 2 uðKÞ: Since u 2 C1ðT ;X Þ � CtbðT ;XÞ; by Theorem 1,
9v ¼

P
i2I jið�Þxi 2 CGðTÞ � X ; such that ðu � vÞðTÞ � W ; vðTÞ � coðuðTÞÞ;

supp v � u�1ðX =f0gÞ; with I finite, ðxiÞi2I � uðTÞ and ðjiÞi2I p.u. on T :
Since 0 =2 uðMÞ and uðMÞ is compact, 9W0 2 VX ð0Þ; such that W0 � W ;
W0 open and convex and uðMÞ \ W0 ¼ |; that is M � u�1ðX =W0Þ: Now
define c : X ! ½0; 1�;cðxÞ ¼ ½0 _ ð2p

W0
ðxÞ � 1Þ� ^ 1; j ¼ c8u : T ! ½0; 1�;

w :¼ jv 2 CGðTÞ � X : For every t 2 T ; we have the following equivalences:

jðtÞ ¼ 1 , 2p
W0
ðuðtÞÞ52 , uðtÞ =2 W0 , t 2 u�1ðX =W0Þ;

jðtÞ ¼ 0 , 2p
W0
ðuðtÞÞ41 , 2uðtÞ 2 %W0W0 , t 2 u�1ð2�1 %W0W0Þ:

Clearly, wðTÞ � ½0; 1� � vðTÞ � coðuðTÞ [ f0gÞ: Since M � u�1ðX =W0Þ;
we have jjM � 1; and so wðMÞ ¼ vðMÞ � vðTÞ � coðuðTÞÞ and supp j ¼
u�1ðX =2�1 %WW 0Þ � u�1ðX =2�1W0Þ compact. Hence, w 2 C0ðT ;GÞ � X ;
supp w � supp j � u�1ðX =f0gÞ: We next show that ðu � wÞðTÞ � W : If
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t 2 u�1ðX =W0Þ; then ðu � wÞðtÞ ¼ ðu � vÞðtÞ 2 W and if t 2 u�1ðW0Þ; then
ðu � wÞðtÞ ¼ ð1 � jðtÞÞuðtÞ þ jðtÞðu � vÞðtÞ 2 ð1 � jðtÞÞW0 þ jðtÞW � W :
Hence, ðu � wÞðTÞ � W : If MaK ; then 0 2 uðKÞ; and so wðKÞ � wðTÞ �
coðuðTÞ [ f0gÞ ¼ coðuðTÞÞ and w ¼ 1 � ð

P
i2I ðjjiÞxi þ ð1 � jÞ � 0Þ: We

conclude that uW ;K :¼ w satisfies all required properties. ]

3. APPLICATIONS OF SPECIAL APPROXIMATIONS

3.1. The density of C0ðT ;GÞ � X in C0ðT ;X Þ with respect to the inductive

limit topology

The following theorem is due to the constraint on the approximant’s
support.

Theorem 3. Assume that T and X are Hausdorff. If u 2 C0ðT ;XÞ; then

for every V 2 VC0ðT ;XÞð0Þ with respect to the inductive limit topology, there

exists an approximant u
V
2 C0ðT ;GÞ � X ; such that:

(1) u � u
V
2 V ; u

V
ðTÞ � coðuðTÞÞ; supp u

V
� u�1ðX =f0gÞ;

(2) u
V
¼

P
i2I jið�Þxi; with I finite, ðxiÞi2I � uðTÞ and ðjiÞi2I p.u. on T.

Proof. We can certainly assume that 0 2 uðTÞ; since otherwise T is
compact and the conclusion is given by Theorem 1. Fix V 2 VC0ðT ;X Þð0Þ
and set K :¼ supp u; C0ðT ;X ÞK :¼ fw 2 C0ðT ;X Þ j supp w � Kg: Since
V \ C0ðT ;XÞK is a neighborhood of the origin in C0ðT ;XÞK with
respect to the uniform convergence topology, 9W 2 VX ð0Þ; such that
fw 2 C0ðT ;XÞK j wðTÞ � Wg � V \ C0ðT ;XÞK : Now Theorem 2 shows
that 9v ¼ j �

P
i2I jið�Þxi 2 C0ðT ;GÞ � X ; with I finite, ðxiÞi2I � uðTÞ;

ðjiÞi2I p.u. on T ; j : T ! ½0; 1� continuous, jjK � 1; and such that
ðu � vÞðTÞ � W ; vðTÞ � coðuðTÞÞ; supp v � u�1ðX =f0gÞ � K : We thus
get u � v 2 C0ðT ;XÞK ; ðu � vÞðTÞ � W ; and so u � v 2 V : Since
v ¼

P
i2I ðjjiÞxi þ ð1 � jÞ � 0; u

V
:¼ v satisfies all required properties. ]

Corollary 3. If T ;X are Hausdorff, then C0ðT ;GÞ � X is dense in

C0ðT ;X Þ with respect to the inductive limit topology. Moreover, if X is

metrizable, then this density is sequential.

Proof. The proof is immediate, with Theorem 3. ]

3.2. A Tietze–Dugundji’s type extension theorem

In this subsection, T denotes a topological space and X a G-locally convex
Hausdorff space. The following two lemmas emphasize the existing
connection between approximation and extension theorems.
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Lemma 1. Assume that X is also a Fr!eechet space. Then, for every subset

F � T ; the following two statements are equivalent:
(1) For all u 2 CX ðFÞ and W 2 VX ð0Þ; there exists uW 2 CX ðTÞ; such that

ðu � uW ÞðFÞ � W :
(2) For every u 2 CX ðFÞ; there exists *uu 2 CX ðTÞ; such that *uujF ¼ u and

*uuðTÞ � coðuðFÞ Þ:

Proof. It is to prove ð1Þ ) ð2Þ: Let us first show that 8u 2 CX ðFÞ;
8W 2 VX ð0Þ; 9v 2 CX ðTÞ; with ðu � vÞðFÞ � W ; vðTÞ � coðuðFÞÞ þ W :
Fix u 2 CX ðFÞ;W 2 VX ð0Þ and choose W0 2 VX ð0Þ;W0 balanced, convex,
such that 2W0 � W : According to our hypothesis, 9w 2 CX ðTÞ; with
ðu � wÞðFÞ � W0: It follows that wðFÞ � wðFÞ þ W0 � co ðuðFÞÞ þ 2W0;
and so coðwðFÞÞ � coðuðFÞÞ þ 2W0 � coðuðFÞÞ þ W : Now define the map
f : wðFÞ ! X ; f ðxÞ ¼ x: By Dugundji’s theorem, 9 *ff 2 CX ðXÞ; such that
*ff j

wðFÞ
¼ f and *ff ðXÞ � coðwðFÞÞ: Set v :¼ *ff 8w 2 CX ðTÞ: It follows that

vjF ¼ *ff 8wjF ¼ wjF ; ðu � vÞðFÞ ¼ ðu � wÞðFÞ � W0 � W ; vðTÞ � *ff ðXÞ �
coðwðFÞÞ � coðuðFÞÞ þ W : To finally prove (2), fix again u 2 CX ðFÞ:
Since X is metrizable, we can choose ðWnÞn2N a fundamental system of
convex neighborhoods of the origin in X ; with 2Wnþ1 � Wn 8n 2 N:
For u0 :¼ u 2 CX ðFÞ; 9v0 2 CX ðTÞ; such that ðu0 � v0ÞðFÞ � W0 and v0ðTÞ
� coðu0ðFÞÞ þ W0: Set u1 :¼ u0 � v0jF 2 CX ðFÞ: Thus, we can inductively
define ðunÞn2N � CX ðFÞ; ðvnÞn2N � CX ðTÞ; such that 8 n 2 N; we have:
ðun � vnÞðFÞ � Wn; vnðTÞ � coðunðFÞÞ þ Wn; unþ1 :¼ un � vnjF : Hence,
8n 2 N; unþ1ðFÞ ¼ ðun � vnÞðFÞ � Wn; vnþ2ðTÞ � c oðunþ2ðFÞÞ þ Wnþ2 �
Wnþ1 þ Wnþ2 � 2Wnþ1 � Wn: Therefore, un !u: 0 on F and

P
n50 vn is

uniformly convergent on T : Set v :¼
P1

n¼0 vn 2 CX ðTÞ: But 8t 2 F ; we
have vðtÞ ¼ limn!1

Pn
j¼0 vjðtÞ ¼ limn!1

Pn
j¼0 ðujðtÞ � ujþ1ðtÞÞ ¼ uðtÞ;

and so vjF ¼ u: As before, 9 *gg 2 CX ðX Þ; with *ggðxÞ ¼ x 8x 2 uðFÞ and
*ggðXÞ � coðuðFÞÞ: For *uu :¼ *gg8v 2 CX ðTÞ; we clearly have *uujF ¼ u and
*uuðTÞ � coð uðFÞ Þ: ]

Lemma 2. Assume that X is also a Fr!eechet space. Then, for every subset

F � T ; the following two statements are equivalent:
(1) For all u 2 CtbðF ;XÞ and W 2 VX ð0Þ; there exists uW 2 CtbðT ;XÞ;

such that ðu � uW ÞðFÞ � W :
(2) For every u 2 CtbðF ;X Þ; there exists *uu 2 CtbðT ;XÞ; such that *uujF ¼ u

and *uuðTÞ � coðuðFÞÞ:

Proof. It is to show ð1Þ ) ð2Þ: The proof is similar to that of Lemma 1,
observing first that 8u 2 CtbðF ;X Þ; 8W 2 VX ð0Þ; 9v 2 CtbðT ;X Þ; with
ðu � vÞðFÞ � W ; vðTÞ � coðuðFÞÞ þ W : Consequently, u � v 2 CtbðF ;XÞ:
Thus, the same construction as in the previous proof finally leads to the
maps v :¼

P1
n¼0 vn 2 CtbðT ;XÞ and *uu :¼ *gg8v 2 CtbðT ;X Þ: ]
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The following lemma is a variant of Theorem 1.

Lemma 3. Assume that T is normal. Consider a closed subset F � T and

u 2 CX ðFÞ: If T is paracompact or u 2 CtbðF ;XÞ; then for every W 2 VX ð0Þ;
there is a uW 2 ðCGðTÞ � XÞloc; with ðu � uW ÞðFÞ � W and uW ðTÞ �
coðuðFÞÞ: Moreover, if u 2 CtbðF ;XÞ; then we can find uW 2 CGðTÞ � X :

Proof. Fix W 2 VX ð0Þ; with W open and convex. If u 2 CtbðF ;XÞ;
then 9A0 � uðFÞ; with A0 finite and uðFÞ � A0 þ W : Set A :¼ A0 if
u 2 CtbðF ;XÞ; and A :¼ uðFÞ; otherwise. Therefore, uðFÞ � A þ W ; F ¼
u�1ðA þ WÞ ¼

S
x2A u�1ðx þ WÞ: For every x 2 A; u�1ðx þ WÞ is open

in F ; and so 9Ux open in T ; with u�1ðx þ WÞ ¼ Ux \ F : Thus, T ¼
ðT =FÞ [

S
x2A Ux ¼

S
x2B Ux; where B :¼ A [ fAg; UA :¼ T =F : If u 2

CtbðF ;XÞ; then ðUxÞx2B is a finite open covering of T ; which is a normal
space. If u =2 CtbðF ;XÞ; then ðUxÞx2B is an open covering of the paracompact
space T : In both cases, 9ðjxÞx2B p.u. on T ; subordinated to ðUxÞx2B:
Hence, j

A
¼ 1 �

P
x2A jx; supp j

A
� T =F : Now choose z 2 uðFÞ and

consider uW :¼
P

x2A jxð�Þx þ j
A
ð�Þz 2 ðCGðTÞ � XÞloc: Obviously, uW ðTÞ �

coðuðFÞÞ: We next show that ðu � uW ÞðFÞ � W : Fix t 2 F and set
J :¼ fx 2 A j jxðtÞa0g: Thus,

P
x2J jxðtÞ ¼ 1; ðu � uW ÞðtÞ ¼

P
x2J jxðtÞ�

ðuðtÞ � xÞ: But 8x 2 J we have jxðtÞa0; and so t 2 supp jx � Ux; uðtÞ 2
x þ W : We thus get ðu � uW ÞðtÞ 2

P
x2J jxðtÞW ¼ W : Hence, uW satisfies

all required properties. ]

Theorem 4. Assume that T is normal and X is Fr!eechet. Consider a closed

subset F � T and u 2 CX ðFÞ: If T is paracompact or u 2 CtbðF ;X Þ; then

there exists *uu 2 CX ðTÞ; such that *uujF ¼ u and *uuðTÞ � coðuðFÞÞ:

Proof. By Lemma 3, F satisfies condition (1) of Lemma 1 or 2. In both
cases, 9 *uu 2 CX ðTÞ; such that *uujF ¼ u and *uuðTÞ � coð uðFÞ Þ: ]

The above theorem is a strengthening of Theorem 3.6 [6], since u need not
be a compact map (if T is paracompact) and X need not be a Banach space.
For a metrizable space T ; we recover Dugundji’s extension theorem (see
[2, 3]). The following corollary is known (see [6, Corollary 3.5, p. 54]).

Corollary 4. Assume that T is completely regular and that X is

metrizable. Consider a compact subset F � T and u 2 CX ðFÞ: Then, there

exists *uu 2 CX ðTÞ; such that *uujF ¼ u and *uuðTÞ � coðuðFÞÞ:

Proof. Since T is completely regular, 9 *TT a compact topological space,
such that T is a dense subspace of *TT : Let *XX denote the completion of X :
Since u 2 C *XX ðFÞ and F is compact in *TT ; Theorem 4 shows that 9v 2 C *XX ð *TTÞ;
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such that vjF ¼ u; vð *TTÞ � coðuðFÞÞ ¼ coðuðFÞÞ � X : We thus get *uu :¼ vjT 2
CX ðTÞ; *uujF ¼ u; *uuðTÞ � coðuðFÞÞ: ]

Corollary 5. Assume that T is s-compact and that X is metrizable.

Consider a closed subset F � T and u 2 CX ðFÞ: Then, there exists
*uu 2 CX ðTÞ; such that *uujF ¼ u and *uuðTÞ � coðuðFÞÞ:

Proof. By hypothesis, 9ðKnÞn2N a family of compact subsets of T ; such
that T ¼

S
n2N Kn and Kn � K8 nþ1 8n 2 N: Set Fn :¼ F \ Kn 8n 2 N: Since

F0 is compact, K0 is normal and ujF0
2 CX ðF0Þ; by Corollary 4, 9u0 2

CX ðK0Þ; with u0jF0
¼ ujF0

; u0ðK0Þ � coðuðF0ÞÞ: For fixed n 2 N; assume
that 9un 2 CX ðKnÞ; such that unjFn

¼ ujFn
; unðKnÞ � coðuðFnÞÞ: Define v 2

CX ðKn [ Fnþ1Þ by vjKn
¼ un; vjFnþ1

¼ ujFnþ1
: By Corollary 4, it follows

that 9unþ1 2 CX ðKnþ1Þ; such that unþ1jðKn[Fnþ1Þ ¼ v and unþ1ðKnþ1Þ �
coðvðKn [ Fnþ1ÞÞ: This easily gives unþ1jFnþ1

¼ ujFnþ1
; unþ1ðKnþ1Þ �

coðunðKnÞ [ uðFnþ1ÞÞ ¼ coðuðFnþ1ÞÞ and unþ1jKn
¼ un: Therefore, we can

inductively define un 2 CX ðKnÞ; such that 8n 2 N; we have unþ1jKn
¼ un;

unjFn
¼ ujFn

and unðKnÞ � coðuðFnÞÞ: It follows that 9 *uu 2 CX ðTÞ; defined
by *uujKn

¼ un 8n 2 N: Obviously, *uujF ¼ u and *uuðTÞ � coðuðFÞÞ: ]

3.3. A proof of Schauder–Tihonov’s fixed point theorem

Lemma 4. Let T be a topological space, Y a G-topological vector space

and ðudÞd2D � CY ðTÞ; ðtdÞd2D � T nets, such that td ! t 2 T and ud !u: u;
u : T ! Y : Then, udðtdÞ ! uðtÞ:

Proof. The proof is standard. ]

The following proof is due to the constraint on the approximant’s range.

Theorem 5 (Schauder–Tihonov). Let X be a G-locally convex Hausdorff

space, M a closed convex subset of X and U : M ! M a completely

continuous operator. Then, U has a fixed point.

Proof. Since U is completely continuous, K :¼ UðMÞ is compact in X :
Clearly, K � M: On W :¼ fW 2 VX ð0Þ j W is balancedg; we consider the
usual order relation, given by: W1 � W2 , W1*W2: Now fix W 2 W:
Since U 2 CtbðM;XÞ; by Theorem 1, 9UW ¼

P
i2I jið�Þxi 2 CGðMÞ � X ;

such that ðU � UW ÞðMÞ � W ; ðxiÞi2I � UðMÞ; ðjiÞi2I p.u. on M for some
finite set I : Set KW :¼ coðfxi j i 2 IgÞ � coðUðMÞÞ � M; XW :¼ SpðKW Þ:
But XW is clearly normable since it is Hausdorff and has finite dimension,
KW is convex and compact and UW ðKW Þ � UW ðMÞ � KW : Now Brouwer’s
fixed point theorem shows that 9xW 2 KW ; such that UW ðxW Þ ¼ xW : This
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leads to xW ¼ UW ðxW Þ 2 UW ðMÞ � UðMÞ þ W � K þ W ; and so
9yW 2 K ; such that xW � yW 2 W : We thus get ðUW Þ

W2W
� CX ðMÞ;

ðxW Þ
W2W

� M and ðyW Þ
W2W

� K ; nets with the above properties. But
ðU � UW ÞðMÞ � W and xW � yW 2 W 8W 2 W; lead to UW !u: U and
xW � yW ! 0: As K is compact, ðyW Þ

W2W
� K has a subnet ðyjðdÞÞd2D;

convergent to an element x 2 K : Therefore, UjðdÞ !u: U and xjðdÞ ! x: Now
Lemma 4 gives xjðdÞ ¼ UjðdÞðxjðdÞÞ ! UðxÞ; and so UðxÞ ¼ x: ]
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