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Abstract

It is shown that for everyα > 1, we have

∞∑
k=n+1

1

kα
= 1

(α − 1)(n + θn)α−1

for some strictly decreasing sequence(θn)n�1 such that

1

2
< θn <

1

4

[
1+

(
1+ 1

2n + 1

)α]
,

hence with limn→∞ θn = 1
2. This is only a particular case of more general new results on s

defined by convex functions.
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1. Introduction

Let f : [1,∞[ → ]0,∞[ be a convex differentiable function, such that the se∑
n�1 f (n) converges. We will show that

∞∑
k=n+1

f (k) =
∞∫

n+θn

f (t) dt for everyn � 1, (1)

for some unique sequence(θn)n�1 ⊂ ]1
2,1[. Under reasonable assumptions the sequen

strictly decreasing to12. In this case, among all integral expressions
∫ ∞
n+α f (t) dt , the best

asymptotic approximation for series’nth remainder is obtained forα = 1
2. As we shall see

(Proposition 1 and Theorem 3), this “half integer” optimality isstrongly related to slow
convergence(limn→∞ f (n+1)

f (n)
= 1) of the series. If the ratio test limit is less than 1, the12

is no longer optimal.
Let us recall that approximations for partial sums in terms ofn + 1

2 were used in [2]
for the harmonic series (slowly divergent!), and in a hidden form in [3]. In the latter
the alternating harmonic series (slowly convergent!),nth remainder’s absolute value
expressed as∣∣∣∣∣

∞∑
k=n+1

(−1)k−1

k

∣∣∣∣∣ = 1

2n + xn

.

The main result from [3] states that the sequence(xn)n�1 is strictly decreasing and pro
vides good estimates for its convergence to 1. If we write this series as

∑
n�1(−1)n−1g(n)

for g(x) = 1
x
, then

1

2n + xn

= 1

2
g

(
n + xn

2

)
.

Thus the theorem from [3] actually has a half integer approximation nature. This wa
pointed out in [4], where the results from [3] were generalized for Leibniz series de
by convex functions.

Our main results (Theorems 3, 6, and 9) are in the spirit of [3,4] and hold in parti
for f (x) = 1/xα, with α > 1, hence for all convergent generalized harmonic series
instance, in the particular caseα = 2 we have

1

n + 1
2

>
π2

6
−

n∑
k=1

1

k2
= 1

n + θn

for some strictly decreasing sequence(θn)n�1, with

θ1 = 6

π2 − 6
− 1 ≈ 0.5505461

and
1

2
< θn <

1

2

[
1+ 1√

4(n + 1)2 + 1+ 2(n + 1)

]
<

1

2
+ 1

8(n + 1)

(the first majorant ofθn is given by (14)).
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2. Existence and convergence of (θn)n�1

Let us observe that (1) depends only on the restrictionf |[ 3
2 ,∞[. Therefore, we shal

consider a continuous functionf : [1,∞[ → ]0,∞[, which is subject to the following
conditions:

(i) the series
∑

n�1 f (n) converges,
(ii) f |[ 3

2 ,∞[ is convex.

Let us note thatf |[ 3
2 ,∞[ must be strictly decreasing. SetSn := ∑n

k=1 f (k) for every

n ∈ N
∗ := N \ {0} andS := limn→∞ Sn. Since

∫ ∞
1 f (t) dt < ∞ according to the integra

test, we can define

F : [1,∞[ → R, F (x) = −
∞∫

x

f (t) dt.

Obviously,F is the unique primitive off vanishing at infinity. HenceF is strictly increas-
ing andF |[ 3

2 ,∞[ is strictly concave.

Let us recall that any convex continuousg : [a, b] → R satisfies the well-known
Hadamard inequalities

g

(
a + b

2

)
� 1

b − a

b∫
a

g(t) dt � g(a) + g(b)

2
, (2)

and both inequalities are strict ifg is not an affine function.1

Proposition 1. There exists a unique sequence(θn)n�1 ⊂ [1
2,1[, such that

Sn − S = F(n + θn) for everyn ∈ N
∗. (3)

This sequence depends only on the restrictionf |] 3
2 ,∞[. We have the estimates

F

(
n + 1

2

)
� Sn − S � F(n + 1) − f (n + 1)

2
, (4)

1

2
� θn <

1

4

[
1+ f (n + 1

2)

f (n + 1)

]
, (5)

for everyn ∈ N
∗. In particular, if limn→∞ f (n+1)

f (n)
= 1, thenlimn→∞ θn = 1

2.

Proof. Let us define the sequences(Xn)n�1 and(Yn)n�1 by

Xn := Sn − S − F

(
n + 1

2

)
, Yn := Sn − S − F(n + 1) + f (n + 1)

2
.

1 That is,g(x) = λx + µ for someλ,µ ∈ R.
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By (2) we deduce that(Xn)n�1 is decreasing and(Yn)n�1 is increasing. As limn→∞ Xn =
limn→∞ Yn = 0, it follows thatYn � 0 � Xn for everyn ∈ N

∗. We thus get (4), as well a
the existence of a unique sequence(θn)n�1 ⊂ [1

2,1[ satisfying (3), sinceF is continuous
and strictly increasing.

It remains to prove (5). For everyn ∈ N
∗, using (2) and (4) yields

f (n + 1
2) − f (n + 1)

4
�

n+1∫
n+ 1

2

f (t) dt − f (n + 1)

2
� Sn − S − F

(
n + 1

2

)

= F(n + θn) − F

(
n + 1

2

)

�
(

θn − 1

2

)
f

(
n + 2θn + 1

4

)
�

(
θn − 1

2

)
f

(
n + 3

4

)
.

We thus get

θn − 1

2
�

f (n + 1
2) − f (n + 1)

4f (n + 3
4)

<
f (n + 1

2) − f (n + 1)

4f (n + 1)
,

that is, (5). We also have

θn <
1

4

[
1+ f (n)

f (n + 1)

]

for everyn � 2, which proves the last statement.�
Remark 2.

(a) If f |] 3
2 ,∞[ is differentiable or strictly convex, then (4) and (5) hold with strict inequ

ities.
(b) If f |[ 3

2 ,∞[ is differentiable, then

0 < Sn − S − F

(
n + 1

2

)
< −f ′(n + 1

2)

8
for everyn ∈ N

∗. (6)

(a) follows from the strict inequalitiesXn > 0 > Yn. Suppose thatXn0 = 0 for some
n0 ∈ N

∗, that is, Xn+1 = Xn for n � n0. It follows that f |[n− 1
2 ,n+ 1

2 ] is affine (equal-
ity in (2)) for everyn > n0. Thus,f |] 3

2 ,∞[ must be differentiable, since it is not strict

convex. We deduce thatf |[n0+ 1
2 ,∞[ is affine, which is absurd, becausef > 0 and

limn→∞ f (n) = 0. HenceXn > 0. The proof of the inequalityYn < 0 is similar.
For (b) we combine (4), the second order Taylor expansion ofF(x) (at n + 1, for x =

n + 1) with remainder in derivative form, and the monotony off ′.
2
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Our next result provides a convergence test for the sequence(θn)n�1, as well as the
value of its limit. Let us define

L : [0,1] → R, L(x) =




1, if x = 0,

ln
(

x lnx
x−1

)
/lnx, if x ∈ ]0,1[,

1
2, if x = 1.

It is easy to check thatL is continuous and12 � L � 1. HenceL([0,1]) = [1
2,1].

Theorem 3. If limx→∞ f (x+t )
f (x)

exists2 for everyt ∈ [0,1], then the sequence(θn)n�1 con-

verges. Fora := limn→∞ f (n+1)
f (n)

∈ [0,1], we have

lim
n→∞ θn = L(a). (7)

Proof. Let us first observe thatω(t) := limx→∞ f (x+t )
f (x)

∈ [0,1] exists for everyt � 0 (we
can obtain it as a finite product of limits as in our statement), and thatω : [0,∞[ → [0,1]
is decreasing, since so isf |[ 3

2 ,∞[. It is easily seen thatω(t + s) = ω(t)ω(s) for all t, s � 0.

It follows thatω(t) = at for everyt > 0, wherea = ω(1) ∈ [0,1]. To prove (7) we need t
analyze three cases.

Case 1. If a = 1, the conclusion follows by Proposition 1.

Case 2. If a ∈ ]0,1[, then for everyn ∈ N
∗ we havezn := Sn − S − F(n + θ) =

F(n + θn) − F(n + θ) = (θn − θ)f (n + λn) for someλn ∈ ]1
2,1[, by the mean value

theorem of Lagrange. We thus get

|θn − θ | = |zn|
f (n + λn)

� |zn|
f (n + 1)

for everyn ∈ N
∗. (8)

We next prove by applying Cesaro–Stolz theorem (0/0) that limn→∞ zn

f (n+1)
= 0 for suit-

ableθ . An easy computation leads forn � 2 to

zn − zn−1

f (n + 1) − f (n)
= 1

f (n + 1)/f (n) − 1

×
[

1− f (n + θ − 1)

f (n)

1∫
0

f (n + θ − 1+ t)

f (n + θ − 1)
dt

]
.

As Lebesgue’s theorem shows that

lim
n→∞

1∫
0

f (n + θ − 1+ t)

f (n + θ − 1)
dt =

1∫
0

at dt = a − 1

lna
,

2 For instance, iff is log-convex (that is, ln(f ) is a convex function).
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we have

lim
n→∞

zn

f (n + 1)
= lim

n→∞
zn − zn−1

f (n + 1) − f (n)
= 1

a − 1

(
1− 1

a1−θ

a − 1

lna

)
.

Since this limit is 0 forθ = L(a), the conclusion follows by (8).

Case 3. If a = 0, let ε ∈ ]0,1[ andα := 1 − ε
2 ∈ ]1

2,1[. As ω ≡ 0, there existsnε ∈ N
∗,

such that
f (x+ ε

2 )

f (x)
< ε

3 for everyx ∈ [nε,∞[. Thus, f (n+1)
f (n+α)

< ε
3 for n � nε . If we prove

that θn > 1 − ε for every n � nε, the assertion follows. On the contrary, suppose
θm � 1− ε < α for somem � nε. By (3) and the concavity ofF < 0, it follows that

S − Sm = −F(m + θm) > F(m + α) − F(m + θm) � (α − θm)f (m + α)

� ε

2
f (m + α) >

3

2
f (m + 1).

Let us observe that
f (n + 1)

f (n)
<

f (n + ε
2)

f (n)
<

ε

3
for n > nε,

and hence

f (m + k)

f (m + 1)
�

(
ε

3

)k−1

for everyk ∈ N
∗.

We thus get

S − Sm =
∞∑

k=1

f (m + k) � f (m + 1)

1− ε
3

<
3

2
f (m + 1),

a contradiction. We conclude that limn→∞ θn = 1. �
As Example 7 will show, all numbers from[1

2,1] are potential limits of the sequenc
(θn)n�1.

3. Monotony of (θn)n�1

The sequence(θn)n�1 need not be monotone in general.

Example 4. Let us consider the function

f : [1,∞[ → R, f (x) =




8x2−25x+21
4 , x ∈ [1, 3

2],
3−x

4 , x ∈ [3
2,2],

1
x2 , x ∈ [2,∞[.

Thenf is continuously differentiable and convex,
∞∑

n=1

f (n) =
∞∑

n=1

1

n2 = π2

6
,

limn→∞ θn = 1, but 1 < θ1 < θ2. Therefore(θn)n�1 is not monotone.
2 2
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We havef (n) = 1
n2 for every n ∈ N

∗. Some easy computations show thatf ∈
C1([1,∞[) and

f ′(x) =




16x−25
4 , x ∈ [1, 3

2],
−1

4, x ∈ [3
2,2],

− 2
x3 , x ∈ [2,∞[,

F (x) =
{

− (x−3)2+3
8 , x ∈ [3

2,2],
− 1

x
, x ∈ [2,∞[.

We see thatf ′ is increasing, that is,f is convex. That limn→∞ θn = 1
2 follows by Proposi-

tion 1. We haveS1 − S = F(1+ θ1), S2 − S = F(2+ θ2), and so

θ1 = 2−
√

4π2

3
− 11< 0.5305, θ2 = 12

2π2 − 15
− 2 > 0.532.

Lemma 5. Letg : [a, b] → R be a continuous function andc ∈ ]a, b[, such that
b∫

a

g(t) dt = g(c)(b − a).

Assumeg|]a,b[ to be twice differentiable, withg′ 	= 0 and g′′
g′ monotone.3 If g and g′′

g′ have
opposite monotonies, then

g(b) − g(a) � g′(c)(b − a). (9)

If g and g′′
g′ have the same monotony, then converse inequality holds in(9). Strict inequality

holds if g′′
g′ is strictly monotone.

Proof. We shall assume that−g and g′′
g′ are increasing on]a, b[, hence thatg′ < 0 (the

proof is similar in all other cases). Fix a primitiveG : [a, b] → R of g, and defineu :
[a, c] × [c, b] → R, u(x, y) = G(y) − G(x) − g(c)(y − x).

Step 1. We first show that there is a unique functionϕ : [a, c] → [c, b] satisfying

u
(
x,ϕ(x)

) = 0 for everyx ∈ [a, c]. (10)

Let us observe that∂u
∂x

(x, y) = g(c) − g(x) and ∂u
∂y

(x, y) = g(y) − g(c), and consequentl
the partial functionsu(x, ·) : [c, b] → R andu(· , y) : [a, c] → R are strictly decreasing fo
all fixed x ∈ [a, c], y ∈ [c, b]. From this, it follows thatu(x, c) � u(c, c) = 0 = u(a, b) �
u(x, b), with strict inequalities ifx ∈ ]a, c[. As u is continuous, there exists a unique s
lution y =: ϕ(x) ∈ [c, b] of the equationu(x, y) = 0. We thus get the required implic
functionϕ : [a, c] → [c, b]. Let us note thatϕ(a) = b,ϕ(c) = c, andϕ(]a, c[) ⊂ ]c, b[.
Step 2. We next prove thatϕ is continuous,ϕ|]a,c[ is differentiable, and

ϕ′(x) = g(x) − g(c)

g(ϕ(x)) − g(c)
< 0 for everyx ∈ ]a, c[. (11)

3 This is related to the convexity or concavity of ln(|g′|) on ]a,b[.
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The differentiability ofϕ|]a,c[ and relation (11) follow by applying the implicit functio
theorem tou at every point(x,ϕ(x)) ∈ ]a, c[×]c, b[. As by (11)ϕ|]a,c[ is decreasing, bot
limits λa := limx↘a ϕ(x) andλc := limx↗c ϕ(x) exist in[c, b]. Since passages to the lim
in (10) lead tou(a,λa) = 0 = u(a,ϕ(a)) andu(c,λc) = 0 = u(c,ϕ(c)), by the uniquenes
of ϕ we deduce thatλa = ϕ(a) andλc = ϕ(c). We conclude thatϕ is continuous.

Step 3. We finally prove the required inequality from (9). The continuous functionh :
[a, c] → R, h(x) = g(ϕ(x))−g(x)−g′(c)(ϕ(x)−x) is differentiable on]a, c[. For every
x ∈ ]a, c[, using (11) leads to

h′(x)

g(x) − g(c)
= g′(ϕ(x)) − g′(c)

g(x) − g(c)
ϕ′(x) − g′(x) − g′(c)

g(x) − g(c)

= g′(ϕ(x)) − g′(c)
g(ϕ(x)) − g(c)

− g′(x) − g′(c)
g(x) − g(c)

= g′′(bx)

g′(bx)
− g′′(ax)

g′(ax)
� 0

for somex < ax < c < bx < ϕ(x), as follows by applying Cauchy’s theorem for the diffe
entiable functionsg′ andg. Henceh is increasing, and consequently 0= h(c) � h(a) =
g(b) − g(a) − g′(c)(b − a). �
Theorem 6. Assumef |] 3

2 ,∞[ to be twice differentiable. If the functionf
′′

f ′ is monotone

(strictly or not), then the sequence(θn)n�1 has the opposite monotony. Furthermore,

limit limn→∞ f (n+1)
f (n)

=: a exists and(7) holds.

Proof. We shall assume thatf
′′

f ′ is increasing on]3
2,∞[. The proof is similar in the cas

of strict monotony. By (3), we have the recurrence relation

F(n + θn) − F(n − 1+ θn−1) = f (n) for everyn � 2. (12)

Step 1. Let us show that there is a unique functionΘ : ]3
2,∞[ → ]1

2,1[ satisfying

F
(
x + Θ(x)

) − F
(
x + Θ(x) − 1

) = f (x) for everyx ∈
]

3

2
,∞

[
. (13)

Define v : ]3
2,∞[ × [1

2,1] → R, v(x, y) = F(x + y) − F(x + y − 1) − f (x) and fix
x ∈ ]3

2,∞[. The partial functionv(x, ·) is strictly decreasing, since∂v
∂y

(x, y) = f (x + y)−
f (x+y−1) < 0. AsF is strictly concave, we havev(x,1) = F(x+1)−F(x)−f (x) < 0.
By (2) we deduce thatv(x, 1

2) � 0. Assume thatv(x, 1
2) = 0, that is,f |]x− 1

2 ,x+ 1
2 [ is

affine. Sincef ′′(x) = 0 and f ′′
f ′ � 0 is increasing, it follows thatf ′′|[x,∞[ ≡ 0, hence tha

f |[x,∞[ is affine. This is absurd, becausef > 0 and limn→∞ f (n) = 0. Thus,v(x, 1
2) >

0 > v(x,1). As v is continuous, there exists a unique solutiony =: Θ(x) ∈ ]1
2,1[ of the

equationv(x, y) = 0. We thus get the required implicit functionΘ : ]3
2,∞[ → ]1

2,1[.
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Step 2. We next prove thatΘ is decreasing. Applying the implicit function theorem tov at
every point(x,Θ(x)) ∈ ]3

2,∞[ × ]1
2,1[ shows thatΘ is differentiable. We also have

Θ ′(x) = −
∂v
∂x

(x,Θ(x))

∂v
∂y

(x,Θ(x))
= f (x + Θ(x)) − f (x + Θ(x) − 1) − f ′(x)

f (x + Θ(x) − 1) − f (x + Θ(x))
� 0,

the last inequality being a consequence of Lemma 5 (applied forg = f and a = x +
Θ(x) − 1, b = x + Θ(x), c = x). HenceΘ is decreasing.

Step 3. We continue by showing that(θn)n�1 is decreasing and satisfies4

θn � Θ(n + 1) for everyn ∈ N
∗. (14)

SetTn := Sn − F(n + Θ(n)) for everyn ∈ N
∗. The following equivalent statements ho

since so does the last one:

Tn+1 � Tn
(13)⇐⇒ F

(
n + Θ(n)

)
� F

(
n + 1+ Θ(n + 1)

) − f (n + 1)

= F
(
n + Θ(n + 1)

)
F↑⇐⇒ Θ(n) � Θ(n + 1).

Hence the sequence(Tn)n�1 is increasing. As limn→∞ Tn = S, we haveTn � S for every
n ∈ N

∗. The following equivalent statements hold for everyn � 2, since so does the la
one:

θn−1 � θn
F↑,(12)⇐⇒ F(n + θn−1) � F(n + θn) = F(n − 1+ θn−1) + f (n)

⇐⇒ v(n, θn−1) � 0 = v
(
n,Θ(n)

)
v(n,·)↓⇐⇒ θn−1 � Θ(n)

(3),F↑,(13)⇐⇒ Sn−1 − S = F(n − 1+ θn−1) � F
(
n − 1+ Θ(n)

)
= F

(
n + Θ(n)

) − f (n)

⇐⇒ Tn � S.

We conclude that(θn)n�1 is decreasing, and that (14) holds.

The last part of our statement followsby Theorem 3 if we prove that the lim
limx→∞ f (x+t )

f (x)
exists for eacht ∈ ]0,1]. The functionρt : ]3

2,∞[ → ]0,1], ρt (x) =
f ′(x+t )
f ′(x)

is increasing, since

ρ′
t (x) = ρt (x)

(
f ′′(x + t)

f ′(x + t)
− f ′′(x)

f ′(x)

)
� 0.

Hence limx→∞ ρt (x) exists, and so limx→∞ f (x+t )
f (x)

exist too, by l’Hôpital’s rule. �

4 With strict inequality, if f ′′
′ is strictly increasing.
f
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(a) Forf (x) = 1
xα (α > 1), we have limn→∞ θn = 1

2 = L(1), and(θn)n�1 is strictly de-
creasing.

(b) Forf (x) = ax (a ∈ ]0,1[), we have limn→∞ θn = L(a), and(θn)n�1 is constant.

(c) Forf (x) = e−x2
, we have limn→∞ θn = 1 = L(0), and(θn)n�1 is strictly decreasing

That the above statements hold is clear by Theorem 6.

4. An iterative method

Let us observe that for everyn ∈ N
∗, the expression

Sn − S − F

(
n + 1

2

)
=

∞∑
k=n+1

[ k+ 1
2∫

k− 1
2

f (t) dt − f (k)

]

is thenth remainder of a convergent series associated to a functiong : [3
2,∞[ → [0,∞[.

If g is convex, then inequalities (4) may be applied to this new series. Furthermor
der suitable assumptions we may repeat this argument again. This reasoning justi
following construction.

For everya ∈ R, let Fa denote the real vector space consisting of all continuous f
tionsh : [a,∞[→ R. Let us consider the linear operator

Ja :Fa →F
a+ 1

2
, Jah(x) =

x+ 1
2∫

x− 1
2

h(t) dt − h(x).

SetF := ⋃
a∈R

Fa and defineJ :F → F , such thatJ |Fa
= Ja for everya ∈ R. The result

of J (Jh) will be written asJ 2h, and so on. The needed properties ofJ are collected in the
following lemma.

Lemma 8. Leth ∈Fa .

(a) For all m,n ∈ N with m > n � a − 1
2, we have

−
m∑

r=n+1

h(r) +
m+ 1

2∫
n+ 1

2

h(t) dt =
m∑

r=n+1

Jh(r).

(b) If h vanishes at infinity, then so doesJh.
(c) If h is continuously differentiable, then so isJh and(Jh)′ = J (h′).
(d) If h is strictly convex, thenJh > 0.
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. To
f

ave

e-
(e) If h is twice differentiable, then for everyx � a + 1
2, there existsξ ∈ ]−1

2, 1
2[, such that

Jh(x) = h′′(x + ξ)

24
.

Proof. Properties (b)–(d) are obvious, and (a) follows by a trivial computation
prove (e), let us observe that for everyx � a + 1

2, a third order Taylor expansion o

[0, 1
2] � u �→ ∫ x+u

x−u
h(t) dt ∈ R at 0 shows that

Jh(x) =
x+ 1

2∫
x− 1

2

h(t) dt − h(x) = h′′(x + η) + h′′(x − η)

48

for some η ∈ ]0, 1
2[. As h′′ has the intermediate value property, we must h

h′′(x+η)+h′′(x−η)
2 = h′′(x + ξ) for someξ ∈ [−η,η] ⊂ ]−1

2, 1
2[. �

Theorem 9. Assumef to be 2p + 2 times continuously differentiable(p ∈ N), with
f (2p+2) > 0. Set

σp :=
p∑

k=0

(−1)kJ kF, εp(n) := JpF(n + 1) − JpF

(
n + 1

2

)
− Jpf (n + 1)

2
.

Then for everyn � p+1
2 we have

0 < (−1)p+1
[
S − Sn + σp

(
n + 1

2

)]
< εp(n) < −f (2p+1)(n − p−1

2 )

8 · 24p
. (15)

Note thatσ0 = F, σ1 = F − JF, σ2 = F − JF + J 2F , and so on.

Proof. We can assume thatp ∈ N
∗, since otherwise the conclusion follows by R

mark 2(b). Fixn ∈ N
∗, n � p+1

2 .

Step 1. We first prove the equality

(−1)p+1
[
S − Sn + σp

(
n + 1

2

)]
+ JpF

(
n + 1

2

)
= −

∞∑
r=n+1

Jpf (r). (16)

Fix m > n. Repeated application of Lemma 8(b, c) yields limx→∞ J kF (x) = 0 and
(J kF )′ = J kf ∈F1+ k

2
. By Lemma 8(a) we deduce that

−
m∑

J kf (r) + J kF

(
m + 1

2

)
− J kF

(
n + 1

2

)
=

m∑
J k+1f (r),
r=n+1 r=n+1
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ery

e-
or

(16)
that

fixed
or
n

hence that the series
∑

r�n+1 J kf (r) converges for everyk ∈ {0,1, . . . , p}, since it does

so fork = 0 (J 0f = f ). We thus get

−
∞∑

r=n+1

J kf (r) − J kF

(
n + 1

2

)
=

∞∑
r=n+1

J k+1f (r) for k ∈ {0,1, . . . , p − 1}.

Summation of the above equalities multiplied by(−1)k+1 leads to (16).

Step 2. We next show the inequalities

JpF

(
n + 1

2

)
< −

∞∑
r=n+1

Jpf (r) < JpF

(
n + 1

2

)
+ εp(n). (17)

Let us observe thatJpf ∈ F1+ p
2

is convex, since according to Lemma 8(c, e), for ev

x � 1+ p
2 we have

(
Jpf

)′′
(x) = Jp(f ′′)(x) = f (2p+2)(x + ξ)

24p
> 0

for someξ ∈ ]−p
2 ,

p
2 [. ThereforeJpf is strictly convex and differentiable, and cons

quently it can be extended to a functiong : [1,∞[ → ]0,∞[ keeping these properties. F
the convergent series

∑
s�1 g(s + n − 1), applying (4) fors = 1 now gives

∞∫
3
2

g(t + n − 1) dt >

∞∑
s=2

g(s + n − 1) >

∞∫
2

g(t + n − 1) dt + g(2)

2
,

which yields (17), sinceg|[1+ p
2 ,∞[ = Jpf andn + 1

2 � 1+ p
2 .

Step 3. We finally prove (15). The first two estimates are just a combination of
and (17). Thus it remains to show the last inequality. As for Remark 2(b) we deduce

εp(n) < − (J pf )′(n + 1
2)

8
.

As f (2p+1) is strictly increasing and a repeatedapplication of Lemma 8(c, e) yields

(
Jpf

)′(
n + 1

2

)
= Jp(f ′)

(
n + 1

2

)
= · · · = f (2p+1)(n + 1

2 + ξ)

24p

for someξ ∈ ]−p
2 ,

p
2 [, the inequality follows. �

Let us note that the last expression of (15) provides an a priori error estimate; for
ε > 0, it can be used to find suitablep,n. The following example shows that the err
made by usingSn − σp(n + 1

2) as an approximation forS may be surprisingly small eve
for small values ofn andp.
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ant

th.
Example 10. We shall apply Theorem 9 forf : [1,∞[ → ]0,∞[, f (x) = 1
x3 andp = 1.

Some easy computations show that

f ′′′(n) = −60

n6
, F (x) = − 1

2x2
, Jf (x) = 8x2 − 1

x3(2x + 1)2(2x − 1)2
,

JF (x) = − 1

2x2(2x − 1)(2x + 1)
, σ1

(
n + 1

2

)
= − (2n + 1)2 − 2

2n(n + 1)(2n + 1)2
,

ε1(n) = 10(n + 1)2 − 1

2n(n + 1)3(2n + 1)2(2n + 3)2
.

By Theorem 9, we have

0 < S − Sn + σ1

(
n + 1

2

)
< ε1(n) <

5

16n6
for everyn ∈ N

∗.

Let us note thatε1(2) = 89
132300< 0.7 · 10−3, ε1(4) = 83

3267000< 0.3 · 10−4, andε1(12) <

0.8 · 10−7.

For high precision approximations (80 correct digits) for sums of generalized harm
series with exponentα ∈ {2,3, . . . ,251} we refer the reader to [1].
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