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A note on CR quaternionic maps
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Abstract. We introduce the notion of CR quaternionic map and we prove that any such real-
analytic map, between CR quaternionic manifolds, is the restriction of a quaternionic map between
quaternionic manifolds. As an application, we prove, for example, that for any submanifold M of
dimension 4k − 1 of a quaternionic manifold N such that TM generates a quaternionic subbundle
of TN |M of (real) rank 4k, there exists, locally, a quaternionic submanifold of N containing M as
a hypersurface.
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Introduction

An almost quaternionic manifold is a manifold M whose tangent bundle is a quater-
nionic vector bundle (see, for example, [2], [5], and, also, Section 2 below). Further, any
compatible connection on M induces an almost complex structure on the bundle Z of ad-
missible linear complex structures, whose integrability characterises the integrability of
the almost quaternionic structure of M (that is, if dimM ≥ 8, the existence of a torsion
free compatible connection; see [5, Remark 2.10(2)]); then Z is the twistor space of M .

Accordingly, a quaternionic map [5] between quaternionic manifolds is, essentially,
a map admitting a holomorphic lift between the corresponding twistor spaces. This gen-
eralizes the well-known notion of quaternionic submanifold (necessarily, totally geodesic
with respect to any compatible torsion free connection [1]; see [12]). However, not all
submanifolds of a quaternionic manifold are quaternionic (take, for example, any hy-
persurface). Nevertheless, the generic submanifold of codimension at most 2k − 1 of a
quaternionic manifold of dimension 4k inherits a CR quaternionic structure; moreover,
any real-analytic CR quaternionic structure is obtained this way through a germ unique
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embedding into a quaternionic manifold, which is called its heaven space [10, Corol-
lary 5.4].

In this note, we strengthen this result by proving that any real-analytic CR quater-
nionic map (that is, any real-analytic map admitting a CR lift between the corresponding
twistor spaces) is the restriction of a quaternionic map between quaternionic manifolds
(Theorem 3.2). This shows that the CR quaternionic maps are the natural morphisms of
the CR Quaternionic Geometry.

We also apply this result to the study of (almost) CR quaternionic submanifolds, thus
obtaining Corollaries 3.4 and 3.5. By the latter, for any submanifold M of dimension
4k−1 of a quaternionic manifoldN such that TM generates a quaternionic subbundle of
TN |M of (real) rank 4k, there exists, locally, a quaternionic submanifold ofN containing
M as a hypersurface.

1 Brief review of CR quaternionic linear maps

Recall (see [5], [10] and the references therein) that a linear complex structure on a (real)
vector space U is a linear map J : U → U such that J2 = −IdU . Then the−i eigenspace
C of J satisfies C ⊕ C = UC; moreover, any such complex vector subspace of the
complexification UC is the −i eigenspace of a (unique) linear complex structure on U .

More generally, a linear CR structure on a vector space U is a complex vector sub-
space C ⊆ UC such that C ∩C = {0}. A map t : (U,C)→ (U ′, C ′) between CR vector
spaces is a CR linear map if it is linear and t(C) ⊆ C ′ (see [10] and [11] for these and,
also, for the dual notion of linear co-CR structure).

There are other ways to describe a linear CR structure. For example, if C is a linear
CR structure on U and we denote E = UC/C, and by ι : U → E the composition of the
inclusion U → UC followed by the projection UC → E, then
(a) ι is injective,
(b) im ι+ J(im ι) = E,
(c) C = ι−1

(
ker(J + i)

)
,

where J is the linear complex structure of E. Moreover, the pair (E, ι) is unique, up to
complex linear isomorphisms, with these properties.

Thus, we could define a linear CR structure on a vector space U as a pair (E, ι), where
E is a complex vector space and ι : U → E is a linear map satisfying properties (a) and
(b) above. Furthermore, in this setting, the CR linear maps t : (U,E, ι) → (U ′, E′, ι′)
are characterised by the fact that there exists a necessarily unique, if t 6= 0 complex linear
map t̃ : E → E′ such that ι′ ◦ t = t̃ ◦ ι.

Lemma 1.1. t is injective if and only if t̃ is injective.

Proof. The fact that t̃ injective implies t injective is obvious. For the converse, it is
sufficient to consider the case U ′ = E′.

Let F be the complex vector subspace of E′ spanned by the image of t. Then t̃
decomposes into a complex linear isomorphism from E onto F followed by the inclusion
of F into E′.
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Let H be the division algebra of quaternions, and note that its automorphism group is
SO(3) acting trivially on R and canonically on ImH(= R3).

A linear quaternionic structure on a vector space U is an equivalence class of mor-
phisms of associative algebras from H to End(U), where two such morphisms σ and τ
are equivalent if τ = σ ◦ a, for some a ∈ SO(3).

Note that, if σ : H → End(U) defines a linear quaternionic structure on U then the
space of admissible linear complex structures Z = σ(S2) is well-defined [2].

Let U and U ′ be quaternionic vector spaces and let Z and Z ′ be the corresponding
spaces of admissible linear complex structures, respectively. A quaternionic linear map
from U to U ′ is a linear map t : U → U ′ for which there exists a function T : Z → Z ′

such that t ◦ J = T (J) ◦ t, for any J ∈ Z; then, if t 6= 0, we have that T is unique and an
orientation preserving isometry [5].

Definition 1.2 ([10]). 1) A linear CR quaternionic structure on a vector space U is a pair
(E, ι), where E is a quaternionic vector space and ι : U → E is an injective linear map
such that im ι+ J(im ι) = E, for any admissible linear complex structure J on E.

2) A CR quaternionic linear map t : (U,E, ι) → (U ′, E′, ι′) between CR quater-
nionic vector spaces is a linear map t : U → U ′ for which there exists a quaternionic
linear map t̃ : E → E′ such that ι′ ◦ t = t̃ ◦ ι.

Any quaternionic vector space of (real) dimension 4k is (non-canonically) isomorphic
to Hk. More generally (and much less trivial), any CR quaternionic vector spaces is
isomorphic to a finite product, unique up to the order of factors, in which each factor is
contained in one of the following two classes [10, Corollary 3.7].

Example 1.3. For k ≥ 1, let Vk be the vector subspace of Hk formed of all vectors of
the form (z1, z1 + z2j, z3 − z2j, . . . ), where z1, . . . , zk are complex numbers with zk =
(−1)kzk. Then (Uk,Hk) is a CR quaternionic vector space, where Uk = V ⊥k and we
have used the canonical Euclidean structure of Hk.

Example 1.4. Let V ′0 = {0}(⊆ H) and, for k ≥ 1, let V ′k be the vector subspace of
H2k+1 formed of all vectors of the form (z1, z1 + z2j, z3 − z2j, . . . , z2k−1 + z2kj,−z2kj),
where z1, . . . , z2k are complex numbers. Then (U ′k,H2k+1) is a CR quaternionic vector
space, where U ′k = (V ′k)⊥.

It follows that if E is a quaternionic vector space, dimE = 4k, and U ⊆ E is a
generic vector subspace of codimension at most 2k− 1, then (U,E) is a CR quaternionic
vector space [10].

2 CR quaternionic manifolds

An almost CR structure on a manifold M is a complex vector subbundle C of TCM such
that C ∩ C = 0. An (integrable almost) CR structure is an almost CR structure whose
space of sections is closed under the usual bracket.
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IfM is a (real) hypersurface in a complex manifold (N, J) then TCM∩ker(J+i) is a
CR structure on M . This admits a straightforward generalization to higher codimensions.
Furthermore, any real-analytic CR structure is obtained this way through a germ unique
embedding into a complex manifold [3].

Let a be a (finite-dimensional) associative algebra. A bundle of associative algebras,
with typical fibre a, is a vector bundle A, with typical fibre a, whose structural group is
the automorphism group of a; in particular, each fibre of A is an associative algebra (non-
canonically) isomorphic to a. A morphism of bundles of associative algebras is a vector
bundle morphism whose restriction to each fibre is a morphism of associative algebras.

A quaternionic vector bundle is a vector bundle E endowed with a pair (A, σ), where
A is a bundle of associative algebras, with typical fibre H, and σ : A → End(E) is a
morphism of bundles of associative algebras. Then the bundle Z of admissible linear
complex structures on E is the sphere bundle of σ(ImA); in particular, the typical fibre of
Z is the Riemann sphere. A compatible connection on E is a linear connection ∇ on E
such that the connection induced by ∇ on End(E) restricts to a connection on the image
of σ; note that ∇, also, induces a connection on Z.

An almost CR quaternionic structure [10] on a manifold M is a pair (E, ι), where E
is a quaternionic vector bundle over M and ι : TM → E is an injective vector bundle
morphism such that (Ex, ιx) is a linear CR quaternionic structure on TxM , for any x ∈M
(see [11] for the dual notion of almost co-CR quaternionic structure).

Let (E, ι) be an almost quaternionic structure on M and let ∇ be a compatible con-
nection on E. Denote by B the complex vector subbundle of TCZ whose fibre, at each
J ∈ Z, is the horizontal lift of ι−1

π(J)

(
ker(J + i)

)
, where π : Z → M is the projection.

Then C = B ⊕ (kerdπ)0,1 is an almost CR structure on Z.
If C is integrable then (E, ι,∇) is a CR quaternionic structure, (M,E, ι,∇) is a CR

quaternionic manifold and (Z, C) is its twistor space. Also, (M,Z, π, C) is the twistorial
structure [8] of (M,E, ι,∇).

Note that, if ι is a vector bundle isomorphism then we retrieve the usual notion of
quaternionic structure/manifold (see [5, Remark 2.10(2)]).

Let M be a hypersurface in a quaternionic manifold N . Then (TN |M , ι,∇|M ) is a
CR quaternionic structure on M , where ι : TM → TN |M is the inclusion and ∇ is any
quaternionic connection on N (that is, ∇ is a torsion free compatible connection on N ).
Further, this admits a straightforward generalization to higher codimensions. Moreover,
any real-analytic CR quaternionic structure is obtained this way through a germ unique
embedding into a quaternionic manifold, which is called its heaven space [10, Corol-
lary 5.4].

3 CR quaternionic maps

Let (M,EM , ιM ) and (N,EN , ιN ) be almost CR quaternionic manifolds and let πM :
ZM →M and πN : ZN → N be the corresponding bundles of admissible linear complex
structures, respectively. Also, let ϕ : M → N and Φ : ZM → ZN be maps.
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We say that ϕ : (M,EM , ιM ) → (N,EN , ιN ) is an almost CR quaternionic map,
with respect to Φ, if dϕx is CR quaternionic, with respect to Φx, at each point x ∈M .

Suppose that EM and EN are endowed with compatible connections ∇M and ∇N ,
respectively, with respect to which M and N become CR quaternionic manifolds; denote
by CM and CN the corresponding CR structures on ZM and ZN , respectively.

The map ϕ : (M,EM , ιM ,∇M ) → (N,EN , ιN ,∇N ) is CR quaternionic, with re-
spect to Φ, if πN ◦ Φ = ϕ ◦ πM and Φ : (ZM , CM )→ (ZN , CN ) is a CR map.

The notions of (almost) CR quaternionic immersion/submersion/diffeomorphism are
defined accordingly.

Note that the CR quaternionic maps are just twistorial maps (see [8] for the definition
of the latter). Also, for maps of rank at least one between quaternionic manifolds, the two
notions coincide [5, Theorem 3.5]. That is why we call quaternionic maps the (almost)
CR quaternionic maps, between (almost) quaternionic manifolds.

Furthermore, any CR quaternionic map is, obviously, almost CR quaternionic. How-
ever, the converse does not hold, as the following example shows.

Example 3.1. Let (M, c) be a three-dimensional conformal manifold and denote by L =
(Λ3TM)1/3 the line bundle of M . Then E = L ⊕ TM is oriented and c induces on it a
linear conformal structure. Therefore E is a quaternionic vector bundle and (M,E, ι) is
an almost CR quaternionic manifold, where ι : TM → E is the inclusion.

Furthermore, if D is a conformal connection on (M, c) and∇ = DL⊕D, where DL

is the connection induced by D on L, then (M,E, ι,∇) is a CR quaternionic manifold
(this is, for example, a straightforward consequence of [10, Theorem 4.6]). Let D′ be
another conformal connection on (M, c) and let ∇′ = (D′)L ⊕ D′, where (D′)L is the
connection induced by D′ on L. Then IdM : (M,E, ι,∇) → (M,E, ι,∇′) is a CR
quaternionic map if and only if the trace-free self-adjoint part of ∗T is zero, where ∗ is
the Hodge star-operator of (M, c) and T is the difference between the torsion tensors of
D and D′.

As any conformal connection is determined by its torsion and the connection it induces
on the line bundle of the manifold, we can therefore easily construct many almost CR
quaternionic maps which are not CR quaternionic.

A straightforward generalization shows that the same applies to any almost CR quater-
nionic manifold (M,E, ι) with dimM = 2k + 1 and rankE = 4k, for some nonzero
natural number k (this follows from the fact that then for any compatible connection ∇
on E we have that (M,E, ι,∇) is a CR quaternionic manifold).

Theorem 3.2. Let M and N be real-analytic CR quaternionic manifolds and let M̃ and
Ñ be the corresponding heaven spaces, respectively. If ϕ : M → N is a real-analytic
map whose differential is nowhere zero then the following assertions are equivalent.

(i) ϕ is CR quaternionic (with respect to some real-analytic lift between the twistor
spaces of M and N ).

(ii) ϕ is the restriction of a germ unique quaternionic map ϕ̃ defined on some open
neighbourhood of M in M̃ and with values in Ñ .
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Proof. Let Z
M̃

and ZÑ be the twistor spaces of M̃ and Ñ , respectively. If we denote by
ZM andZN their restrictions toM andN we obtain (generic) CR submanifolds which are
the twistor spaces ofM andN , respectively. Denote by π

M̃
: Z

M̃
→ M̃ and πÑ : ZÑ →

Ñ the projections and by πM and πN their restrictions to ZM and ZN , respectively.
Suppose that (i) holds and letΦ : ZM → ZN be a real-analytic CR map with respect to

which ϕ is CR quaternionic. Note that, locally, any real-analytic CR function onZM is the
restriction of a unique holomorphic function on Z

M̃
. Thus, if f is a holomorphic function,

locally defined on ZÑ , then f ◦Φ is the restriction of some holomorphic function, locally
defined on ZÑ . Consequently, Φ is the restriction of some germ unique holomorphic map
Φ̃ defined on some open neighbourhood Z of ZM in Z

M̃
.

As Φ restricted to each fibre of πM is a holomorphic diffeomorphism (in fact, an
orientation preserving isometry), by passing if necessary to an open subset of Z, we may
suppose that Φ̃ restricted to each twistor line is a holomorphic diffeomorphism. Then
Φ̃ maps the family of twistor lines contained by Z into a family of complex projective
lines which, obviously, contains the fibres of πN . As the families of twistor lines (on the
twistor spaces of quaternionic manifolds) are locally complete, we obtain that Φ̃ maps
twistor lines to twistor lines.

Let τ
M̃

and τÑ be the conjugations on Z
M̃

and ZÑ , respectively, which on the fibres
of the projections π

M̃
and πÑ are given by the antipodal map. Obviously, τÑ ◦ Φ̃ ◦ τM̃ :

τ
M̃

(Z) → ZÑ is, also, a holomorphic extension of Φ. Hence, τÑ ◦ Φ̃ = Φ ◦ τ
M̃

on
Z ∩ τ

M̃
(Z) (which, obviously, contains ZM ).

Therefore Φ̃ maps real twistor lines to real twistor lines. But the real twistor lines are
just the fibres of π

M̃
and πÑ . Hence, Φ̃ descends to a quaternionic map, as required.

Suppose, now, that (ii) holds and let ϕ̃ : M̃ → Ñ be a quaternionic extension of ϕ.
Then by [5, Theorem 3.5] we have that ϕ̃ admits a holomorphic lift Φ̃ : Z

M̃
→ ZÑ

which, obviously, restricts to a CR map Φ : ZM → ZN which is a lift of ϕ. Thus, ϕ is
CR quaternionic.

For applications we shall, also, need the following:

Lemma 3.3. Let M be an almost CR quaternionic submanifold of a CR quaternionic
manifold N ; denote by E the corresponding quaternionic vector bundle on M . Then
there exists a connection on E with respect to whichM is a CR quaternionic submanifold
of N .

Proof. Let Z be the bundle of admissible linear complex structures on E. Then the con-
nection on the corresponding quaternionic vector bundle over N induces a connection
on Z.

Locally, we can write EC = H ⊗ F , with H and F complex vector bundles of ranks
2 and 2k, and structural groups Sp(1) and GL(k,H), respectively, where rankE = 4k.

Then Z = PH and the connection on Z corresponds to a connection∇H onH . Thus,
if∇F is any connection on F (compatible with its structural group) then∇H ⊗∇F is the
complexification of a connection on E, which is as required.
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More can be said about the CR quaternionic submanifolds of a quaternionic manifold.

Corollary 3.4. Let (M,E) be a real-analytic almost CR quaternionic submanifold of a
quaternionic manifold N . Then the following assertions hold:

(i) The inclusion from M into N extends to a germ unique quaternionic immersion
from a quaternionic manifold P to N , with dimP = rankE.

(ii) Any quaternionic connection on N induces, by restriction, a connection on E with
respect to which M is a CR quaternionic submanifold of N .

Proof. Assertion (i) is an immediate consequence of Theorem 3.2 and Lemmas 1.1 and
3.3. Assertion (ii) is an immediate consequence of (i) and the fact that the quaternionic
submanifolds are totally geodesic with respect to any quaternionic connection on the am-
bient space [1] (see [5]).

We end with the following result (cf. [9, Proposizione 12.1]).

Corollary 3.5. Letϕ : M → N be an immersion from a manifold of dimension 4k−1 to a
quaternionic manifoldN of dimension 4n. Suppose that, for any x ∈M , the quaternionic
vector subspace of Tϕ(x)N spanned by dϕ(TxM) has dimension 4k.

Then ϕ extends to a germ unique quaternionic immersion from a quaternionic mani-
fold, of dimension 4k, to N ; in particular, the pull-back of any quaternionic connection
on N preserves the quaternionic vector bundle generated by TM .

Proof. Let ZM and ZN be the twistor spaces of M and N , respectively. By [3, Proposi-
tion 1.10], in an open neighbourhood U of each point of ZM there exists a complex mani-
fold ZU , with dimC(ZU ) = 2k + 1, containing U as a CR submanifold. Moreover, we
may suppose that any CR function on U can be locally (and uniquely) extended to a holo-
morphic function on ZU (use [6, Proposition III.2.3] to show that [4, Theorem 14.1.1] can
be applied; cf. [7]). But this is sufficient for the proof of the global embeddability theorem
[3] to work, thus showing that there exists a complex manifold Z, with dimC Z = 2k+ 1,
which contains ZM as an embedded CR submanifold. Consequently, also Theorem 3.2
extends to this setting.
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