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Abstract

We show that a natural class of twistorial maps gives a pattern for apparently different geometric maps, such as, (1, 1)-geodesic
immersions from (1, 2)-symplectic almost Hermitian manifolds and pseudo horizontally conformal submersions with totally geo-
desic fibres for which the associated almost CR-structure is integrable. Along the way, we construct for each constant curvature
Riemannian manifold (M, g), of dimension m, a family of twistor spaces {Z, (M )}1 <re< % m such that Z, (M) parametrizes nat-

urally the set of pairs (P, J), where P is a totally geodesic submanifold of (M, g), of codimension 2r, and J is an orthogonal
complex structure on the normal bundle of P which is parallel with respect to the normal connection.
© 2007 Elsevier B.V. All rights reserved.
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Introduction

In the complex-analytic category, the twistor space of a manifold M, endowed with a twistorial structure, para-
metrizes the set of certain submanifolds—the twistors—of M. For example (see [17] and the references therein), the
twistor space of a three-dimensional complex Einstein—-Weyl space (M3, ¢, D) consists of the (maximal) degenerate
surfaces of (M3, ¢) which are totally geodesic with respect to D. Also, the twistor space of a four-dimensional anti-
self-dual complex-conformal manifold (M#, ¢) consists of the self-dual surfaces of (M*, ¢) (similar comments apply,
for example, to the complex-quaternionic manifolds of dimension at least eight). Further, the space of (unparameter-
ized) isotropic geodesics of a complex-conformal manifold is, in a natural way, a twistor space [9].

In the smooth category, the definition of almost twistorial structure is slightly different [13]; it follows that, in
the smooth category, the twistors are certain submanifolds for which the normal bundle is endowed with a (linear)
CR-structure. These submanifolds may well be just points. For example, the twistor space Z of a three-dimensional
conformal manifold (M3, ¢) is a five-dimensional CR-manifold consisting of the orthogonal nontrivial CR-structures
on (M3, ¢) [10] (assuming (M3, ¢) real-analytic, Z is a real hypersurface, endowed with the induced CR-structure,
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in the space of isotropic geodesics of the germ-unique complexification of (M 3.0)). Also, it is well-known (see [13]
and the references therein) that the twistor space of a four-dimensional anti-self-dual conformal manifold (M 4¢)isa
complex manifold, of complex dimension three, consisting of the positive orthogonal complex structures on (M*, c)
(similar comments apply, for example, to the quaternionic manifolds of dimension at least eight).

On the other hand (see [13] and the references therein), the twistor space Z of a three-dimensional Einstein—Weyl
space (M3, ¢, D) is, locally, a complex surface consisting of the pairs (y, J), where y is a geodesic of D and J is
an orthogonal complex structure on the normal bundle of y (obviously, if M3 is oriented then Z is just the space of
oriented geodesics of D). In Section 5, below, we generalize this example by constructing for each constant curvature

Riemannian manifold (M, g), of dimension m > 3, a family of twistor spaces {Z, (M )}1<r< L such that, locally,

Z,(M) is a complex manifold, of complex dimension r(2m — 3r + 1)/2, consisting of the pairs (P, J), where P is a
totally geodesic submanifold of (M, g), of codimension 2r, and J is an orthogonal complex structure on the normal
bundle of P which is parallel with respect to the normal connection (the particular case r = 1 is due to [1]). Moreover,
we prove that, in dimension at least four, the constant curvature Riemannian manifolds give all the Weyl spaces for
which this construction works (Theorem 5.4).

A map ¢: M — N between manifolds endowed with twistorial structures is twistorial if it maps consistently (some
of the) twistors on M to twistors on N (see Section 2 for a definition suitable for this paper and [13] for a more general
definition; cf. [17]).

In this paper, we show that apparently different geometric maps are examples of such twistorial maps:

e in Section 3, we study twistorial immersions between even dimensional oriented Weyl spaces endowed with the
associated nonintegrable almost twistorial structures (see Example 3.1; cf. [6]),

e in Section 4, we study (1, 1)-geodesic immersions from (1, 2)-symplectic almost Hermitian manifolds,

e in Section 5, we study pseudo horizontally conformal submersions with totally geodesic fibres for which the
associated almost CR-structure is integrable.

In Section 1, we prove a powerful integrability result (Theorem 1.1; cf. [14]) which can be applied to all of the
examples of almost twistorial structures known to us. Here, we use this result to give the necessary and sufficient
conditions for the integrability of several almost CR-structures and almost f-structures (see, for example, Theorems
4.1 and 5.4), related to the twistorial maps we consider.

See [12,17] and [13] for more information on almost twistorial structures and twistorial maps.

1. An integrability result

Let F; be a complex submanifold of the Grassmannian manifold Grrj (m;,C), 1<r; <mj, (j=1,2). Suppose
that there exists a complex Lie subgroup G ; of GL(m ;, C) whose canonical action on Gry; (mj, C) induces a transitive
action on Fj; thus, F; = G j/H;, as complex manifolds, where H; is the isotropy group of G ; at some point of F;,
(j=1,2).

Let (Pj, M, G ;) be a (smooth) principal bundle endowed with a connection V;, (j =1, 2), where M is a (smooth
connected) manifold, dim M = m;. We suppose that (P;, M, G1) is a subbundle of the complex frame bundle of
TCM. Denote Q=P xg; Fj and let 57 C T Q ; be the connection induced by V; on Q;; note that, Q; = P;/H;,
(j=1,2).

Denote Q = *(Q1 x Q2) where t: M — M x M is defined by t(x) = (x, x), forany x € M,andlet 7 : Q —> M
be the projection. Obviously, kerdz is a complex vector bundle.

The connections V; and V; induce a connection .57 (C T Q) on Q and let 4, C 57 C be the subbundle characterized
by dn (%) (p, q) = p, forall (p, g) € Q. Define

G =% @ (kerdm)*!,
4 =4 & (kerdm)"O.

Let T be the torsion of V; and let R; be the curvature form of V; (j =1,2).
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Theorem 1.1. (Cf. [6,14].) If dimc Fy > 1 then &’ is nonintegrable. Furthermore, the following assertions are equiv-
alent:

(1) ¥ is integrable.
(i) T(A%p) C p, Ri(A%p)(p) C p, R2(A%p)(q) S q, forall (p,q) € Q.

Proof. Let G = G| x G2 and let g and g; be the Lie algebras of G and G, respectively, (j = 1,2). Let P =
t*(P; x Py) and denote, also, by 7w and 7 the projection 7 : P — M and the connection .7 C T P induced by V|
and V; on P. Note that, (kerdrr)(C =P x(gdg).

Let H; and H> be the isotropy groups of G| and G, at some points pg and gg of F; and F3, respectively. Let
H = H; x H; and denote by b its Lie algebra.

Let %.p C C be characterized by (A7) w,v)(%,p) = u(po), for all (u,v) € P. Clearly, dy(%,p) = % and
dy) " (%) =% p ® P x hT where ¢ : P — Q is the projection.

Define

9p=%pPpDPxHhd P xg,
G =% pDPxhOP xg. (1.1)

Obviously, dy (¥p) =9, dy (%) =9, (dY) 1Y) =9p, (dY)(¥') = Y}, Therefore, ¥ is integrable if and only
if &p is integrable. Similarly, ¢’ is nonintegrable if and only if ¢}, is nonintegrable.

For each £ € C™! let B(&) be the horizontal (complex) vector field on P characterized by (d7) () (B(§)) = u(§)
for any (u,v) € P. Obviously, the map P x po — %.p, ((u,v),&) — B(§)(.v), for (u,v) € P and & € py, is an
isomorphism of vector bundles. Also, if A € g; and & € C™! then [A, B(§)] = B(A &) and [A, B(§)] =0 (cf. [7,
Chapter III]).

If dimc F71 > 1 then for any A € g1 \ b1 there exists & € pg such that A& ¢ pg. Hence, [A, B(§)] = B(A§) is
nowhere tangent to %, p. Therefore ¢, and &' are nonintegrable.

The equivalence (i) < (ii) follows straightforwardly from Cartan’s structural equations (cf. [15]). O

Let p be a section of Q1; we shall denote by the same letter p the corresponding complex vector subbundle
of TCM. Then the map Q> < Q, ¢ — (Pry(q)»q), for any g € Q», is an embedding, where 72 : Q2 — M is the
projection. Denote by the same symbol Q; the image of this embedding. Then ¥7 =% N T Q, is a subbundle of
TCQz.

Note that, ¢ does not depend of V. In fact, we could define &7 as follows. Firstly, let %Op be the subbundle of
T(CQZ which is horizontal, with respect to the connection induced by V, on Q», and such that dm» (%p ) = p. Then
we have ¥? = %p ® (kerdmy)o1.

From Theorem 1.1 we easily obtain the following result.

Corollary 1.2. (Cf. [8].) The following assertions are equivalent:

(1) 9P isintegrable.
(ii) p is integrable and Rz(Aip) (q) S qforanyx e M and q € nz_l(x).

Remark 1.3. Theorem 1.1 and Corollary 1.2 can be easily generalized to the case when Q> is a fibre bundle for which
the typical fibre is a complex manifold and the structural group is a complex Lie group whose action on the typical
fibre is transitive and holomorphic.

2. Almost twistorial structures and twistorial maps

An almost CR-structure on a (smooth connected) manifold M is a section J of End(.¢) such that J2 = —Id s, for
some distribution #” on M; if 5 = T M then J is an almost complex structure on M. Let .# be the eigenbundle of
(the complexification of) J corresponding to —i; we say that .% is the complex distribution associated to J. Then J is
integrable if % is integrable (that is, for any X, Y € I'(.%) we have [ X, Y] € I'(%)). A CR-structure is an integrable
almost CR-structure; a complex structure is an integrable almost complex structure (see [13, §2]).
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An almost f-structure on M is a section F of End(T M) such that F 34 F=0.Let.Z=T"M & T%'M where
TOM and T%' M are the eigenbundles of F corresponding to 0 and —i, respectively; we say that .% is the complex
distribution associated to F. Then F is integrable if ¥ is integrable. An f-structure is an integrable almost f-
structure (see [13, §2]).

If % is the complex distribution associated to a CR-structure or an f-structure on a manifold M then, obviously,
FNTis (the tangent bundle of) a foliation on M.

Let F be an almost f-structure on M and let T"-9M and T%' M be its eigenbundles corresponding to i and —i,
respectively. Then J = F|r1.0pg70.1y 1 an almost CR-structure on M; we shall call J the almost CR-structure
induced by F. Note that, F is not determined by J; also, if F is integrable then J is not necessarily integrable.

An (almost) CR-structure on a conformal manifold (M, c) is an (almost) CR-structure J on M such that
J* 4+ J = 0; obviously, this holds if and only if the complex distribution associated to J is isotropic.

An (almost) f-structure on a conformal manifold (M, c¢) is an (almost) f-structure F on M such that F* + F = 0;
obviously, this holds if and only if 7% M is isotropic and T°M = (T'°M @& T°%'M)". Therefore an almost f-
structure on a conformal manifold is determined by its eigenbundle corresponding to i (or —i). Equivalently, if we
denote by J the almost CR-structure whose eigenbundle corresponding to i is 7""OM then F <> J establishes a
bijective correspondence (which depends on c¢) between almost f-structures on (M, ¢) and almost CR-structures on
(M, c).

Definition 2.1. A map ¢: (M, FM) — (N, F"), between manifolds endowed with almost f-structures (or, almost
CR-structures), is holomorphic if dp(FM) € ZN where #M and .#" are the complex distributions associated to
FM and FV respectively.

Remark 2.2. An almost f-structure ' on M is integrable if and only if for any x € M there exists an open neigh-
borhood U > x and a holomorphic submersion ¢ from (U, F|y) onto some complex manifold (N, J) such that
kerdy = TOM [15]; we say that the f-structure F|y is defined by ¢. A simple f-structure is an f-structure (glob-
ally) defined by a holomorphic submersion with connected fibres.

We end this section with the definitions of almost twistorial structure and twistorial map suitable for the purpose
of this paper; more general definitions are given in [13] (cf. [17]).

Definition 2.3. An almost twistorial structure on a manifold M is a quadruple t = (Q, M, w, J), where w: Q0 —
M 1is a locally trivial fibre space and J is an almost CR-structure or an almost f-structure on Q which induces
almost complex structures on each fibre of 7. We say that t is integrable if J is integrable; a twistorial structure
is an integrable almost twistorial structure. Suppose that 7 is a twistorial structure such that there exists a surjective
submersion ¢ : Q — Z whose fibres are the leaves of .Z N.%, where .Z is the complex distribution associated to 7.
Then Z, endowed with the CR-structure do (%), is the twistor space of t.

Definition 2.4. Let ¢: M — N be a map between manifolds endowed with the almost twistorial structures Ty =
(Om, M, Ty, TIMyand ty = (ON,N, 7y, TN, Suppose that there exists a section p of Qs andamap @ : p(M) —
On such that my 0 @ = @ omy|p(m) and the tangent bundle of p(M) is preserved by J M. denote by J? the restriction
of JM to the tangent bundle of p(M). We shall say that ¢ : (M, tyy) — (N, ) is a twistorial map (with respect to
@), if @:(p(M), TP) = (Qn, TVN) is holomorphic; that is, d®(FP) € .FN where .Z? and .#" are the complex
distributions associated to 7? and JV, respectively.

3. Twistorial immersions between Weyl spaces

We start this section with two related examples of almost twistorial structures.
Example 3.1. Let (M, ¢, D) be an oriented, even-dimensional Weyl space and let 7 : O — M be the bundle of positive
maximal isotropic spaces on (M, c) (the positive maximal isotropic spaces on (M, c) are the eigenspaces, correspond-

ing to —i, of the positive orthogonal complex structures on (M, c¢)). As kerdm is a complex vector bundle, we have
an isomorphism of complex vector bundles (ker dJT)(C = (kerdm)'9 @ (kerdm)%!. Let 5 C T Q be the connection
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induced by D on Q. Let 9° C #C be the complex vector subbundle characterized by dr (%0) =gq, forany g € Q,
and define

G =Gy @ (kerdm)"?,
4 =4y & (kerdm)"P.

Let 7 and 7' be the almost complex structures whose eigenbundles corresponding to —i are ¢ and &', respectively.

Obviously, if dim M =2 then Q = M and J = J’ is the positive Hermitian structure of (M 2, c).

Note that, 7 does not depend of D whilst if dim M > 4 then 7' determines D (that is, if D; is another Weyl
connection on (M, ¢) which induces J’ then D = Dy; this follows from [13, Proposition 2.6]).

If dim M > 4 then J’ is nonintegrable (that is, always not integrable) whilst if dim M = 4 then J is integrable
if and only if (M*, ¢) is anti-self-dual and if dimM > 6 then J is integrable if and only if (M, ¢) is flat; these
well-known results (see [6, §4], [14, §5], [15, §3]) follow from Theorem 1.1.

Obviously, (Q, M, , J) and (Q, M, r, J') are almost twistorial structures on M; we shall call (Q, M, r, J') the
nonintegrable almost twistorial structure associated to (M, c, D).

Let (M, cpr, DM) and (N, cy, DV) be even-dimensional oriented Weyl spaces and let T//w =(0m,M,my, ‘71(/1)
and ‘L']/\, =(OnN,N,7n, T ](,) be the associated nonintegrable almost twistorial structures.

Suppose that ¢ : M < N is an injective immersion. Then orient (T M )L such that the isomorphism TN |y =
TM & (T M)* be orientation preserving and let 7 : Q — M be the bundle of positive maximal isotropic spaces on
((TM)J', CN |(TM)L)~

If p is a (local) section of Qs then we shall denote by J” the almost Hermitian structure on (M, cps) such that p is
the eigenbundle of J? corresponding to —i; similarly, for Q. Standard arguments show that the following assertions
are equivalent:

(i) p:(M,JP)— (Qum, T}, is holomorphic.
(ii) D;‘_g Y is a section of p for any sections X and Y of p.
(iii) D%A);JP =—JPDYJP forany X e TM.
(iv) (dP" wp) 12 =0, where wyy is the Kihler form of (M, ¢y, JP) (defined by oy (X,Y)=cpy(JPX,Y), for any
X,Y €eTM).

Furthermore, if assertion (i), (ii), (iii) or (iv) holds then DM is the Weyl connection of (M, ¢y, JP) (see [12, Re-
mark 3.3]).

We shall denote by 77 the almost complex structure on O whose eigenbundle corresponding to i is constructed,
similarly to 47 of Corollary 1.2, by using the connection induced by I7 o D on Q and the complex vector subbundle
p of TCM, where IT: TN |y — (T M)™ is the orthogonal projection.

Let L be the line bundle of (N, cy). We define a section A of the bundle (L|y)*> ® A2T*M @ A>((T M)*1)* by

AX. Y, U, V)= en(DY Za, U)en (DY Za, V) — ey (DY Za, U)en (DY 24, V),

a

forany x e M and X,Y €e TyM, U,V € (T M)*L, where {Z,} is any conformal local frame on (M, cjs) defined on
some open neighborhood of x. It is easy to see that A does not depend of D¥. Furthermore, if M is an umbilical
submanifold of (N, cy) then A =0.

Corollary 3.2. (Cf. [19].) The almost complex structure JP does not depend of the Weyl connection DV . Moreover,
the following assertions are equivalent:

(i) JP is integrable.
(ii) J? isintegrable and (W + A)(A%p, Azq) =0forany x € M and q € Qy, where W is the Weyl tensor of (N, cn).

Proof. A straightforward calculation gives the following relation, essentially due to Ricci (see [2, 1.72(e)]),

en(RY X, YU, V) =cen(RT(X, YU, V) + AX, Y, U, V), 3.1)
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forany X,Y e TM and U, V € (T M)+, where R" and R'" are the curvature forms of DV and IT o DV, respectively.
Also, we have (see [4])

en(RY X, VU, V) =-W(X, Y, U, V) + FN(X, Y)en (U, V), 3.2)

forany X, Y e TM and U,V € (T M)+, where W is the Weyl tensor of (N, cy) and FV is the curvature form of the
connection induced by DY on L.
The proof now follows quickly from Corollary 1.2. O

Remark 3.3. In Corollary 3.2, if dim M = 2 then assertion (ii) is automatically satisfied whilst if codim M = 2 then
the second part of assertion (ii) is automatically satisfied.

Let p be a section of Qj; which is isotropic with respect to cy. Then for any map @ : p(M) — Qpn such that
Ty o D =g omy|pm) there exists a unique section g of Q suchthat @ op=p®dq.
The following result reduces to [6, Theorem 5.3], when dim M =2, dim N =4 (see [13, Proposition 5.2]).

Proposition 3.4. (Cf. [19].) Let @ be given by the sections p and q of Qy and Q, respectively, with p isotropic with
respect to cy. Then the following assertions are equivalent:

1) ¢: (M, ‘L'[/VI) — (N, tj’v) is twistorial, with respect to ®.
(ii) ¢ is (1, 1)-geodesic with respect to JP and, p: (M, JP) — (Py, \71(/1) and q: (M, JP) — (Q, JP) are holomor-
phic.

Proof. Assertion (i) holds if and only if p(M) is an almost complex submanifold of (Qy, J, 1{,1) and @ : (p(M),
j[(4|p(M)) — (On, .7,’\,) is holomorphic. It is clear that p(M) is an almost complex submanifold of (Qy,, j}(/l) if
and only if p: (M, JP) — (P, J},) is holomorphic. Then @ : (p(M), J1,1pm)) = (Qn, Jy) is holomorphic if and
onlyif ®op:(M,JP)— (On,T, 1(,) is holomorphic. From [13, Proposition 2.6] it follows quickly that, assertion (i)
is equivalent to (a) D;‘_(’IY e I'(p), forany X, Y € I'(p), (b) D%’Y el'(pdgq),forany X,Y € I'(p), and (c) D%[U €
I'(p®gq),forany X e I'(p),U € I'(q).

Note that, if (b) holds, condition (c) is equivalent to 1 (D%’ U)eTI(q),forany X € I'(p), U € I'(q). Thus, if (b)
holds, condition (c) is equivalent to ¢ : (M, J?) — (Q, J ) be holomorphic.

Also, if (a) holds, condition (b) is equivalent to (Dd¢)(X,Y) € I'(p ® q), forany X, Y € I'(p). As DM and DV
are torsion free, Dd¢ is symmetric. It follows quickly that, if (a) holds, then (b) is equivalent to (Dd(p)(l' D =o.

The proposition is proved. O

Remark 3.5. 1) If assertion (i) or (ii) of Proposition 3.4 holds then DM is the Weyl connection of (M, cy, JP); if,
further, ¢ is conformal then DM is equal to the connection induced by D" on M.

2) A result similar to (but more complicated than) Proposition 3.4 can be given for twistorial submersions between
Weyl spaces endowed with the nonintegrable almost twistorial structures. It follows again that such maps are (1, 1)-
geodesic (in particular, harmonic) and, if the codomain is of dimension two, harmonic morphisms.

Letg: (M, cy) — (N, cy) be a conformal injective immersion. Denote by Qs + Q the pull-back by ¢ of Oy x O,
where t: M — M x M is defined by ((x) = (x, x), for any x € M. Let J and J’ be the almost complex structures on
QO m + Q whose eigenbundles corresponding to —i are constructed, similarly to ¢ and &', respectively, of Theorem 1.1,
by using the connections induced by DY and IT o DV on Qj; and Q, respectively.

Proposition 3.6. Let @ : Q3 + Q — Qn be defined by ®(p,q) = p ® q, forany (p,q) € Opm + O.

(1) The following assertions are equivalent:
(1i1) @: (O + 0, J) — (On, IN) is holomorphic.
(i2) M is an umbilical submanifold of (N, cy).
(i) Ifdim M > 4 then the following assertions are equivalent:
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(il) @:(Qm + Q,T) — (On, Jy,) is holomorphic.
(i12) ¢ is geodesic.

Proof. Let xo € M and let pg, go be positive maximal isotropic spaces which are tangent and normal, respectively,
to M at xo. Let S € M be a surface such that xg € S and one of the two isotropic directions tangent to S at xo are
contained in pg; denote by X( a nonzero element of Tx(%S N po (obviously, X is well-defined, up to some complex
factor).

We may suppose that there exist two sections p and g of Qs and Q, respectively, over § which are horizontal at
x0 and such that p,, = po and gy, = qo.

From [13, Proposition 2.6] it follows quickly that @ : (Qy + O, J) — (On, Jn) is holomorphic if and only if,
for any xp € M and any such sections p and g, we have D%OY € po®qo and D%OU € po D qo, for any local sections
Y of p and U of g; equivalently, cy (D%0 Y, U) = 0 for any local section Y of p and U of g. The proof of (i) follows
quickly.

Similarly, @ : (Qy + Q,J') = (Qn, Jy,) is holomorphic if and only if, for any xo € M and any such sections p
and ¢, we have D}%Y € po @ qo and D}%U € po @ qo, for any local sections Y of p and U of g. It follows that (iil)

is equivalent to the fact that the Weyl connection induced by D on M is equal to D™ and, for any xo € M and any
such sections p and ¢, we have cN(D)A(’_ Y, U) =0 for any local sections Y of p and U of g. The proof of (ii) follows
0

quickly. O
Similarly to the proof of Proposition 3.6(ii), we obtain the following:

Remark 3.7. (Cf. [6].) If dim M = 2 then the equivalence (iil) < (ii2), of Proposition 3.6, remains true if we replace
(ii2) with the following assertion:
(ii2) M? is a minimal surface in (N, ¢y, DV).

4. On (1, 1)-geodesic submanifolds

Let (N,cy,DV)bea Weyl space. For 1 <r < %dim N,lety ,: On.» — N be the bundle of isotropic spaces on
(N, cy) of complex dimension r. Denote by Ju , and J. ](, . the almost CR-structures on Qy , whose eigenbundles
corresponding to —i are constructed, similarly to & and ¢’, respectively, of Theorem 1.1, by using the connection
induced by DV on Q N.r» and by taking Q = N the trivial bundle over N.

Note that, Ju - does not depend of DN whilst J I(J,r determines DV . Furthermore, by Theorem 1.1, the almost
CR-structure 7, 1/\, » is nonintegrable whilst, if = 1 then J 1 is integrable [10]. We shall prove the following result.

Theorem 4.1. The following assertions are equivalent, if r > 2:

(1) JIN.r is integrable.
(1) (N, cp) is flat.

Proof. Assume r > 2 and let R and W be the curvature form of D" and the Weyl tensor of (N, cy), respectively. We
shall prove that the following assertions are equivalent:

(@) R(A%p)(p) C p forany p € Qw.r-
(b) cn(R(X,Y)X,Y)=0 forany X,Y € TCN spanning an isotropic space.
(c) W=0.

Indeed, as any two-dimensional isotropic space on (N, cy) is contained in some p € Qy ,, we obviously have
(a) = (b). Also, (b) <= (c) (see [16]) and, as R(Azp)(p) = W(Azp)(p), for any isotropic space p on (N, cy),
we have (c) = (a).

By Theorem 1.1, we have (i) < (a), and, by the Weyl theorem on flat conformal manifolds, (ii) < (c). The theorem
is proved. O
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Let M C N be a submanifold, dim M = 2r. Let ¢)y = cn |y and let DM be the Weyl connection on (M, cpr)
induced by DV . Also, let ‘L']/V[ =0Om, M, ty, T 1{,1) be the nonintegrable almost twistorial structure associated to
(M, cu, DM).

Suppose that there exists a section p of Qy , which is tangent to M. As before, denote by J? the almost Hermitian
structure on (M, cjr) whose eigenbundle corresponding to —i is p.

Similarly to Proposition 3.4, we obtain the following result (cf. [18]).

Proposition 4.2. The following assertions are equivalent.

(i) p:(M,JP)— (Qn.r, Ty ) is holomorphic.
(i) (M, JP)isa (1, 1)-geodesic submanifold of (N, cy, DN) and the map p:(M, JP)— (Qum, j/{,l) is holomorphic.

Remark 4.3. 1) Proposition 4.2 can be easily formulated in similar vein to Proposition 3.4.

2) With the same notations as in Proposition 4.2, p: (M, J?) — (Qn.r, In,r) is holomorphic if and only if J? is
integrable and (M, J?) is a (2, 0)-geodesic submanifold of (N, cy, DM).

3) In Proposition 4.2, assume that (N, cy, DV) is the Euclidean space R" with its canonical conformal structure
and flat connection. Then Oy, =R" x Q, , where Q, , € Gr,(n, C) is the manifold of isotropic r-dimensional
subspaces of C".

Let p=my0p: M — F where m3 : R" x Q,, = Qp., is the projection. Then p : (M, J”) — (On.r, j](/,r) 18
holomorphic if and only if p': (M, J?) — Q,, is holomorphic.

Thus, by Proposition 4.2, (M, J?) is a (1, 1)-geodesic submanifold of (N, cn, DNyand p: (M, JP) — (Qu, *71(/1)
is holomorphic if and only if p: (M, JP) — Q,., is holomorphic. In the particular case dim M = 2, this gives M 2
minimal in R” if and only if p holomorphic which leads to the Weierstrass representation of minimal surfaces in
Euclidean space.

4) A result similar to Proposition 3.6 can be easily written by working with the inclusion map Qy < QOn /.

5. f-structures and pseudo horizontally conformal submersions
We start this section by recalling the following definition.

Definition 5.1. (See [1,3].) A map ¢:(M,c) — (N, J) from a conformal manifold to an almost complex manifold
is pseudo horizontally weakly conformal if it pulls back (1, 0)-forms on N to isotropic 1-forms on (M, c¢). A map is
pseudo horizontally conformal if it is submersive and pseudo horizontally weakly conformal.

Remark 5.2. 1) A submersion ¢: (M, c) — (N, J) from a conformal manifold to an almost complex manifold is
pseudo horizontally conformal if and only if there exists an almost f-structure F on (M, ¢) such that TOM =kerdg
and ¢: (M, F) — (N, J) is holomorphic (cf. [11]).

2) Let (M, ¢) be a conformal manifold and let F be an almost f-structure on M. Then F is an f-structure on
(M, c) if and only if it is locally defined by pseudo horizontally conformal submersions onto complex manifolds.

Let (M,c, D) be a Weyl space, dimM = m. For 1 <r < %m let mpr:Opr — M be the bundle of
isotropic spaces on (M, c¢) of complex dimension r. For p € Qp , let F? be the skew-adjoint f-structure on
(Try (M, €7y, (p)) Whose eigenspace corresponding to —i is p. Thus, Oy, is also the bundle of skew-adjoint
f-structures on (M, c¢) with kernel of dimension m — 2r.

Let .77 be the connection induced by D on Qs , and let TOQ Mm.r © S be the subbundle characterized by
drrM,r(Tl?QM,,) =ker FP, for all p € Q. Also, let 4 C C be the subbundle such that dmy,-((%)p) is the

eigenspace of F” corresponding to —i, for all p € Qs . Denote 701 Omr=% (keran,r)O’l and let Fyy , be
the almost f-structure on Qs , whose eigenbundles corresponding to 0 and —1i are T°0 m.r and 7%10 M.r» Tespec-
tively. Also, let 7}, . be the almost f-structure on Qs » whose eigenbundles corresponding to 0 and —i are T°Qwm.,

and ¢ @ (ker an,r)l’O, respectively.

Remark 5.3. 1) Each of the almost f-structures Fjs , and F J/VIJ’ determines D.
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2) With the same notations as in Section 4, the almost CR-structures induced by Fy  and F), , are Jy,, and
Ty »» Tespectively.

It is well-known (see [15, Theorem 3.5]) that if m = 3 then F), 1 is integrable if and only if (M, ¢, D) is Einstein—
Weyl. Also, from Theorem 1.1 it easily follows that F //w . 1s nonintegrable. We shall prove the following:

Theorem 5.4. If m > 4 then the following assertions are equivalent:

(1) Fum,r is integrable.
(1) D is, locally, the Levi-Civita connection of a constant curvature representative of c.

Proof. Let R be the curvature form of the connection induced by D on L* ® T M, where L is the line bundle of M.
We claim that the following assertions are equivalent:

(@) R(A*(pH)(ph) S p*forany p € Qv
(b) c(R(X,Y)X,Y)=0forany X, Y € M spanning a degenerate space.
(¢) (M, c, D) is flat and Einstein—Weyl.

Indeed, as any two-dimensional degenerate space on (M, ¢) is contained in p for some p € Qy.,, we obviously
have (a) = (b). Also, by [16], assertion (b) implies that (M, c) is flat; it follows quickly that (b) = (c). By a result
of M.G. Eastwood and K.P. Tod ([5, Theorem 1]; see [4, Theorem 5.2]), (c) < (ii). Clearly, (ii) = (a) and the proof
follows from Theorem 1.1. O

Remark 5.5. By Theorems 4.1 and 5.4, if F , is integrable then Jj , is integrable.

Let (M, g) be a Riemannian manifold of constant curvature such that F), , is simple. Then there exists a holomor-
phic submersion from (Qas -, Far,-) onto a complex manifold Z, (M) whose fibres are the leaves of TOQ M.r- Then
Z,(M) is the twistor space of (Qpr.r, M, a1, Fu,r) (cf. [1, §6.8]).

Proposition 5.6. (Cf. [13].) Let p be a section of Q. and let FP be the corresponding almost f-structure on (M, c).
The following assertions are equivalent:

(i) p:(M,FP)— (Qm,r, Fum,r) is holomorphic.
(i) F? is integrable and locally defined by pseudo horizontally conformal submersions with geodesic fibres and for
which the integrability tensor of the horizontal distribution is of degree (1, 1).

Proof. Assertion (i) is equivalent to the fact that DxY € I'( pJ‘), forany X,Y e I'( pJ‘); in particular, if (i) holds then
F? is integrable. Clearly, (i) is also equivalent to DxY € I" (ﬁl), forany X,Y eI’ (ﬁl). Therefore, if (i) holds then
prnpt (=(p® p)t =ker FP) is geodesic.

Thus, if (i) holds then F? is integrable and locally defined by pseudo horizontally conformal submersions with
geodesic fibres; furthermore, if X, Y € I'(p) and U € F((pEBﬁ)L) then, as F'” is integrable, we have [U, X], [U, Y] €
F(pL) and it follows that c¢(U, [X, Y]) = —2¢(Dy X, Y) = 0. This completes the proof of (i) = (ii).

By definition, F” integrable if and only if p* integrable. It follows that if F? is integrable then DxY € I"(pt),
for any X, Y € I'(p). Also, if ker FP (= (p @ p)™*) is geodesic then Dy V € I'(pt), forany U,V € I'((p & p)T).
Furthermore, an argument as above shows that if F7? is integrable then the integrability tensor of (p @ p)* is of
degree (1, 1) if and only if DyX € I'(p*), for any X € I'(p) and U € I'((p ® p)*). This completes the proof of
i)=3G). O

Remark 5.7. Let F be an f-structure on M. It is obvious that the almost CR-structure 7% ! M is integrable if and only
if the integrability tensor of T10M @ T%1 M is of degree (1, 1).

From Proposition 5.6 we easily obtain the following result.
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Corollary 5.8. (Cf. [13].) Let p be a section of Qm.1 and let F? be the corresponding almost f -structure on (M, c).
The following assertions are equivalent:

() p:(M,FP)— (Om.1,Fm.1) is holomorphic.
(i) F? is integrable and locally defined by submersive harmonic morphisms with geodesic fibres (of codimension
two).

Let (M, g) be a real analytic Riemannian manifold, dim M = m. Then (M, g) admits a (germ-unique) com-
plexification (M€, g©). Let e, Opc, = MC be the bundle of r-dimensional isotropic spaces on (M€, g©).
Ifi1<r< % m, the complex version of Theorem 5.4 says that the following assertions are equivalent (cf. [17, §2] and
the references therein):

(i) For any p € Qc , there exists a coisotropic and geodesic complex submanifold § of (M C, ¢©) of (complex)
rank m — 2r, with respect to gC, such that THM«: r(P)S =pt.

(1) (M C g(c) has constant (sectional) curvature.

Assume (M C, g(c) (and, hence, also (M, g)) to be of constant curvature. Then, locally, the twistor space (in the sense
of [17, Definition 2.1]) Z, (M%) parametrizes the coisotropic geodesic (complex) submanifolds of (M C g(c) of rank
m — 2r. It follows that, locally, we may assume 7°Q ., simple and such that each of its leaves intersects the fibres of
7y, at most once (apply [17, Remark 2.2(3)]). Then Z, (M) is an open submanifold of Z, (MC); moreover, Z, (M) is
endowed with a holomorphic m-dimensional family of submanifolds each of which is holomorphically diffeomorphic
to the space of isotropic r-dimensional spaces on C™; the members of this family are called the twistor submanifolds
of Z.(M) (see [17, Remark 2.2(1)]).

We shall say that two submanifolds S and S’ of a manifold W are transversal if T, SN TS’ = {0}, ateach x € SN S’.

Corollary 5.9. Let (M, g) be a Riemannian manifold of constant curvature and let 1 <r < % m, where m = dim M.

Then any pseudo horizontally conformal submersion, locally defined on (M, g), with geodesic fibres of dimension
m — 2r and for which the integrability tensor of the horizontal distribution is of degree (1, 1) corresponds, locally, to
a complex submanifold, of dimension r, of Z,(M) which is transversal to the twistor submanifolds.

Proof. Any (local) pseudo horizontally conformal submersion ¢ on (M, g) with connected geodesic fibres of di-
mension m — 2r and for which the integrability tensor of the horizontal distribution is of degree (1, 1) defines an
f-structure F¥ on (M, g). Moreover, by Proposition 5.6, F¥ corresponds to a holomorphic section p¥: (M, F¥) —
(Om.rs Fu,r). Hence, TOQM,, induces a foliation on p? (M) whose leaves are mapped by 7 onto the fibres of ¢.
Thus, locally, the projection Qy » — Z,(M) maps p¥ (M) onto a complex r-dimensional submanifold N¥ of Z, (M).
Then ¢ — N¥ gives the claimed correspondence. O

Remark 5.10. Let (M, g) be a constant curvature Riemannian manifold and let 1 <r < %m, where m =dim M.

Then Z, (M) parametrizes naturally the set of pairs (P, J) where P is a totally geodesic submanifold of (M, g), of
codimension 2r, and J is an orthogonal complex structure on the normal bundle of P which is parallel with respect
to the normal connection. (By (3.1) and (3.2), the normal connection on the normal bundle of any totally umbilical
submanifold of a conformally-flat Riemannian manifold is flat.)

Let ¢ be a (local) pseudo horizontally conformal submersion on (M, g) with connected geodesic fibres of dimen-
sion m — 2r and for which the integrability tensor of the horizontal distribution is of degree (1, 1). Let N¥ be the
codomain of ¢ and let J# be the orthogonal complex structure on (kerd¢)® with respect to which Aol (kerdg)t 18
holomorphic at each point.

Then the correspondence of Corollary 5.9 is given by ¢ — N¥ where the inclusion map N¥ — Z,.(M) is defined

by y = (@71 (1), I ,-1(y), (v € N¥).

From Corollary 5.9 we obtain the following result of P. Baird and J.C. Wood.
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Corollary 5.11. (See [1].) Let (M, g) be a Riemannian manifold of constant curvature. Then any submersive harmonic
morphism, locally defined on (M, g), with geodesic fibres of codimension two corresponds, locally, to a complex one-
dimensional submanifold of Z1(M) which is transversal to the twistor submanifolds.

We end by describing the twistor spaces of the space forms R™, ™ and H™ (cf. [1, §6.8]). For this, we firstly
describe the twistor spaces of the complex Euclidean space C" and of the complex unit hypersphere S (C).

Let Q. € Gry,—(m, C) be the space of coisotropic subspaces of C” of rank m — 2r. We shall denote by the
same symbol Q,, , its image through the complex analytic diffeomorphism Gry,,—,(m, C) — Gr,(m, C) defined by
p > p+, for any p € Gr,,_,(m, C). Thus, Q,,., < Gr,(m, C) is the space of isotropic subspaces of C" of complex
dimension r. Let E,, , and F, , be the restrictions to Q,, , of the tautological vector bundles on Gr,,—,(m, C) and
Gr, (m, C), respectively. As Z,(C™) is the space of coisotropic planes in C" of rank m — 2r, we have Z,(C™) =

(Qm,r X Cm)/Em,r = nt,r'
Similarly, Z, (8™ (C)) is the space of (maximal) coisotropic geodesic submanifolds of $™(C), of rank m — 2r. As
any such submanifold is the intersection of S (C) with a coisotropic subspace, of rank m — 2r + 1, of C"*!, we have

Zr(Sm(C)) = Qm+1,r~
It follows that Z,(R™) = F;‘”, Z,(8™) = Omy1r and Z,(H™) = Om+1.7 \ Cp.r for some closed set Cp,  C

Om+1.r. To describe Cp, », consider the complex Euclidean space C™+1 as the complexification of the Minkowski
space R’I”H so that the complexification of H™ C RY' *1 to be the complex hypersphere, of radius the imaginary unit.
Then C,,,., is the set of coisotropic subspaces p € C"*! of rank m — 2r + 1 such that p N R'I"H # {0}.
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