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Abstract

We show that a natural class of twistorial maps gives a pattern for apparently different geometric maps, such as, (1,1)-geodesic
immersions from (1,2)-symplectic almost Hermitian manifolds and pseudo horizontally conformal submersions with totally geo-
desic fibres for which the associated almost CR-structure is integrable. Along the way, we construct for each constant curvature
Riemannian manifold (M,g), of dimension m, a family of twistor spaces {Zr(M)}1�r< 1

2 m
such that Zr(M) parametrizes nat-

urally the set of pairs (P,J ), where P is a totally geodesic submanifold of (M,g), of codimension 2r , and J is an orthogonal
complex structure on the normal bundle of P which is parallel with respect to the normal connection.
© 2007 Elsevier B.V. All rights reserved.
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Introduction

In the complex-analytic category, the twistor space of a manifold M , endowed with a twistorial structure, para-
metrizes the set of certain submanifolds—the twistors—of M . For example (see [17] and the references therein), the
twistor space of a three-dimensional complex Einstein–Weyl space (M3, c,D) consists of the (maximal) degenerate
surfaces of (M3, c) which are totally geodesic with respect to D. Also, the twistor space of a four-dimensional anti-
self-dual complex-conformal manifold (M4, c) consists of the self-dual surfaces of (M4, c) (similar comments apply,
for example, to the complex-quaternionic manifolds of dimension at least eight). Further, the space of (unparameter-
ized) isotropic geodesics of a complex-conformal manifold is, in a natural way, a twistor space [9].

In the smooth category, the definition of almost twistorial structure is slightly different [13]; it follows that, in
the smooth category, the twistors are certain submanifolds for which the normal bundle is endowed with a (linear)
CR-structure. These submanifolds may well be just points. For example, the twistor space Z of a three-dimensional
conformal manifold (M3, c) is a five-dimensional CR-manifold consisting of the orthogonal nontrivial CR-structures
on (M3, c) [10] (assuming (M3, c) real-analytic, Z is a real hypersurface, endowed with the induced CR-structure,
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in the space of isotropic geodesics of the germ-unique complexification of (M3, c)). Also, it is well-known (see [13]
and the references therein) that the twistor space of a four-dimensional anti-self-dual conformal manifold (M4, c) is a
complex manifold, of complex dimension three, consisting of the positive orthogonal complex structures on (M4, c)

(similar comments apply, for example, to the quaternionic manifolds of dimension at least eight).
On the other hand (see [13] and the references therein), the twistor space Z of a three-dimensional Einstein–Weyl

space (M3, c,D) is, locally, a complex surface consisting of the pairs (γ, J ), where γ is a geodesic of D and J is
an orthogonal complex structure on the normal bundle of γ (obviously, if M3 is oriented then Z is just the space of
oriented geodesics of D). In Section 5, below, we generalize this example by constructing for each constant curvature
Riemannian manifold (M,g), of dimension m � 3, a family of twistor spaces {Zr(M)}

1�r<
1
2 m

such that, locally,

Zr(M) is a complex manifold, of complex dimension r(2m − 3r + 1)/2, consisting of the pairs (P,J ), where P is a
totally geodesic submanifold of (M,g), of codimension 2r , and J is an orthogonal complex structure on the normal
bundle of P which is parallel with respect to the normal connection (the particular case r = 1 is due to [1]). Moreover,
we prove that, in dimension at least four, the constant curvature Riemannian manifolds give all the Weyl spaces for
which this construction works (Theorem 5.4).

A map ϕ :M → N between manifolds endowed with twistorial structures is twistorial if it maps consistently (some
of the) twistors on M to twistors on N (see Section 2 for a definition suitable for this paper and [13] for a more general
definition; cf. [17]).

In this paper, we show that apparently different geometric maps are examples of such twistorial maps:

• in Section 3, we study twistorial immersions between even dimensional oriented Weyl spaces endowed with the
associated nonintegrable almost twistorial structures (see Example 3.1; cf. [6]),

• in Section 4, we study (1,1)-geodesic immersions from (1,2)-symplectic almost Hermitian manifolds,
• in Section 5, we study pseudo horizontally conformal submersions with totally geodesic fibres for which the

associated almost CR-structure is integrable.

In Section 1, we prove a powerful integrability result (Theorem 1.1; cf. [14]) which can be applied to all of the
examples of almost twistorial structures known to us. Here, we use this result to give the necessary and sufficient
conditions for the integrability of several almost CR-structures and almost f -structures (see, for example, Theorems
4.1 and 5.4), related to the twistorial maps we consider.

See [12,17] and [13] for more information on almost twistorial structures and twistorial maps.

1. An integrability result

Let Fj be a complex submanifold of the Grassmannian manifold Grrj (mj ,C), 1 � rj � mj , (j = 1,2). Suppose
that there exists a complex Lie subgroup Gj of GL(mj ,C) whose canonical action on Grrj (mj ,C) induces a transitive
action on Fj ; thus, Fj = Gj/Hj , as complex manifolds, where Hj is the isotropy group of Gj at some point of Fj ,
(j = 1,2).

Let (Pj ,M,Gj ) be a (smooth) principal bundle endowed with a connection ∇j , (j = 1,2), where M is a (smooth
connected) manifold, dimM = m1. We suppose that (P1,M,G1) is a subbundle of the complex frame bundle of
T CM . Denote Qj = Pj ×Gj

Fj and let H j ⊆ T Qj be the connection induced by ∇j on Qj ; note that, Qj = Pj/Hj ,
(j = 1,2).

Denote Q = ι∗(Q1 × Q2) where ι :M → M × M is defined by ι(x) = (x, x), for any x ∈ M , and let π :Q → M

be the projection. Obviously, kerdπ is a complex vector bundle.
The connections ∇1 and ∇2 induce a connection H (⊆ T Q) on Q and let G0 ⊆ H C be the subbundle characterized

by dπ(G0)(p, q) = p, for all (p, q) ∈ Q. Define

G = G0 ⊕ (kerdπ)0,1,

G ′ = G0 ⊕ (kerdπ)1,0.

Let T be the torsion of ∇1 and let Rj be the curvature form of ∇j (j = 1,2).
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Theorem 1.1. (Cf. [6,14].) If dimC F1 � 1 then G ′ is nonintegrable. Furthermore, the following assertions are equiv-
alent:

(i) G is integrable.
(ii) T (Λ2p) ⊆ p, R1(Λ

2p)(p) ⊆ p, R2(Λ
2p)(q) ⊆ q , for all (p, q) ∈ Q.

Proof. Let G = G1 × G2 and let g and gj be the Lie algebras of G and Gj , respectively, (j = 1,2). Let P =
ι∗(P1 × P2) and denote, also, by π and H the projection π :P → M and the connection H ⊆ T P induced by ∇1
and ∇2 on P . Note that, (kerdπ)C = P × (g ⊕ g).

Let H1 and H2 be the isotropy groups of G1 and G2 at some points p0 and q0 of F1 and F2, respectively. Let
H = H1 × H2 and denote by h its Lie algebra.

Let G0,P ⊆ H C be characterized by (dπ)(u,v)(G0,P ) = u(p0), for all (u, v) ∈ P . Clearly, dψ(G0,P ) = G0 and
(dψ)−1(G0) = G0,P ⊕ P × hC where ψ :P → Q is the projection.

Define

GP = G0,P ⊕ P × h ⊕ P × g,

(1.1)G ′
P = G0,P ⊕ P × h ⊕ P × g.

Obviously, dψ(GP ) = G , dψ(G ′
P ) = G ′, (dψ)−1(G ) = GP , (dψ)−1(G ′) = G ′

P . Therefore, G is integrable if and only
if GP is integrable. Similarly, G ′ is nonintegrable if and only if G ′

P is nonintegrable.
For each ξ ∈ Cm1 let B(ξ) be the horizontal (complex) vector field on P characterized by (dπ)(u,v)(B(ξ)) = u(ξ)

for any (u, v) ∈ P . Obviously, the map P × p0 → G0,P , ((u, v), ξ) 	→ B(ξ)(u,v), for (u, v) ∈ P and ξ ∈ p0, is an
isomorphism of vector bundles. Also, if A ∈ g1 and ξ ∈ C

m1 then [A,B(ξ)] = B(Aξ) and [A,B(ξ)] = 0 (cf. [7,
Chapter III]).

If dimC F1 � 1 then for any A ∈ g1 \ h1 there exists ξ ∈ p0 such that Aξ /∈ p0. Hence, [A,B(ξ)] = B(Aξ) is
nowhere tangent to G0,P . Therefore G ′

P and G ′ are nonintegrable.
The equivalence (i) ⇔ (ii) follows straightforwardly from Cartan’s structural equations (cf. [15]). �
Let p be a section of Q1; we shall denote by the same letter p the corresponding complex vector subbundle

of T CM . Then the map Q2 ↪→ Q, q 	→ (pπ2(q), q), for any q ∈ Q2, is an embedding, where π2 :Q2 → M is the
projection. Denote by the same symbol Q2 the image of this embedding. Then G p = G ∩ T Q2 is a subbundle of
T CQ2.

Note that, G p does not depend of ∇1. In fact, we could define G p as follows. Firstly, let G
p

0 be the subbundle of
T CQ2 which is horizontal, with respect to the connection induced by ∇2 on Q2, and such that dπ2(G

p

0 ) = p. Then
we have G p = G

p

0 ⊕ (kerdπ2)
0,1.

From Theorem 1.1 we easily obtain the following result.

Corollary 1.2. (Cf. [8].) The following assertions are equivalent:

(i) G p is integrable.
(ii) p is integrable and R2(Λ

2
xp)(q) ⊆ q for any x ∈ M and q ∈ π−1

2 (x).

Remark 1.3. Theorem 1.1 and Corollary 1.2 can be easily generalized to the case when Q2 is a fibre bundle for which
the typical fibre is a complex manifold and the structural group is a complex Lie group whose action on the typical
fibre is transitive and holomorphic.

2. Almost twistorial structures and twistorial maps

An almost CR-structure on a (smooth connected) manifold M is a section J of End(H ) such that J 2 = − IdH , for
some distribution H on M ; if H = T M then J is an almost complex structure on M . Let F be the eigenbundle of
(the complexification of) J corresponding to −i; we say that F is the complex distribution associated to J . Then J is
integrable if F is integrable (that is, for any X,Y ∈ Γ (F ) we have [X,Y ] ∈ Γ (F )). A CR-structure is an integrable
almost CR-structure; a complex structure is an integrable almost complex structure (see [13, §2]).
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An almost f -structure on M is a section F of End(T M) such that F 3 + F = 0. Let F = T 0M ⊕ T 0,1M where
T 0M and T 0,1M are the eigenbundles of F corresponding to 0 and −i, respectively; we say that F is the complex
distribution associated to F . Then F is integrable if F is integrable. An f -structure is an integrable almost f -
structure (see [13, §2]).

If F is the complex distribution associated to a CR-structure or an f -structure on a manifold M then, obviously,
F ∩ F is (the tangent bundle of) a foliation on M .

Let F be an almost f -structure on M and let T 1,0M and T 0,1M be its eigenbundles corresponding to i and −i,
respectively. Then J = F |T 1,0M⊕T 0,1M is an almost CR-structure on M ; we shall call J the almost CR-structure
induced by F . Note that, F is not determined by J ; also, if F is integrable then J is not necessarily integrable.

An (almost) CR-structure on a conformal manifold (M,c) is an (almost) CR-structure J on M such that
J ∗ + J = 0; obviously, this holds if and only if the complex distribution associated to J is isotropic.

An (almost) f -structure on a conformal manifold (M,c) is an (almost) f -structure F on M such that F ∗ +F = 0;
obviously, this holds if and only if T 0,1M is isotropic and T 0M = (T 1,0M ⊕ T 0,1M)⊥. Therefore an almost f -
structure on a conformal manifold is determined by its eigenbundle corresponding to i (or −i). Equivalently, if we
denote by J the almost CR-structure whose eigenbundle corresponding to i is T 1,0M then F ↔ J establishes a
bijective correspondence (which depends on c) between almost f -structures on (M,c) and almost CR-structures on
(M,c).

Definition 2.1. A map ϕ : (M,FM) → (N,FN), between manifolds endowed with almost f -structures (or, almost
CR-structures), is holomorphic if dϕ(FM) ⊆ FN , where FM and FN are the complex distributions associated to
FM and FN , respectively.

Remark 2.2. An almost f -structure F on M is integrable if and only if for any x ∈ M there exists an open neigh-
borhood U � x and a holomorphic submersion ϕ from (U,F |U) onto some complex manifold (N,J ) such that
kerdϕ = T 0M [15]; we say that the f -structure F |U is defined by ϕ. A simple f -structure is an f -structure (glob-
ally) defined by a holomorphic submersion with connected fibres.

We end this section with the definitions of almost twistorial structure and twistorial map suitable for the purpose
of this paper; more general definitions are given in [13] (cf. [17]).

Definition 2.3. An almost twistorial structure on a manifold M is a quadruple τ = (Q,M,π,J ), where π :Q →
M is a locally trivial fibre space and J is an almost CR-structure or an almost f -structure on Q which induces
almost complex structures on each fibre of π . We say that τ is integrable if J is integrable; a twistorial structure
is an integrable almost twistorial structure. Suppose that τ is a twistorial structure such that there exists a surjective
submersion ϕ : Q → Z whose fibres are the leaves of F ∩ F , where F is the complex distribution associated to J .
Then Z, endowed with the CR-structure dϕ(F ), is the twistor space of τ .

Definition 2.4. Let ϕ :M → N be a map between manifolds endowed with the almost twistorial structures τM =
(QM,M,πM,JM) and τN = (QN,N,πN,J N). Suppose that there exists a section p of QM and a map Φ : p(M) →
QN such that πN ◦Φ = ϕ ◦πM |p(M) and the tangent bundle of p(M) is preserved by JM ; denote by J p the restriction
of JM to the tangent bundle of p(M). We shall say that ϕ : (M, τM) → (N, τN) is a twistorial map (with respect to
Φ), if Φ : (p(M),J p) → (QN,J N) is holomorphic; that is, dΦ(Fp) ⊆ FN where Fp and FN are the complex
distributions associated to J p and J N , respectively.

3. Twistorial immersions between Weyl spaces

We start this section with two related examples of almost twistorial structures.

Example 3.1. Let (M,c,D) be an oriented, even-dimensional Weyl space and let π :Q → M be the bundle of positive
maximal isotropic spaces on (M,c) (the positive maximal isotropic spaces on (M,c) are the eigenspaces, correspond-
ing to −i, of the positive orthogonal complex structures on (M,c)). As kerdπ is a complex vector bundle, we have
an isomorphism of complex vector bundles (kerdπ)C = (kerdπ)1,0 ⊕ (kerdπ)0,1. Let H ⊆ T Q be the connection
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induced by D on Q. Let G 0 ⊆ H C be the complex vector subbundle characterized by dπ(G 0
q ) = q , for any q ∈ Q,

and define

G = G0 ⊕ (kerdπ)0,1,

G ′ = G0 ⊕ (kerdπ)1,0.

Let J and J ′ be the almost complex structures whose eigenbundles corresponding to −i are G and G ′, respectively.
Obviously, if dimM = 2 then Q = M and J = J ′ is the positive Hermitian structure of (M2, c).
Note that, J does not depend of D whilst if dimM � 4 then J ′ determines D (that is, if D1 is another Weyl

connection on (M,c) which induces J ′ then D = D1; this follows from [13, Proposition 2.6]).
If dimM � 4 then J ′ is nonintegrable (that is, always not integrable) whilst if dimM = 4 then J is integrable

if and only if (M4, c) is anti-self-dual and if dimM � 6 then J is integrable if and only if (M,c) is flat; these
well-known results (see [6, §4], [14, §5], [15, §3]) follow from Theorem 1.1.

Obviously, (Q,M,π,J ) and (Q,M,π,J ′) are almost twistorial structures on M ; we shall call (Q,M,π,J ′) the
nonintegrable almost twistorial structure associated to (M,c,D).

Let (M,cM,DM) and (N, cN ,DN) be even-dimensional oriented Weyl spaces and let τ ′
M = (QM,M,πM,J ′

M)

and τ ′
N = (QN,N,πN,J ′

N) be the associated nonintegrable almost twistorial structures.
Suppose that ϕ : M ↪→ N is an injective immersion. Then orient (T M)⊥ such that the isomorphism T N |M =

T M ⊕ (T M)⊥ be orientation preserving and let π :Q → M be the bundle of positive maximal isotropic spaces on
((T M)⊥, cN |(T M)⊥).

If p is a (local) section of QM then we shall denote by Jp the almost Hermitian structure on (M,cM) such that p is
the eigenbundle of Jp corresponding to −i; similarly, for QN . Standard arguments show that the following assertions
are equivalent:

(i) p : (M,Jp) → (QM,J ′
M) is holomorphic.

(ii) DM

X
Y is a section of p for any sections X and Y of p.

(iii) DM
JpXJp = −JpDM

X Jp , for any X ∈ T M .

(iv) (dDM
ωM)(1,2) = 0, where ωM is the Kähler form of (M,cM,Jp) (defined by ωM(X,Y ) = cM(JpX,Y ), for any

X,Y ∈ T M).

Furthermore, if assertion (i), (ii), (iii) or (iv) holds then DM is the Weyl connection of (M,cM,Jp) (see [12, Re-
mark 3.3]).

We shall denote by J p the almost complex structure on Q whose eigenbundle corresponding to i is constructed,
similarly to G p of Corollary 1.2, by using the connection induced by Π ◦DN on Q and the complex vector subbundle
p of T CM , where Π :T N |M → (T M)⊥ is the orthogonal projection.

Let L be the line bundle of (N, cN). We define a section A of the bundle (L|M)2 ⊗ Λ2T ∗M ⊗ Λ2((T M)⊥)∗ by

A(X,Y,U,V ) =
∑
a

cN(DN
X Za,U)cN(DN

Y Za,V ) − cN(DN
Y Za,U)cN(DN

XZa,V ),

for any x ∈ M and X,Y ∈ TxM , U,V ∈ (TxM)⊥, where {Za} is any conformal local frame on (M,cM) defined on
some open neighborhood of x. It is easy to see that A does not depend of DN . Furthermore, if M is an umbilical
submanifold of (N, cN) then A = 0.

Corollary 3.2. (Cf. [19].) The almost complex structure J p does not depend of the Weyl connection DN . Moreover,
the following assertions are equivalent:

(i) J p is integrable.
(ii) Jp is integrable and (W +A)(Λ2

xp,Λ2q) = 0 for any x ∈ M and q ∈ Qx , where W is the Weyl tensor of (N, cN).

Proof. A straightforward calculation gives the following relation, essentially due to Ricci (see [2, 1.72(e)]),

(3.1)cN

(
RN(X,Y )U,V

) = cN

(
RΠ(X,Y )U,V

) + A(X,Y,U,V ),
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for any X,Y ∈ T M and U,V ∈ (T M)⊥, where RN and RΠ are the curvature forms of DN and Π ◦DN , respectively.
Also, we have (see [4])

(3.2)cN

(
RN(X,Y )U,V

) = −W(X,Y,U,V ) + FN(X,Y )cN(U,V ),

for any X,Y ∈ T M and U,V ∈ (T M)⊥, where W is the Weyl tensor of (N, cN) and FN is the curvature form of the
connection induced by DN on L.

The proof now follows quickly from Corollary 1.2. �
Remark 3.3. In Corollary 3.2, if dimM = 2 then assertion (ii) is automatically satisfied whilst if codimM = 2 then
the second part of assertion (ii) is automatically satisfied.

Let p be a section of QM which is isotropic with respect to cN . Then for any map Φ : p(M) → QN such that
πN ◦ Φ = ϕ ◦ πM |p(M) there exists a unique section q of Q such that Φ ◦ p = p ⊕ q .

The following result reduces to [6, Theorem 5.3], when dimM = 2, dimN = 4 (see [13, Proposition 5.2]).

Proposition 3.4. (Cf. [19].) Let Φ be given by the sections p and q of QM and Q, respectively, with p isotropic with
respect to cN . Then the following assertions are equivalent:

(i) ϕ : (M, τ ′
M) → (N, τ ′

N) is twistorial, with respect to Φ .
(ii) ϕ is (1,1)-geodesic with respect to Jp and, p : (M,Jp) → (PM,J ′

M) and q : (M,Jp) → (Q,J p) are holomor-
phic.

Proof. Assertion (i) holds if and only if p(M) is an almost complex submanifold of (QM,J ′
M) and Φ : (p(M),

J ′
M |p(M)) → (QN,J ′

N) is holomorphic. It is clear that p(M) is an almost complex submanifold of (QM,J ′
M) if

and only if p : (M,Jp) → (PM,J ′
M) is holomorphic. Then Φ : (p(M),J ′

M |p(M)) → (QN,J ′
N) is holomorphic if and

only if Φ ◦ p : (M,Jp) → (QN,J ′
N) is holomorphic. From [13, Proposition 2.6] it follows quickly that, assertion (i)

is equivalent to (a) DM

X
Y ∈ Γ (p), for any X,Y ∈ Γ (p), (b) DN

X
Y ∈ Γ (p ⊕ q), for any X,Y ∈ Γ (p), and (c) DN

X
U ∈

Γ (p ⊕ q), for any X ∈ Γ (p),U ∈ Γ (q).
Note that, if (b) holds, condition (c) is equivalent to Π(DN

X
U) ∈ Γ (q), for any X ∈ Γ (p),U ∈ Γ (q). Thus, if (b)

holds, condition (c) is equivalent to q : (M,Jp) → (Q,J p) be holomorphic.
Also, if (a) holds, condition (b) is equivalent to (Ddϕ)(X,Y ) ∈ Γ (p ⊕ q), for any X,Y ∈ Γ (p). As DM and DN

are torsion free, Ddϕ is symmetric. It follows quickly that, if (a) holds, then (b) is equivalent to (Ddϕ)(1,1) = 0.
The proposition is proved. �

Remark 3.5. 1) If assertion (i) or (ii) of Proposition 3.4 holds then DM is the Weyl connection of (M,cM,Jp); if,
further, ϕ is conformal then DM is equal to the connection induced by DN on M .

2) A result similar to (but more complicated than) Proposition 3.4 can be given for twistorial submersions between
Weyl spaces endowed with the nonintegrable almost twistorial structures. It follows again that such maps are (1,1)-
geodesic (in particular, harmonic) and, if the codomain is of dimension two, harmonic morphisms.

Let ϕ : (M,cM) ↪→ (N, cN) be a conformal injective immersion. Denote by QM +Q the pull-back by ι of QM ×Q,
where ι :M → M × M is defined by ι(x) = (x, x), for any x ∈ M . Let J and J ′ be the almost complex structures on
QM +Q whose eigenbundles corresponding to −i are constructed, similarly to G and G ′, respectively, of Theorem 1.1,
by using the connections induced by DM and Π ◦ DN on QM and Q, respectively.

Proposition 3.6. Let Φ :QM + Q → QN be defined by Φ(p,q) = p ⊕ q , for any (p, q) ∈ QM + Q.

(i) The following assertions are equivalent:
(i1) Φ : (QM + Q,J ) → (QN,JN) is holomorphic.
(i2) M is an umbilical submanifold of (N, cN).

(ii) If dimM � 4 then the following assertions are equivalent:
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(ii1) Φ : (QM + Q,J ′) → (QN,J ′
N) is holomorphic.

(ii2) ϕ is geodesic.

Proof. Let x0 ∈ M and let p0, q0 be positive maximal isotropic spaces which are tangent and normal, respectively,
to M at x0. Let S ⊆ M be a surface such that x0 ∈ S and one of the two isotropic directions tangent to S at x0 are
contained in p0; denote by X0 a nonzero element of T C

x0
S ∩ p0 (obviously, X is well-defined, up to some complex

factor).
We may suppose that there exist two sections p and q of QM and Q, respectively, over S which are horizontal at

x0 and such that px0 = p0 and qx0 = q0.
From [13, Proposition 2.6] it follows quickly that Φ : (QM + Q,J ) → (QN,JN) is holomorphic if and only if,

for any x0 ∈ M and any such sections p and q , we have DN
X0

Y ∈ p0 ⊕ q0 and DN
X0

U ∈ p0 ⊕ q0, for any local sections

Y of p and U of q; equivalently, cN(DN
X0

Y,U) = 0 for any local section Y of p and U of q . The proof of (i) follows
quickly.

Similarly, Φ : (QM + Q,J ′) → (QN,J ′
N) is holomorphic if and only if, for any x0 ∈ M and any such sections p

and q , we have DN

X0
Y ∈ p0 ⊕ q0 and DN

X0
U ∈ p0 ⊕ q0, for any local sections Y of p and U of q . It follows that (ii1)

is equivalent to the fact that the Weyl connection induced by DN on M is equal to DM and, for any x0 ∈ M and any
such sections p and q , we have cN(DN

X0
Y,U) = 0 for any local sections Y of p and U of q . The proof of (ii) follows

quickly. �
Similarly to the proof of Proposition 3.6(ii), we obtain the following:

Remark 3.7. (Cf. [6].) If dimM = 2 then the equivalence (ii1) ⇔ (ii2), of Proposition 3.6, remains true if we replace
(ii2) with the following assertion:

(ii2) M2 is a minimal surface in (N, cN ,DN).

4. On (1,1)-geodesic submanifolds

Let (N, cN ,DN) be a Weyl space. For 1 � r < 1
2 dimN , let πN,r :QN,r → N be the bundle of isotropic spaces on

(N, cN) of complex dimension r . Denote by JN,r and J ′
N,r the almost CR-structures on QN,r whose eigenbundles

corresponding to −i are constructed, similarly to G and G ′, respectively, of Theorem 1.1, by using the connection
induced by DN on QN,r , and by taking Q = N the trivial bundle over N .

Note that, JN,r does not depend of DN whilst J ′
N,r determines DN . Furthermore, by Theorem 1.1, the almost

CR-structure J ′
N,r is nonintegrable whilst, if r = 1 then JN,1 is integrable [10]. We shall prove the following result.

Theorem 4.1. The following assertions are equivalent, if r � 2:

(i) JN,r is integrable.
(ii) (N, cN) is flat.

Proof. Assume r � 2 and let R and W be the curvature form of DN and the Weyl tensor of (N, cN), respectively. We
shall prove that the following assertions are equivalent:

(a) R(Λ2p)(p) ⊆ p for any p ∈ QN,r .
(b) cN(R(X,Y )X,Y ) = 0 for any X,Y ∈ T CN spanning an isotropic space.
(c) W = 0.

Indeed, as any two-dimensional isotropic space on (N, cN) is contained in some p ∈ QN,r , we obviously have
(a) ⇒ (b). Also, (b) ⇐⇒ (c) (see [16]) and, as R(Λ2p)(p) = W(Λ2p)(p), for any isotropic space p on (N, cN),
we have (c) ⇒ (a).

By Theorem 1.1, we have (i) ⇔ (a), and, by the Weyl theorem on flat conformal manifolds, (ii) ⇔ (c). The theorem
is proved. �



Author's personal copy

R. Pantilie / Differential Geometry and its Applications 26 (2008) 366–376 373

Let M ⊆ N be a submanifold, dimM = 2r . Let cM = cN |M and let DM be the Weyl connection on (M,cM)

induced by DN . Also, let τ ′
M = (QM,M,πM,J ′

M) be the nonintegrable almost twistorial structure associated to
(M,cM,DM).

Suppose that there exists a section p of QN,r which is tangent to M . As before, denote by Jp the almost Hermitian
structure on (M,cM) whose eigenbundle corresponding to −i is p.

Similarly to Proposition 3.4, we obtain the following result (cf. [18]).

Proposition 4.2. The following assertions are equivalent.

(i) p : (M,Jp) → (QN,r ,J ′
N,r ) is holomorphic.

(ii) (M,Jp) is a (1,1)-geodesic submanifold of (N, cN,DN) and the map p : (M,Jp) → (QM,J ′
M) is holomorphic.

Remark 4.3. 1) Proposition 4.2 can be easily formulated in similar vein to Proposition 3.4.
2) With the same notations as in Proposition 4.2, p : (M,Jp) → (QN,r ,JN,r ) is holomorphic if and only if Jp is

integrable and (M,Jp) is a (2,0)-geodesic submanifold of (N, cN ,DN).
3) In Proposition 4.2, assume that (N, cN ,DN) is the Euclidean space R

n with its canonical conformal structure
and flat connection. Then QN,r = R

n × Qn,r where Qn,r ⊆ Grr (n,C) is the manifold of isotropic r-dimensional
subspaces of C

n.
Let p̃ = π2 ◦ p : M → F where π2 : R

n × Qn,r → Qn,r is the projection. Then p : (M,Jp) → (QN,r ,J ′
N,r ) is

holomorphic if and only if p̃ : (M,Jp) → Qn,r is holomorphic.
Thus, by Proposition 4.2, (M,Jp) is a (1,1)-geodesic submanifold of (N, cN ,DN) and p : (M,Jp) → (QM,J ′

M)

is holomorphic if and only if p̃ : (M,Jp) → Qn,r is holomorphic. In the particular case dimM = 2, this gives M2

minimal in R
n if and only if p̃ holomorphic which leads to the Weierstrass representation of minimal surfaces in

Euclidean space.
4) A result similar to Proposition 3.6 can be easily written by working with the inclusion map QM ↪→ QN,r .

5. f -structures and pseudo horizontally conformal submersions

We start this section by recalling the following definition.

Definition 5.1. (See [1,3].) A map ϕ : (M,c) → (N,J ) from a conformal manifold to an almost complex manifold
is pseudo horizontally weakly conformal if it pulls back (1,0)-forms on N to isotropic 1-forms on (M,c). A map is
pseudo horizontally conformal if it is submersive and pseudo horizontally weakly conformal.

Remark 5.2. 1) A submersion ϕ : (M,c) → (N,J ) from a conformal manifold to an almost complex manifold is
pseudo horizontally conformal if and only if there exists an almost f -structure F on (M,c) such that T 0M = kerdϕ

and ϕ : (M,F) → (N,J ) is holomorphic (cf. [11]).
2) Let (M,c) be a conformal manifold and let F be an almost f -structure on M . Then F is an f -structure on

(M,c) if and only if it is locally defined by pseudo horizontally conformal submersions onto complex manifolds.

Let (M,c,D) be a Weyl space, dimM = m. For 1 � r < 1
2m, let πM,r :QM,r → M be the bundle of

isotropic spaces on (M,c) of complex dimension r . For p ∈ QM,r let Fp be the skew-adjoint f -structure on
(TπM,r (p)M, cπM,r (p)) whose eigenspace corresponding to −i is p. Thus, QM,r is also the bundle of skew-adjoint
f -structures on (M,c) with kernel of dimension m − 2r .

Let H be the connection induced by D on QM,r and let T 0QM,r ⊆ H be the subbundle characterized by
dπM,r(T

0
p QM,r) = kerFp , for all p ∈ QM,r . Also, let G0 ⊆ H C be the subbundle such that dπM,r((G0)p) is the

eigenspace of Fp corresponding to −i, for all p ∈ QM,r . Denote T 0,1QM,r = G0 ⊕ (kerdπM,r)
0,1 and let FM,r be

the almost f -structure on QM,r whose eigenbundles corresponding to 0 and −i are T 0QM,r and T 0,1QM,r , respec-
tively. Also, let F ′

M,r be the almost f -structure on QM,r whose eigenbundles corresponding to 0 and −i are T 0QM,r

and G0 ⊕ (kerdπM,r)
1,0, respectively.

Remark 5.3. 1) Each of the almost f -structures FM,r and F ′
M,r determines D.
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2) With the same notations as in Section 4, the almost CR-structures induced by FM,r and F ′
M,r are JM,r and

J ′
M,r , respectively.

It is well-known (see [15, Theorem 3.5]) that if m = 3 then FM,1 is integrable if and only if (M,c,D) is Einstein–
Weyl. Also, from Theorem 1.1 it easily follows that F ′

M,r is nonintegrable. We shall prove the following:

Theorem 5.4. If m � 4 then the following assertions are equivalent:

(i) FM,r is integrable.
(ii) D is, locally, the Levi-Civita connection of a constant curvature representative of c.

Proof. Let R be the curvature form of the connection induced by D on L∗ ⊗ T M , where L is the line bundle of M .
We claim that the following assertions are equivalent:

(a) R(Λ2(p⊥))(p⊥) ⊆ p⊥ for any p ∈ QM,r .
(b) c(R(X,Y )X,Y ) = 0 for any X,Y ∈ T CM spanning a degenerate space.
(c) (M,c,D) is flat and Einstein–Weyl.

Indeed, as any two-dimensional degenerate space on (M,c) is contained in p⊥ for some p ∈ QM,r , we obviously
have (a) ⇒ (b). Also, by [16], assertion (b) implies that (M,c) is flat; it follows quickly that (b) ⇒ (c). By a result
of M.G. Eastwood and K.P. Tod ([5, Theorem 1]; see [4, Theorem 5.2]), (c) ⇔ (ii). Clearly, (ii) ⇒ (a) and the proof
follows from Theorem 1.1. �
Remark 5.5. By Theorems 4.1 and 5.4, if FM,r is integrable then JM,r is integrable.

Let (M,g) be a Riemannian manifold of constant curvature such that FM,r is simple. Then there exists a holomor-
phic submersion from (QM,r ,FM,r) onto a complex manifold Zr(M) whose fibres are the leaves of T 0QM,r . Then
Zr(M) is the twistor space of (QM,r ,M,πM,r ,FM,r) (cf. [1, §6.8]).

Proposition 5.6. (Cf. [13].) Let p be a section of QM,r and let Fp be the corresponding almost f -structure on (M,c).
The following assertions are equivalent:

(i) p : (M,Fp) → (QM,r ,FM,r) is holomorphic.
(ii) Fp is integrable and locally defined by pseudo horizontally conformal submersions with geodesic fibres and for

which the integrability tensor of the horizontal distribution is of degree (1,1).

Proof. Assertion (i) is equivalent to the fact that DXY ∈ Γ (p⊥), for any X,Y ∈ Γ (p⊥); in particular, if (i) holds then
Fp is integrable. Clearly, (i) is also equivalent to DXY ∈ Γ (p⊥), for any X,Y ∈ Γ (p⊥). Therefore, if (i) holds then
p⊥ ∩ p⊥ (= (p ⊕ p)⊥ = kerFp) is geodesic.

Thus, if (i) holds then Fp is integrable and locally defined by pseudo horizontally conformal submersions with
geodesic fibres; furthermore, if X,Y ∈ Γ (p) and U ∈ Γ ((p⊕p)⊥) then, as Fp is integrable, we have [U,X], [U,Y ] ∈
Γ (p⊥) and it follows that c(U, [X,Y ]) = −2c(DUX,Y ) = 0. This completes the proof of (i) ⇒ (ii).

By definition, Fp integrable if and only if p⊥ integrable. It follows that if Fp is integrable then DXY ∈ Γ (p⊥),
for any X,Y ∈ Γ (p). Also, if kerFp(= (p ⊕ p)⊥) is geodesic then DUV ∈ Γ (p⊥), for any U,V ∈ Γ ((p ⊕ p)⊥).
Furthermore, an argument as above shows that if Fp is integrable then the integrability tensor of (p ⊕ p)⊥ is of
degree (1,1) if and only if DUX ∈ Γ (p⊥), for any X ∈ Γ (p) and U ∈ Γ ((p ⊕ p)⊥). This completes the proof of
(ii) ⇒ (i). �
Remark 5.7. Let F be an f -structure on M . It is obvious that the almost CR-structure T 0,1M is integrable if and only
if the integrability tensor of T 1,0M ⊕ T 0,1M is of degree (1,1).

From Proposition 5.6 we easily obtain the following result.
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Corollary 5.8. (Cf. [13].) Let p be a section of QM,1 and let Fp be the corresponding almost f -structure on (M,c).
The following assertions are equivalent:

(i) p : (M,Fp) → (QM,1,FM,1) is holomorphic.
(ii) Fp is integrable and locally defined by submersive harmonic morphisms with geodesic fibres (of codimension

two).

Let (M,g) be a real analytic Riemannian manifold, dimM = m. Then (M,g) admits a (germ-unique) com-
plexification (MC, gC). Let πMC,r :QMC,r → MC be the bundle of r-dimensional isotropic spaces on (MC, gC).
If 1 � r < 1

2 m, the complex version of Theorem 5.4 says that the following assertions are equivalent (cf. [17, §2] and
the references therein):

(i) For any p ∈ QMC,r there exists a coisotropic and geodesic complex submanifold S of (MC, gC) of (complex)
rank m − 2r , with respect to gC, such that Tπ

MC,r
(p)S = p⊥.

(ii) (MC, gC) has constant (sectional) curvature.

Assume (MC, gC) (and, hence, also (M,g)) to be of constant curvature. Then, locally, the twistor space (in the sense
of [17, Definition 2.1]) Zr(M

C) parametrizes the coisotropic geodesic (complex) submanifolds of (MC, gC) of rank
m− 2r . It follows that, locally, we may assume T 0QM,r simple and such that each of its leaves intersects the fibres of
πM,r at most once (apply [17, Remark 2.2(3)]). Then Zr(M) is an open submanifold of Zr(M

C); moreover, Zr(M) is
endowed with a holomorphic m-dimensional family of submanifolds each of which is holomorphically diffeomorphic
to the space of isotropic r-dimensional spaces on C

m; the members of this family are called the twistor submanifolds
of Zr(M) (see [17, Remark 2.2(1)]).

We shall say that two submanifolds S and S′ of a manifold W are transversal if TxS∩TxS
′ = {0}, at each x ∈ S∩S′.

Corollary 5.9. Let (M,g) be a Riemannian manifold of constant curvature and let 1 � r < 1
2 m, where m = dimM .

Then any pseudo horizontally conformal submersion, locally defined on (M,g), with geodesic fibres of dimension
m − 2r and for which the integrability tensor of the horizontal distribution is of degree (1,1) corresponds, locally, to
a complex submanifold, of dimension r , of Zr(M) which is transversal to the twistor submanifolds.

Proof. Any (local) pseudo horizontally conformal submersion ϕ on (M,g) with connected geodesic fibres of di-
mension m − 2r and for which the integrability tensor of the horizontal distribution is of degree (1,1) defines an
f -structure Fϕ on (M,g). Moreover, by Proposition 5.6, Fϕ corresponds to a holomorphic section pϕ : (M,Fϕ) →
(QM,r ,FM,r). Hence, T 0QM,r induces a foliation on pϕ(M) whose leaves are mapped by πM,r onto the fibres of ϕ.
Thus, locally, the projection QM,r → Zr(M) maps pϕ(M) onto a complex r-dimensional submanifold Nϕ of Zr(M).
Then ϕ 	−→ Nϕ gives the claimed correspondence. �
Remark 5.10. Let (M,g) be a constant curvature Riemannian manifold and let 1 � r < 1

2m, where m = dimM .
Then Zr(M) parametrizes naturally the set of pairs (P,J ) where P is a totally geodesic submanifold of (M,g), of

codimension 2r , and J is an orthogonal complex structure on the normal bundle of P which is parallel with respect
to the normal connection. (By (3.1) and (3.2), the normal connection on the normal bundle of any totally umbilical
submanifold of a conformally-flat Riemannian manifold is flat.)

Let ϕ be a (local) pseudo horizontally conformal submersion on (M,g) with connected geodesic fibres of dimen-
sion m − 2r and for which the integrability tensor of the horizontal distribution is of degree (1,1). Let Nϕ be the
codomain of ϕ and let Jϕ be the orthogonal complex structure on (kerdϕ)⊥ with respect to which dϕ|(kerdϕ)⊥ is
holomorphic at each point.

Then the correspondence of Corollary 5.9 is given by ϕ 	→ Nϕ where the inclusion map Nϕ ↪→ Zr(M) is defined
by y 	→ (ϕ−1(y), J ϕ |ϕ−1(y)), (y ∈ Nϕ).

From Corollary 5.9 we obtain the following result of P. Baird and J.C. Wood.
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Corollary 5.11. (See [1].) Let (M,g) be a Riemannian manifold of constant curvature. Then any submersive harmonic
morphism, locally defined on (M,g), with geodesic fibres of codimension two corresponds, locally, to a complex one-
dimensional submanifold of Z1(M) which is transversal to the twistor submanifolds.

We end by describing the twistor spaces of the space forms R
m, Sm and Hm (cf. [1, §6.8]). For this, we firstly

describe the twistor spaces of the complex Euclidean space C
m and of the complex unit hypersphere Sm(C).

Let Qm,r ⊆ Grm−r (m,C) be the space of coisotropic subspaces of C
m of rank m − 2r . We shall denote by the

same symbol Qm,r its image through the complex analytic diffeomorphism Grm−r (m,C) → Grr (m,C) defined by
p 	→ p⊥, for any p ∈ Grm−r (m,C). Thus, Qm,r ⊆ Grr (m,C) is the space of isotropic subspaces of C

m of complex
dimension r . Let Em,r and Fm,r be the restrictions to Qm,r of the tautological vector bundles on Grm−r (m,C) and
Grr (m,C), respectively. As Zr(C

m) is the space of coisotropic planes in C
m of rank m − 2r , we have Zr(C

m) =
(Qm,r × C

m)/Em,r = F ∗
m,r .

Similarly, Zr(S
m(C)) is the space of (maximal) coisotropic geodesic submanifolds of Sm(C), of rank m − 2r . As

any such submanifold is the intersection of Sm(C) with a coisotropic subspace, of rank m− 2r + 1, of C
m+1, we have

Zr(S
m(C)) = Qm+1,r .

It follows that Zr(R
m) = F ∗

m,r , Zr(S
m) = Qm+1,r and Zr(H

m) = Qm+1,r \ Cm,r for some closed set Cm,r ⊆
Qm+1,r . To describe Cm,r , consider the complex Euclidean space C

m+1 as the complexification of the Minkowski
space R

m+1
1 so that the complexification of Hm ⊆ R

m+1
1 to be the complex hypersphere, of radius the imaginary unit.

Then Cm,r is the set of coisotropic subspaces p ⊆ C
m+1 of rank m − 2r + 1 such that p⊥ ∩ R

m+1
1 �= {0}.
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