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Abstract

Itis shown that for every > 1, we have
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hence with lim— o0 0, = % This is only a particular case of more general new results on series
defined by convex functions.
0 2004 Elsevier Inc. All rights reserved.

Keywords:Positive series; Convex function; Harmonic series; Partial sum

E-mail addressvlad.timofte@epfl.ch.

0022-247X/$ — see front mattdrl 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2004.07.004



V. Timofte / J. Math. Anal. Appl. 303 (2005) 90-102 91

1. Introduction

Let f :[1,00[ — ]0,00[ be a convex differentiable function, such that the series
Zn>1f(”) converges. We will show that

o0

> fl= / f(t)dt foreveryn > 1, 1)

k=n+1 n+0)1

for some unique sequen@®,),>1 C ]%, 1[. Under reasonable assumptions the sequence is
strictly decreasing t(%. In this case, among all integral expressigf;ﬁga f () dt, the best

asymptotic approximation for seriesth remainder is obtained for = % As we shall see
(Proposition 1 and Theorem 3), ¢hthalf integer” optimality isstrongly related to slow
convergencéim,_ o f}”(j)l) = 1) of the series. If the ratio test limit is less than 1, tHen
is no longer optimal

Let us recall that approximations for partial sums in terms ef% were used in [2]
for the harmonic series (slowly divergent!), and in a hidden form in [3]. In the latter, for
the alternating harmonic series (slowly convergenith remainder’s absolute value is
expressed as

k=n+1 k
The main result from [3] states that the seque(g,>1 is strictly decreasing and pro-
vides good estimates for its convergence to 1. If we write this seriEn%s_(—l)”*lg(n)

for g(x) = 2, then

1 1 n Xn
= = n el B
ntx 28" 2
Thus the theorem from [3] actually has a half integer approximation nature. This was also
pointed out in [4], where the results from [3] were generalized for Leibniz series defined
by convex functions.
Our main results (Theorems 3, 6, and 9) are in the spirit of [3,4] and hold in particular
for f(x) =1/x%, with « > 1, hence for all convergent generalized harmonic series. For
instance, in the particular case= 2 we have

1 A | 1
> " e nta

_ 1
T 2n+4x,

1
n+s3 k=1
for some strictly decreasing sequeriég),, >1, with
6
91 = ——— — 1~ 05505461
1= 72 6
and
1 0 [1+ 1 } 1 n 1
=< < = < =
2 "2 VAn+12+14+2+11 2 8n+1)

(the first majorant o, is given by (14)).
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2. Existence and convergenceof (0,),>1

Let us observe that (1) depends only on the restricyfcp[@,oo[. Therefore, we shall

2
consider a continuous functiofi : [1, co[ — ]0, co[, which is subject to the following
conditions:

() the seriesZ@lf(n) converges,
(i) f|[%)oo[ is convex.

Let us note thatf|[% s Must be strictly decreasing. S&f := Y;_, f(k) for every

neN*:=N\ {0} and S :=lim;,_ o Sy. Sincefloo f () dt < oo according to the integral
test, we can define

F:[1,00[— R, F(x):—/f(t)dt.

Obviously, F is the unique primitive off vanishing at infinity. Hencé' is strictly increas-
ing andF|[%’Oo[ is strictly concave.

Let us recall that any convex continuoys: [a, b] — R satisfies the well-known
Hadamard inequalities

b
g<a+b> < P ! /g(t)dt < 7g(a)+g(b), (2
—da

2 2
and both inequalities are strictgfis not an affine function.

Proposition 1. There exists a unique sequenég),>1 C [%, 1[, such that
S, —S=F@n+86,) foreveryn e N* 3)

This sequence depends only on the restricp"Q)Jlg o[+ We have the estimates

1 1
F<n+§><sn—S<F(n+1)—%, @)
1 1, fa+d)
<l <1+ 2 5
2 n<4[+f(n+1) ©®)
for everyn € N*. In particular, if lim,_ o f%“)l) =1, thenlim, .o 6, = 3.
Proof. Let us define the sequences,),>1 and(Y,),>1 by
fin+1)

1
X,,::Sn—S—F(n—i——), Y, =S-S—-Fn+1+

2 2

1 Thatis,g(x) = Ax + u for somex, u € R.
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By (2) we deduce thatX,),>1 is decreasing ant¥;,;),»1 is increasing. As lim_, oo X, =
lim,— 0 Y, =0, it follows thatY,, < 0< X,, for everyn € N*. We thus get (4), as well as
the existence of a unique sequeriég),>1 C [%, 1[ satisfying (3), sinceF is continuous
and strictly increasing.

It remains to prove (5). For everye N*, using (2) and (4) yields

1, n+1
f("+2)4f(n+1)> f f(t)dr—if(”gl)>S,,—S—F(n+%)

n+%

=F(n+en>—F<n+%)

> (o 1 20, +1 > (o 1 3
(o e 25> o )

1_fo+)—f0t+d fo+y-f+D
27 4fm+d) 4f(n+1)

We thus get

O —

3

thatis, (5). We also have

fn) }

1
9"<_[1+f(n+1)

4

for everyn > 2, which proves the last statementa

Remark 2.

(a) If f|]% ool is differentiable or strictly convex, then (4) and (5) hold with strict inequal-
ities.
(b) If f|[%,oo[ is differentiable, then

for everyn € N*. (6)

1) ffn+3d)
__Jet3)
2 8

O<Sn—S—F(n+—

(a) follows from the strict inequalitieX,, > 0 > Y,. Suppose thak,, = 0 for some
no € N*, that is, X,+1 = X, for n > ng. It follows that f|[n_%’n+%] is affine (equal-
ity in (2)) for everyn > no. Thus,f|]g’oo[ must be differentiable, since it is not strictly
convex. We deduce thaf|[no+%’oo[ is affine, which is absurd, because> 0 and

lim,_ f(n) =0. HenceX, > 0. The proof of the inequality,, < 0 is similar.
For (b) we combine (4), the second order Taylor expansiofi(@af) (atn + 1, forx =
n+ %) with remainder in derivative form, and the monotony/df
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Our next result provides a convergence test for the sequ@hie.1, as well as the
value of its limit. Let us define

1, if x=0,
L:[0,1]—> R, L) ={ () /Inx, if x €10, 11,
3, if x=1.

It is easy to check that is continuous am% < L <1.HenceL([0,1]) = [%, 1].

Theorem 3. If lim,_, oo fj(f‘(;’) existé for everyr € [0, 1], then the sequendé, ), >1 con-
f(n+1)

f(n)
lim 6, = L(a). )

n—o00

verges. For :=1lim,,_, € [0, 1], we have

Proof. Let us first observe that(r) := limy_ f;)zj)” € [0, 1] exists for every >0 (we
can obtain it as a finite product of limits as in our statement), anduhd®, oo[ — [0, 1]
is decreasing, since SOfS[%oo[- Itis easily seenthab(r +s) = w(t)w(s) forall ¢, s > 0.
It follows thatw(r) = a’ for everyt > 0, wherea = (1) € [0, 1]. To prove (7) we need to

analyze three cases.
Case 1. If a = 1, the conclusion follows by Proposition 1.

Case 2. If a €10, 1[, then for everyn € N* we havez, =S8, — S — F(n + 0) =
F(n+6,) — F(n+80) = 6, — 0)f(n+ A, for somex, € 13, 1[, by the mean value
theorem of Lagrange. We thus get

_ |Zn| < |Zn|
Cf(nt ) f(n+1)

We next prove by applying Cesaro—Stolz theorenfOfGhat lim,_, m = 0 for suit-
abled. An easy computation leads far> 2 to ‘

|60, — 0] for everyn € N*. (8)

Zn — Zn-1 1

fo+1D)—fm)  f+D/fm)—1

1
fm+0-=21) [ f(n+6—1+1)
x|1— dr|.
fn) 4 fn+0-1

As Lebesgue’s theorem shows that

1 1
. 0—1+1t -1
lim Mdt:/a’dtza ,
n—>00 f(n+6-1) Ina

0

2 For instance, iff is log-convex (that is, laf) is a convex function).
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we have

. Zn Zn — Zn—1 1 1 a-1
lim ————— = lim = — .
n—soo f(n+1) n—soo fn+1)—f(n) a-—1 al=? Ina
Since this limit is 0 fo® = L(a), the conclusion follows by (8).

Case3.If a=0,lete €]0,1[ anda:=1—§ €3

27
fx+5) 1
such that G )2 5 for everyx e [ng, oo[. Thus, ]]:((Zia; % for n > n.. If we prove

that6, > 1 — ¢ for everyn ng, the assertion follows. On the contrary, suppose that
Om <1—¢ < aforsomem > n,. By (3) and the concavity of < 0, it follows that

S—8Sp=—Fm+6p)>Fm+oa)—Fm+06y) > (@—=0,)f(m+a)
> fm+a)> gf(m+1)-

Let us observe that
fn+D fn+%)

1[. As w = 0, there exists, € N*,

¢ for
Fn) fmy 3 e
and hence
fm+k) (e .
m < <§) for everyk € N*.
We thus get
S=Su=3 fimth< HED 2 fon+ 0,
k=1 3

a contradiction. We conclude that im0, =1. O

As Example 7 will show, all numbers fron[r%, 1] are potential limits of the sequence
(Gn)n2l-
3. Monotony of (0,),>1

The sequenc®,),>1 need not be monotone in general.

Example 4. Let us consider the function

2
S22l xell 3,
filloo[ >R,  f(x)=q 37, xel3.2l,
x—lz, x €[2, o0[.

Then f is continuously differentiable and convex,
o (e.¢] 1 77:2
Y rm=3 ="
n=1 n=1

liMy— o0 6 = 3, bUt3 < 61 < 6. Therefore(d,),>1 is not monotone.
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We have f(n) = niz for every n € N*. Some easy computations show thate
C1([1, oo[) and

16x—2
16025 xe[1 3],

fl)=1 -1, xel3,2], F(x)=

2
-3 x €[2, o0,

_32
_(XSTH_S’ xeld, 2,

==

) x €[2, 0.

We see thaf’ is increasing, that isf is convex. That lim_, » 6, = % follows by Proposi-
tion 1. We haveS; — S = F(1+61), 52— S = F(2+6»), and so

472 12
r=2— |2 —11<0.530 fp=— = _ _2-0532
! 3 = 3 2= on2_15 <7

Lemmab. Letg : [a, b] — R be a continuous function ande ]a, b[, such that
b
f g()dt=g(c)(b—a).

a

Assumeg|j,.5( to be twice differentiable, witl’ # 0 and % monotoné If g and % have
opposite monotonies, then

g(b) —gla) < g'(c)(b —a). 9)
If ¢ and % have the same monotony, then converse inequality ho(@3.iStrict inequality
holds ifi—’,/ is strictly monotone.

Proof. We shall assume thatg and %/,/ are increasing oflu, b[, hence thag’ < 0 (the
proof is similar in all other cases). Fix a primitiv@ : [a,b] — R of g, and definex :
la,c] x [c,b] = R, u(x,y) =G(y) — G(x) — g(c)(y — x).

Step 1. We first show that there is a unique functipn[a, c] — [c, b] satisfying
u(x, (p(x)) =0 foreveryx €la,c]. (20)

Let us observe thal (x, y) = g(c) — g(x) andg—;‘,(x, y) = g(y) — g(c), and consequently
the partial functions(x, -) : [c, b)] —> R andu(-, y) : [a, c] — R are strictly decreasing for
all fixedx € [a, c], y € [c, b]. From this, it follows that:(x, ¢) > u(c,c) =0=u(a, b) >
u(x, b), with strict inequalities ifx € Ja, ¢[. As u is continuous, there exists a unique so-
lution y =: ¢(x) € [c, b] Of the equationu(x, y) = 0. We thus get the required implicit
functiong : [a, ¢c] — [c, b]. Let us note thap(a) = b, p(c) = ¢, andy(la, c[) C ]c, b[.

Step 2. We next prove thap is continuousg|y, [ is differentiable, and
Lo g —g(o)
@ (x)

3 This is related to the convexity or concavity of|g'|) onla, b[.
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The differentiability ofy|}, [ and relation (11) follow by applying the implicit function
theorem ta: at every poin(x, ¢(x)) € la, c[ x Ic, b[. As by (11)¢|14.[ IS decreasing, both

limits A, := limy\ 4 ¢(x) andi. :=lim, . ¢(x) existin[c, b]. Since passages to the limit
in (10) lead tau(a, Ay) =0=u(a, p(a)) andu(c, 1;) = 0=1u(c, ¢(c)), by the uniqueness

of ¢ we deduce that, = ¢(a) andi. = ¢(c). We conclude thap is continuous.

Step 3. We finally prove the required inequality from (9). The continuous functian
[a,c]—> R, h(x) =g(p(x)) —gx) — g'(c)(p(x) — x) is differentiable ona, c[. For every
x €la, c[, using (11) leads to
M) g —g o () — g'(x) — g'(0)
g(x) —g(o) g(x) —g(o) g(x) —g(c)
_ g'(p(x)) — g'(c) _ g'(x)—g'(c) _ g"(bx) _ g"(ax)
8(p(x)) — g(c) gx)—gle) gy gla)
forsomex < a, < ¢ < b, < ¢(x), as follows by applying Cauchy’s theorem for the differ-

entiable functiong’ andg. Henceh is increasing, and consequently=0h(c) > h(a) =
gb)—gla)—g©b-a). O

Theorem 6. Assumef|]% [ t0 be twice differentiable. If the functioé/r,/ is monotone
(strictly or nof), then the sequends,),>1 has the opposite monotony. Furthermore, the

limit im - oo f';"(;}) =: a exists and7) holds.

Proof. We shall assume th is increasing or]%, oo[. The proof is similar in the case
of strict monotony. By (3), we have the recurrence relation

Fn+6,)— Fn—1+6,_1)= f(@n) foreveryn>2. (12)
Step 1. Let us show that there is a unique functién ]g, oo[ = ]%, 1[ satisfying
3
F(x+0x)—F(x+0x)—1)= f(x) foreveryxe }5’ oo[. (13)

Define v : 13, 0ol x [3,1] — R, v(x,y) = F(x +y) — F(x + y — 1) — f(x) and fix
X € ]g, ool. The partial function(x, -) is strictly decreasing, sinc?(x, V) =f(x+y) —
f(x+y—1) <0.AsF is strictly concave, we hawgx, 1) = F(x+f) —F(x)—f(x) <0.

By (2) we deduce thab(x, 3) > 0. Assume that(x, 3) = 0, that IS, fly_1 43 1S

affine. Sincef”(x) =0 and% < Ois increasing, it follows that”|(x .o = 0, hence that
Slix.0of IS affine. This is absurd, becauge> 0 and lim,_, f(n) = 0. Thus,v(x, %) >
0> v(x,1). As v is continuous, there exists a unique solutioa: O (x) € ]%, 1[ of the
equatiorv(x, y) = 0. We thus get the required implicit functian: ]%, oo — ]%, 1[.
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Step 2. We next prove tha® is decreasing. Applying the implicit function theoremutat
every point(x, @ (x)) € ]%, oof x ]%, 1[ shows tha® is differentiable. We also have

HOOW)  fa+OW) ~ fa+O@ -1~ () _

O'x)=—2 = <0,
gy (2, O(x)) fx+0x) -1 — f(x+O(x))

the last inequality being a consequence of Lemma 5 (applieg¢ ferf anda = x +
Ox)—1, b=x+O(x), c =x). Hence® is decreasing.

Step 3. We continue by showing tha#,),.>1 is decreasing and satisffes

0, <O +1) foreveryn e N*. (14)
SetT, := S, — F(n + ©®(n)) for everyn € N*. The following equivalent statements hold,
since so does the last one:

13
Ti1>Ty & F(n+0m)>Fn+1+600+1)— f(n+1)

=F(n+60®+1)

Y om) z0m+1).

Hence the sequend&,),>1 is increasing. As lim., » T, = S, we haveT,, < S for every
n € N*. The following equivalent statements hold for evarg 2, since so does the last
one:

F4,(12
G126 LS F46,_0)> Fi+6,)=F@n—1+6,_1)+ f(n)

= v(n,6,-1) = 0=1v(n, O(n))

el g <om)

O g  —S=F(—1+6,_1) <F(n—1+6®)

=F(n+0®n)— f(n)
= T,<S.

We conclude thatd,,),>1 is decreasing, and that (14) holds.

The last part of our statement followsy Theorem 3 if we prove that the limit
limy— o0 fﬁ;’) exists for eachr € 10,1]. The functionp; : ]%, oo[ = 10,1], p:(x) =
[l (x+1)

1)

is increasing, since

ffa+n f”(X)) =0
frfe+n  fl(x)

Hence lim_ o0 p: (x) exists, and so lif oo f});j;) exist too, by I'Hopital's rule. O

p(x) = pz(x)<

v
4 With strict inequality, ifa# is strictly increasing.
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Example7.

(@) Forf(x) = & (¢ > 1), we have lim_. 6, = 3 = L(1), and(8,),>1 is strictly de-
creasing.

(b) Forf(x)=a"* (a €10, 1[), we have lim_, o 6, = L(a), and(6,),>1 is constant.

(c) Forf(x)= e*xz, we have lim_,« 6, = 1= L(0), and(6,),>1 is strictly decreasing.

That the above statements hold is clear by Theorem 6.

4, An iterative method

Let us observe that for everye N*, the expression

s
1
Sn—S—F(n—i-E): > [ /f(t)dt—f(k):|
k

k=n+1

NI

is thenth remainder of a convergent series associated to a fungtj(pé, oo[ — [0, oo.
If ¢ is convex, then inequalities (4) may be applied to this new series. Furthermore, un-
der suitable assumptions we may repeat this argument again. This reasoning justifies our
following construction.
For everya € R, let 7, denote the real vector space consisting of all continuous func-
tionsh : [a, oo[— R. Let us consider the linear operator
x+%
Ja:]-‘a—>]-‘a+%, Joh(x) = h(t)dt — h(x).

X

—

SetF :=J,cr Fa and define/ : 7 — F, such that/ |z, = J, for everya € R. The result
of J(Jh) will be written asJ?h, and so on. The needed propertiegaire collected in the
following lemma.

Lemmas8. Leth € F,.

(a) Forall m,n e Nwithm > n > a — 3, we have

m+%
m m
- Z h(r) + / h(t)dt = Z Jh(r).
r=n+1 n+% r=n+1

(b) If A vanishes at infinity, then so doé#.
(c) If his continuously differentiable, then sod& and (Jh) = J (/).
(d) If & is strictly convex, thed 4 > 0.
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(e) If h is twice differentiable, then for evesy> a + 3, there existg € |3, 3[, such that

h'(x + &)

Jh(x)= 7

Proof. Properties (b)-(d) are obvious, and (a) follows by a trivial computation. To
prove (e), let us observe that for every> a + % a third order Taylor expansion of

0,313ur> [T h(r)dt R at 0 shows that

x+%
Jh(x)= / h(t)dt —h(x) =

xX—

h'(x+n)+h"(x—n)
48

Nl

for some n € ]O,%[. As h” has the intermediate value property, we must have
W Gom — (x4 £) for somes € [—n,n] C1—%, 3. O

Theorem 9. Assumef to be 2p + 2 times continuously differentiablép € N), with
fF@r+2 5 0. Set

p
opi=Y (-DNFF. e, =JPF(n+1) - J”F<n +
k=0

}) _JPfn+1)
2 2 ’

Then for every: > 21 we have

fEP @ — 250

8. 24 13)

0< (—1)p+l[S —Sp+op <n + %>i| <ep(n) < —

Note thatog=F, o1=F — JF, oo=F — JF + J2F, and so on.

Proof. We can assume thgt € N*, since otherwise the conclusion follows by Re-
mark 2(b). Fixn € N*, n > 241,

Step 1. We first prove the equality
+1 1 1 -
DPHS =Sy top(n+ S )| +IPF(n+S ) == D JPf(). (16)
2 2 r=n+1

Fix m > n. Repeated application of Lemma 8(b, c) yields Jlim, J*F(x) = 0 and
(JKFY =JkfeF,, - By Lemma 8(a) we deduce that

_ Z ka(r)+J’<F<m+%)_JkF(nJr%): Z Ty,

r=n+1 r=n+1
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hence that the serie§,>n+l J* £ (r) converges for every € {0, 1, ..., p}, since it does
sofork =0 (JOf = f). We thus get

- ka(r)—JkF<”+%): Y I forke(0l... p—1).

r=n+1 r=n+1

Summation of the above equalities multiplied Gyl)* ™ leads to (16).

Step 2. We next show the inequalities

o]

1 1
J”F<n+§><— Z J”f(r)<]”F(n+§)+8p(n). a7)
r=n+1
Let us observe that? f € ]:1+‘—2' is convex, since according to Lemma 8(c, €), for every
x> 1+ 5 we have

fE2(x+8)
240 g
for some¢ € ]—%, %[. ThereforeJ? f is strictly convex and differentiable, and conse-

quently it can be extended to a functign[1, co[ — ]0, oco[ keeping these properties. For
the convergent serigs, -, g(s +n — 1), applying (4) fors = 1 now gives

(P ) @)= TP (f)(x) = 0

]

/g(t+n—1)dt>Zg(s+n—1)>/g(t+n_1)dt+&22)’
§=2 5

Nlw

which yields (17), Sincgl(;, g oo = J”f andn+ 3 > 1+ 5.

e¢]

Step 3. We finally prove (15). The first two estimates are just a combination of (16)
and (17). Thus it remains to show the last inequality. As for Remark 2(b) we deduce that

JPf)(n+3)
.

As f@r+D is strictly increasing and a repeataplplication of Lemma 8(c, €) yields

ep(n) < —

_ f(2P+1)(n + % +£)

/ 1 , 1 .
(J7f) <ﬂ+§>=Jp(f)(n+§)_... o

for somet € |-£, £[, the inequality follows. O

Let us note that the last expression of (15) provides an a priori error estimate; for fixed
e > 0, it can be used to find suitabjg n. The following example shows that the error
made by using, — o, (n + %) as an approximation fa§ may be surprisingly small even
for small values of: and p.
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Example 10. We shall apply Theorem 9 fof : [1, oo[ — 10, oo, f(x) = X—l?, andp =1.
Some easy computations show that

o =-2 Fo=—oe If)= 8% -1
n6’ 2x2’ 32x + 1)2(2x — 1)2°
JF(x)=— = 01(n+})=— @+ 172
222x — )(2x + 1) 2 2n(n+ 1)(2n + 1)2°
10n +1)2—1
A = S+ DR + D22n + 97
By Theorem 9, we have
0<S-35, +(71<n + }) <e1(n) < i for everyn € N*.
2 16n6

Let us note that1(2) = 1350 < 0.7 - 1073, £1(4) = 5583550< 0.3 1074, ande1(12) <
0.8-107".

For high precision approximations (80 correct digits) for sums of generalized harmonic
series with exponent € {2, 3, ..., 251 we refer the reader to [1].
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