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Abstract

We introduce a general notion of twistorial map and classify twistorial harmonic morphisms with
one-dimensional fibres from self-dual four-manifolds. Such maps can be characterized as those that
pull back Abelian monopoles to self-dual connections. In fact, the constructions involve solving a
generalized monopole equation, and also the Beltrami fields equation of hydrodynamics, and lead
to constructions of self-dual metrics.

0. Introduction

Harmonic morphisms between Riemannian manifolds are smooth maps which preserve Laplace’s
equation. By the basic characterization theorem [12, 19], they are harmonic maps that are horizontally
weakly conformal (see below).

Classification results for harmonic morphisms with one-dimensional fibres can be found in
[6, 8, 30–32]. In [32] it is proved that, from an Einstein manifold of dimension at least five, there
are just two types [2, 8] of harmonic morphism with one-dimensional fibres. In dimension four, the
situation is different: from an Einstein four-manifold there are precisely three types of harmonic mor-
phism with one-dimensional fibres [30, 31] (see also [33]), where the first two types are as before.
It is significant that all these three types of harmonic morphism are twistorial maps in the sense of
Definition 3.3 below. Moreover, by a result of [37], submersive harmonic morphisms from Einstein
four-manifolds to Riemann surfaces are twistorial maps.

We shall see that a submersion with (nowhere degenerate) one-dimensional fibres from a four-
dimensional (complex-)Riemannian manifold is twistorial if and only if it is self-dual in the sense
of [9].

In this paper we classify twistorial harmonic morphisms with one-dimensional fibres from real-
analytic Riemannian four-manifolds, finding precisely one more type, which is related to a metric
construction of [9].
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In section 1, we review some basic facts on harmonic morphisms with one-dimensional fibres.
In section 2, we introduce a notion of (almost) twistorial structure. Then, we recall [1, 18, 25, 34]
some basic examples from twistor theory and show how they fit into our framework. In section 3, we
introduce the notion of twistorial map and then, in sections 4 and 5, we show that many examples and
facts from twistor theory appear as natural properties of such twistorial maps. To make our definition
of twistorial, we must complexify our manifolds, so that we shall often work with complex-analytic
maps between complex-Riemannian manifolds (see [25]).

The main result of section 5 is a reformulation (Theorem 5.3) of a result of [9] which gives a nice
characterization for twistorial maps with nowhere degenerate fibres from a four-dimensional oriented
conformal manifold. We prove that the induced Weyl connection on the codomain coincides with the
one hinted at in [9]. Such twistorial maps pull back (Abelian) monopoles to self-dual connections
(cf. [9, 10]); by using Theorem 5.3, we show that this property is equivalent to the property of
being twistorial. Then we show that twistorial harmonic morphisms ϕ : (M4, g) → (N3, h, D) are
characterized by the property that there exist non-trivial monopoles on (N3, h, D) which are pulled
back to flat connections.

In section 6 we prove (Theorem 6.3) that, from a real-analytic four-dimensional Riemannian
manifold, there are, up to conformal changes with basic factor, just four types of twistorial harmonic
morphism with one-dimensional fibres, where the first three types are as above with a slight extension
of type 3, and type 4 is new. The proof involves solving the monopole equation (5.15) (cf. [33]). Recall
[30, 31, 33] that harmonic morphisms of type 3 are determined by the Beltrami fields equation (see
[21]). Here, this equation appears once more: for a harmonic morphism ϕ : (M4, g) → (N3, h) of
type 4, the Lee form α with respect to h of the Weyl connection on N3, with respect to which ϕ is
twistorial, satisfies the Beltrami fields equation dα = ± ∗ α outside the zero set of a function, up to
a conformal change of h (Proposition 6.2).

Theorem 6.3 together with a result of [9] (see Theorem 5.3, below), gives the classification
of twistorial harmonic morphisms with one-dimensional fibres from a self-dual four-dimensional
manifold with real-analytic metric (Corollary 6.4).

In [33], we gave a new construction of Ricci-flat self-dual metrics based on harmonic morphisms
of type 3. In section 7, we show that harmonic morphisms are related to constructions of Einstein and
self-dual metrics in [9, 20].

1. Some facts on harmonic morphisms with one-dimensional fibres

In this section we present some basic facts on harmonic morphisms with one-dimensional fibres. See
[6, 29] for general accounts and [16] for a list of papers on harmonic morphisms.

DEFINITION 1.1 A harmonic morphism is a smooth map ϕ : (Mm, g) → (Nn, h) between Riemannian
manifolds which pulls back (locally defined) harmonic functions to harmonic functions, that is, if
f : V → R is a harmonic function on an open subset of N with ϕ−1(V ) non-empty, then f ◦ ϕ is a
harmonic function on ϕ−1(V ).

DEFINITION 1.2 A smooth map ϕ : (Mm, g) → (Nn, h) between Riemannian manifolds is hori-
zontally (weakly) conformal if, at each point x ∈ M , either dϕx = 0, in which case x is called a
critical point of ϕ, or dϕx : TxM → Tϕ(x)N is surjective and its restriction to the horizontal space
H x = (ker dϕx)

⊥ is a conformal (linear) map (H x, gx |Hx
) → (Tϕ(x)N, hϕ(x)), in which case x is
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called a regular point of ϕ. Denote the conformality factor by λ(x). The resulting function λ is called
the dilation of ϕ. The dilation is smooth outside the set of critical points and can be extended to a
continuous function on Mm, with λ2 smooth, by setting it equal to zero on the set of critical points.

A smooth map is called horizontally homothetic if it is horizontally conformal with dilation constant
along horizontal curves.

A homothetic foliation is a foliation which is locally defined by horizontally homothetic
submersions [29, 30].

REMARK 1.3 A map ϕ : (M, g) → (N, h) is horizontally weakly conformal if and only if, for each
x ∈ M , the adjoint dϕ∗

x : (Tϕ(x)N, hϕ(x)) → (TxM, gx) is a weakly conformal linear map (with image
H x ). This formulation shows that the condition of horizontal weak conformality is dual to that of
weak conformality (see also [6, §2.4]).

The basic characterization result for harmonic morphisms is the following.

THEOREM 1.4 [12, 19] A smooth map between Riemannian manifolds is a harmonic morphism if and
only if it is a harmonic map which is horizontally weakly conformal.

It follows that the set of regular points of a non-constant harmonic morphism is an open dense
subset of the domain [12].

The following two propositions give two of the four types of harmonic morphism with one-
dimensional fibres that we shall meet (see section 3 below).

PROPOSITION 1.5 [2] Let ϕ : (Mn+1, g) → (Nn, h) be a non-constant horizontally weakly conformal
map between Riemannian manifolds of dimensions n + 1 and n, respectively (n ≥ 1). If n = 2, then
ϕ is a harmonic morphism if and only if its fibres are geodesic at regular points. If n �= 2, then any
two of the following assertions imply the third:

(i) ϕ is a harmonic morphism;
(ii) the fibres of ϕ are geodesic at regular points;

(iii) ϕ is horizontally homothetic.

Proof . Let ϕ : (Mm, g) → (Nn, h) be a horizontally conformal submersion. Then, at regular points
we have the following fundamental equation (see, for example, [6, §4.5]) for the tension field
τ(ϕ) ∈ �(ϕ∗(T N)) of ϕ:

τ(ϕ) + dϕ(trace(BV)) = −(n − 2)dϕ(grad(log λ)), (1.1)

where trace(BV) is the trace of the second fundamental form of V = ker dϕ and λ is the dilation of ϕ.
The proposition is an immediate consequence of (1.1).

REMARK 1.6 Proposition 1.5 is true for maps with higher-dimensional fibres after replacing ‘geodesic’
with ‘minimal’.

Recall that a foliation is called Riemannian if it is locally defined by the fibres of Riemannian
submersions; then we have the following result (see also [6, §12.3]; see [22] for the definition of
Killing vector fields).
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PROPOSITION 1.7 [8] Let ϕ : (Mn+1, g) → Nn be a submersion with connected one-dimensional fibres
from a Riemannian manifold of dimension n + 1 to a smooth manifold of dimension n (n ≥ 3).
Suppose that the fibres of ϕ form an orientable Riemannian foliation. Then the following assertions
are equivalent.

(i) There exists a Riemannian metric h on Nn with respect to which ϕ : (Mn+1, g) → (Nn, h)

is a harmonic morphism;
(ii) there exists a nowhere-zero Killing vector field on (Mn+1, g) tangent to the fibres of ϕ.

In general, harmonic morphisms with one-dimensional fibres have a local normal form as follows.

THEOREM1.8[8] Let (Mn+1, Nn, S1)be a principal bundle with projectionϕ : Mn+1 → Nn, endowed
with a principal connection H ⊆ T M . Let h be a Riemannian metric on Nn and λ a smooth positive
function on Mn+1.

Define a Riemannian metric on Mn+1 by

g = λ−2 ϕ∗(h) + λ2n−4 θ2, (1.2)

where θ is the connection form of H . Then ϕ : (Mn+1, g) → (Nn, h) is a harmonic morphism.
Conversely, any submersive harmonic morphism with one-dimensional fibres is locally of this

form, up to isometries.

See [6, §12.2; 29; 30] (and [5] for the case n = 2) for a proof of Theorem 1.8 and a more explicit
version of the converse.

The vector field V on Mn+1 which is the vertical dual of θ (that is, dϕ(V ) = 0 and θ(V ) = 1) is
the infinitesimal generator of the local S1-action; it is called the fundamental (vertical) vector field;
up to sign, it is characterized by the property that it is vertical and g(V, V ) = λ2n−4.

REMARK 1.9

(1) By Proposition 1.5, any horizontally homothetic submersion with geodesic fibres is a har-
monic morphism. In the context of Theorem 1.8 this corresponds to the case when λ is constant
along horizontal curves; then if dλ is nowhere zero, the horizontal distribution is integrable
and totally umbilical.

(2) The Killing vector field of Proposition 1.7 is equal to (a multiple of) the fundamental vector
field. In fact, from Proposition 1.7 and Theorem 1.8 (see [6; 8, §12.3; 29]) we deduce the
following. Let V be a Killing vector field on (Mn+1, g) (n �= 2) whose integral curves are
the fibres of the submersion ϕ : (Mn+1, g) → Nn; let ǧ denote the unique metric on Nn with

respect to which ϕ : (Mn+1, g) → (Nn, ǧ ) is a Riemannian submersion and λ̌ the positive

smooth function on Nn such that ϕ∗(λ̌2n − 4
) = g(V, V ); then ϕ : (Mn+1, g) → (Nn, λ̌

−2
ǧ )

is a harmonic morphism. In the context of Theorem 1.8 this corresponds to the case when λ

is constant along the fibres of ϕ.

We end this section by recalling the following.

DEFINITION 1.10 ([30], cf. [36]) Let V be (the tangent bundle of) a foliation on the Riemannian
manifold (Mm, g).
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We say that V produces harmonic morphisms if it can be locally defined by submersive harmonic
morphisms.

2. Twistorial structures

In this section we shall work in the complex-analytic category. Thus, all manifolds will be complex
and all maps will be complex-analytic. Examples of such manifolds and maps can be obtained by
complexifying real-analytic maps between real-analytic manifolds. In particular, by a Riemannian
manifold we shall mean a complex-Riemannian manifold in the sense of [25].

We define horizontally (weakly) conformal maps similarly to Definition 1.2, but λ may then be a
complex number defined only up to sign with the square dilation λ2 globally defined.

In what follows, it is convenient to work with the following definition.

DEFINITION 2.1 Let M be a (complex) manifold. By an almost twistorial structure (on the manifold
M) we shall mean a quadruple (P, M, π, F ), where π : P → M is a proper surjective (complex-
analytic) submersion and F ⊆ T P is a distribution on P such that (ker dπ) ∩ F = {0}; we call F
the twistor distribution of (P, M, π, F ).

We shall call the almost twistorial structure (P, M, π, F ) integrable if its twistor distribution
F is integrable. An integrable almost twistorial structure will be called a twistorial structure.
If (P, M, π, F ) is a twistorial structure then the leaf space of F is called the twistor space of
(P, M, π, F ).

REMARK 2.2

(1) Let (P, M, π, F ) be a twistorial structure. Assume that the foliation F is simple (that is, its
leaf space Z is a manifold and the projection πZ : P → Z is a submersion) and that any of
its leaves intersect each fibre of π at most once. Then {πZ(π−1(x))}x∈M is an analytic family
[23] of compact submanifolds of Z, which we shall call twistor submanifolds, or twistor lines
when they are projective lines.

(2) For all of the almost twistorial structures (P, M, π, F ) (dim F = k) which will appear in
this paper, the map P → Gk(T M), p 
→ dπ(Fp) is an embedding of P into the Grassmann
bundle of k-dimensional planes on T M . Such almost twistorial structures can be obtained as
follows.

By a linear partial connection on a vector bundle E → M , over a distribution H on M [7],
we mean a morphism ∇ from the sheaf of sections of E to the sheaf of sections of E ⊗ H ∗
such that, if U is an open set of M , then ∇ : �(U, E) → �(U, E ⊗ H ∗) is a C -linear map
that satisfies

∇(sf ) = (∇s)f + s ⊗ df |H
for any function f : U → C and section s ∈ �(U, E); in a similar way to the case of usual
connections, any linear partial connection over H corresponds to a principal partial con-
nection over H on the frame bundle of E, where by a principal partial connection, over
H , on the principal bundle (P, M, G), with projection π : P → M , we mean a G-invariant
distribution K on P such that K ∩ ker dπ = {0} and dπ(K ) = H .

Now let H ⊆ T M be an n-dimensional distribution endowed with a linear partial connec-
tion D, over itself. Suppose that D corresponds to a principal partial connection, over H ,
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on a principal subbundle (Q, M, G), (G ⊆ GL(n, C ) ), of the bundle of (complex) frames
of H . Let F ⊆ Gk(C

n) be a submanifold which is invariant under the action of G and let
P = Q ×G F be the associated bundle. Clearly, P ⊆ Gk(H ). Also, D induces a connection
D ⊆ T P on π : P → M . Then, for each p ∈ P we define F p ⊆ TpP to be the horizontal
lift, with respect to D, at p ∈ P of p ⊆ H π(p).

Usually, G ⊆ CO(n, C ) where CO(n, C ) is the complex-conformal group in dimension
n, so that H is endowed with a conformal structure. Then, if D corresponds to a princi-
pal partial connection on the corresponding frame bundle (Q, M, CO(n, C )), it is called a
conformal partial connection.

(3) Let (P, M, π, F ) (dim M = m, dim F = k) be a twistorial structure where, as above, P is
a subbundle of the Grassmann bundle Gk(T M) and F is induced by some connection D on
M which preserves P . Suppose that D is torsion-free and, for any p ∈ P , there exists a totally
geodesic submanifold of M , of dimension (m − k), which passes through π(p) and which is
transversal to p. Then each point of M has an open neighbourhood U such that F |π−1(U) is
simple.

Next, we give the basic examples of almost twistorial structures with which we shall work. Recall
that we are working in the complex-analytic category. First, we consider structures over two- and
three-dimensional manifolds.

EXAMPLE 2.3 (LeBrun [25]) Let M = M2 be a two-dimensional Riemannian manifold and let π :
P → M be the bundle of null directions on M2. Clearly, P = det(O(M)) and hence π : P → M is
a Z2-covering. Furthermore, there exists a canonical one-dimensional foliation F on P such that π

locally maps leaves of F to (local) null geodesics on M2. Hence any two-dimensional Riemannian
(or conformal, if one prefers) manifold M2 is canonically endowed with the twistorial structure
(P, M, π, F ).

Conversely, any (almost) twistorial structure (P, M, π, F ) with dim M = 2, dim F = 1 and
π : P → M a Z2-covering, such that the map P → P(T M), p 
→ dπ(F p) is an embedding, is
induced by a conformal structure as above.

If the Riemannian manifold M2 is orientable (equivalently, if the Z2-covering π : P → M is
trivial) then P = M+ 
 M−, where M+ and M− are copies of M . Hence, there exist two foliations
by null geodesics F + and F −, on M , which are the projections of F restricted to M+ and M−,
respectively. Therefore, the twistor space Z = Z(M) of the canonical twistorial structure of an ori-
ented two-dimensional Riemannian manifold M2 (more generally, of a two-dimensional manifold
endowed with an oriented conformal structure) is the space of null geodesics [25] of M2. Then,
locally, Z is the disjoint union of two curves Z = C+ 
 C− and M = C+ × C−. Also, note that the
(complex-analytic) almost Hermitian structures J± on M defined by J±(X) = ±iX for X ∈ F ± are
integrable.

Let (M, g) be a Riemannian manifold, dim M = m. A degenerate hyperplane H ⊆ T M is a sub-
space of codimension one such that g|H is degenerate (equivalently, H is the orthogonal complement
of a null vector which is thus contained in H ) (cf. [25]); if dim M = 3 we shall say degenerate plane.
For fixed x ∈ M , the space of degenerate hyperplanes in TxM can be identified with the non-singular
quadric Qm−2 in P(TxM).

EXAMPLE 2.4 (Hitchin [18]) Let M3 be a three-dimensional Riemannian manifold. Let D be a Weyl
connection (that is, a torsion-free conformal connection) on M . Let π : P → M be the bundle of
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degenerate planes on M3. Then P = CO(M) ×ρ CP 1, where CO(M) is the bundle of conformal
frames of M3 and ρ is the action of CO(3, C ) on CP 1 = {p | p ⊆ C

3 degenerate plane} induced
by the canonical action of CO(3, C ) on C

3. Thus D induces a connection on π : P → M and, for
each p ∈ P , we define F p ⊆ TpP to be the horizontal lift at p ∈ P of p ⊆ Tπ(p)M . Obviously, the
almost twistorial structure (P, M, π, F ) depends only on D and on the conformal class c of the
metric of M3.

THEOREM 2.5 [18] The twistor distribution F is integrable if and only if D is Einstein–Weyl.
Furthermore, if D is Einstein–Weyl then (locally) the leaf space Z of F contains a locally complete

analytic family of projective lines each of which has normal bundle O(2). Conversely, any surface
Z containing a projective line with normal bundle O(2) is (locally) the twistor space of a three-
dimensional Riemannian manifold M3 endowed with an Einstein–Weyl connection D. The conformal
structure of M3 and the Einstein–Weyl connection D are uniquely determined.

Let (P, M, π, F ) be the twistorial structure corresponding, as above, to (M3, D), where D is an
Einstein–Weyl connection on M3. Then, as just explained, F is integrable and the locally complete
analytic family [23] of projective lines on Z of Theorem 2.5 appears as in Remark 2.2(1) (see, also,
Remark 2.2(3)): each projective line represents all the (local) degenerate surfaces through a given point
which are totally geodesic with respect to D. The fact that the normal bundle of any twistor line in Z is
O(2) can be proved as follows. Let t = CP 1 be a fibre of π . Then the normal bundle of πZ(t) = CP 1

in Z is (isomorphic to) (t × C
3)

/
(F |t ). Now, F |t is the restriction to t = Q1 ⊆ CP 2 = G2(C

3)

of the tautological plane bundle E over G2(C
3), where Q1 is the one-dimensional non-singular

quadric and G2(C
3) is the Grassmann manifold of planes in C

3. As (G2(C
3) × C

3)
/
E = H , where

H → CP 2 is the hyperplane bundle and the embedding t = CP 1 = Q1 ↪→ CP 2 has degree two, we
obtain (t × C

3)
/
(F |t ) = O(2).

Note that, locally, any leaf of F is mapped by π to a degenerate surface in M3 which is totally
geodesic with respect to D, and so Z is, locally, the space of degenerate surfaces on M3 which are
totally geodesic with respect to D.

Finally, we discuss an important example of almost twistorial structures over a four-dimensional
manifold.

EXAMPLE 2.6 (Penrose [34], Atiyah et al. [1])

(i) Let M4 be a four-dimensional Riemannian manifold. A plane H ⊆ T M on (M4, g) is called
null if g|H = 0. Let π : P → M be the bundle of null planes on M4. Then the Levi-Civita
connection of M4 induces a connection on π : P → M and, for each p ∈ P , we define
F p ⊆ TpP to be the horizontal lift at p ∈ P of p ⊆ Tπ(p)M . As F is conformally invariant,
the almost twistorial structure (P, M, π, F ) canonically associated to M4 is conformally
invariant. It is well known that F is integrable if and only if M4 is conformally flat (a
consequence of Theorem 2.7, below).

(ii) We have that (M4, g) is orientable if and only if P = P+ 
 P− is the disjoint union of two
CP 1-bundles over M4. In this case, with respect to a choice of orientation on M4, P+ → M

is the bundle of self-dual planes on M4 and P− → M is the bundle of anti-self-dual planes
on M4. (Self-dual and anti-self-dual planes are sometimes called α-planes and β-planes; see
[27, 35].) Then, with π± = π |P± and F ± = F |P± , (P±, M, π±, F ±) are almost twistorial
structures on M4. These almost twistorial structures are conformally invariant and so are well
defined on any four-dimensional manifold endowed with an oriented conformal structure.
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THEOREM 2.7 [1, 34] The twistor distribution F − is integrable if and only if M4 is self-dual.
(Similarly, F + is integrable if and only if M4 is anti-self-dual.)

Furthermore, if M4 is self-dual then (locally) the leaf space Z of F − contains a locally com-
plete analytic family of projective lines each of which has normal bundle O(1) ⊕ O(1). Conversely,
any three-dimensional manifold Z containing a projective line with normal bundle O(1) ⊕ O(1) is
(locally) the twistor space of a self-dual Riemannian four-manifold which is uniquely determined, up
to a conformal change of the metric.

As the oriented Z2-covering of a non-orientable Riemannian manifold is canonically endowed
with an orientation-reversing isometry, the oriented Z2-covering of a non-orientable Riemannian
four-manifold M4 is (anti-)self-dual if and only if M4 is conformally flat.

Let (P−, M, π−, F −) be the twistorial structure corresponding, as above, to the four-dimensional
self-dual Riemannnian manifold M4. Then, by Theorem 2.7, F − is integrable and the locally
complete analytic family of projective lines [23] on Z appears again as in Remark 2.2(1) (see,
also, Remark 2.2(3)): each projective line represents all the (local) anti-self-dual surfaces through
a given point. The fact that the normal bundle of any twistor line in Z is O(1) ⊕ O(1) can be
proved as follows. Let t = CP 1 be a fibre of π−. Then the normal bundle of πZ(t) = CP 1 in Z is
(isomorphic to) (t × C

4)
/
(F −|t ). Now, F −|t is the restriction to t = CP 1 ⊆ G2(C

4) of the tauto-
logical plane bundle E over G2(C

4). As any anti-self-dual p-plane on C
4 = C

2 ⊗ C
2 is given by

p = { v ⊗ v′ | v ∈ C
2 } for some fixed v′ ∈ C

2 we have that E|t = O(−1) ⊕ O(−1) and hence the
normal bundle of πZ(t) in Z is O(1) ⊕ O(1).

Note that, locally, any leaf of F − is mapped by π− to an anti-self-dual surface in M4 so Z is,
locally, the space of anti-self-dual surfaces in M4.

REMARK 2.8 The twistorial structures of Example 2.4 are reductions of the twistorial structures of
Example 2.6 [18] (see [9]).

3. Twistorial maps

In this section, unless otherwise stated, we again work in the complex-analytic category; thus all the
manifolds are complex and all the maps are complex-analytic.

In what follows, it is convenient to work with the following definitions. We start with an important
special case.

DEFINITION 3.1 Let σ = (P, M, πP , F ) and τ = (Q, N, πQ, G ) be almost twistorial structures over
M and N , respectively. Let ϕ : M → N be a map. Suppose that there exists a map � : P → Q which
covers ϕ (that is, πQ ◦ � = ϕ ◦ πP ).

Then ϕ : (M, σ) → (N, τ) will be called a twistorial map (with respect to �) if d�(F p) ⊆ G �(p)

for all p ∈ P .

The following lemma allows us to construct ‘substructures’ of an almost twistorial structure; its
proof is omitted.

LEMMA 3.2 Let σ = (P, M, π, F ) be an almost twistorial structure and let P ′ ⊆ P be a closed sub-
manifold such that π(P ′) = M . Suppose that F p ⊆ TpP ′ for all p ∈ P ′ and dim(TpP ′ ∩ ker dπp)

does not depend on p ∈ P ′.
Then σ ′ = (P ′, M, π |P ′ , F |P ′) is an almost twistorial structure.
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Next, we generalize the definition of twistorial map by allowing � to be a map between such
substructures.

DEFINITION 3.3 Let σ = (P, M, πP , F ) and τ = (Q, N, πQ, G ) be almost twistorial structures over
M and N , respectively, and let ϕ : M → N be a map. Let P ′ ⊆ P be as in Lemma 3.2 and similarly
for Q′ ⊆ Q so that σ ′ = (P ′, M, πP |P ′ , T P ′ ∩ F ) and τ ′ = (Q′, N, πQ|Q′ , T Q′ ∩ G ) are almost
twistorial structures. Suppose that ϕ is covered by a map � : P ′ → Q′. The map ϕ : (M, σ) → (N, τ)

will be called a twistorial map (with respect to �) if d�(F p) ⊆ G �(p) for all p ∈ P ′.
Often, our choice of P ′ and Q′ will depend on the map ϕ.
If the distributions F |P ′ and G |Q′ are integrable with leaf spaces Z(M, ϕ) and Z(N, ϕ), respec-

tively, then we have an induced local map Z(ϕ) : Z(M, ϕ) → Z(N, ϕ) which we shall call the
twistorial representation of ϕ.

REMARK 3.4

(1) Any real-analytic (Riemannian) manifold has a germ-unique complexification to a complex
(-Riemannian) manifold [25]. We can complexify any real-analytic map between real-analytic
manifolds, that is, extend it to (the germ of ) a complex-analytic map between complexifica-
tions of those manifolds. A map between real-analytic manifolds will be called twistorial if
its complexification is twistorial.

(2) Note that Definition 3.1 is the case when P ′ = P and Q′ = Q.
(3) In all our examples, P is embedded as a subbundle of some Grassmann bundle Gk(T M), as

in Remark 2.2(2). Also, � will be naturally induced by dϕ so that we shall write � = dϕ|P ′ .
(4) In Definition 3.3, if the distributions F and G are integrable and Z(M), Z(M, ϕ), Z(N),

Z(N, ϕ) are the leaf spaces of F , F |P ′ , G , G |Q′ , respectively, then we have induced local
maps Z(M, ϕ) → Z(M), Z(N, ϕ) → Z(N).

(5) Most of the twistorial maps which will appear in this paper are submersive maps. We could
also consider twistorial foliations, that is, foliations that are locally defined by submersive
twistorial maps; most of the facts that follow can be easily reformulated in terms of such
foliations.

(6) (Compositions) If Mj(j = 1, 2, 3) are endowed with almost twistorial structures τj =
(Pj , Mj , πj , F j ) (j = 1, 2, 3) and ϕ1 : (M1, τ1) → (M2, τ2), ϕ2 : (M2, τ2) → (M3, τ3) are
twistorial maps with respect to �1 : P ′

1 → Q′
1 and �2 : P ′

2 → Q′
2, such that �1(P

′
1) ⊆ P ′

2,
then ϕ2 ◦ ϕ1 : (M, τ1) → (M, τ3) is a twistorial map with respect to �2 ◦ �1.

The following simple proposition will be useful later on.

PROPOSITION 3.5 Let M be a manifold endowed with a linear connection D and let H ⊆ T (Gk(T M))

be the connection induced byD on the Grassmann bundleπ : Gk(T M) → M of k-dimensional planes
on M (k ≤ dim M). Let F be the k-dimensional distribution on Gk(T M) defined by setting Fp equal
to the horizontal lift at p ∈ Gk(T M) of p ⊆ Tπ(p)M .

Then, for a distribution s : M → Gk(T M) on M the following assertions are equivalent:

(i) Fs(x) ⊆ Ts(x)(s(M)) for all x ∈ M;
(ii) for any curve c tangent to the distribution s on M we have that s ◦ c is a parallel section of

Gk(T M);
(iii) for any vector fields X, Y ∈ �(s) we have DXY ∈ �(s).
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Furthermore, if D is torsion free, then the following assertion can be added to this list:

(iv) the distribution s is integrable and its leaves are totally geodesic with respect to D.

Proof . Assertion (i) is equivalent to the fact that for any X ∈ s(x) we have ds(X) ∈ F s(x); this is
clearly equivalent to assertion (ii).

Assertion (ii) is equivalent to the fact that the distribution s is invariant under parallel transport
along curves tangent to s. Then, the equivalence of (ii) and (iii) follows from the fact that, if U ⊆ C

is a domain in C , H is a Lie subgroup of the Lie group G and (az)z∈U is a curve in G such that
az0 ∈ H for some z0 ∈ U and θ(daz/dz) ∈ L(H) for all z ∈ U , where θ ∈ �(L(G) ⊗ T ∗G) is the
canonical form of G, then az ∈ H for all z ∈ U . (Here ‘L(G)’ and ‘L(H)’ denote the Lie algebras
of ‘G’ and ‘H ’, respectively.)

If D is torsion free, the equivalence (iii) ⇐⇒ (iv) is trivial.

EXAMPLE 3.6 We interpret the twistor lift of Eells and Salamon [11] in our framework. Let M2 and N4

be manifolds of dimensions two and four, respectively, endowed with oriented conformal structures
and let ϕ : M2 → N4 be an injective conformal immersion.

Endow M2 and N4 with the almost twistorial structures (P, M, π, F ) and (P−, N, π−, F −) of
Examples 2.3 and 2.6, respectively.

As ϕ maps null directions on M2 to null directions on N4, we can define �− : P → P− by �−(p)

is the anti-self-dual plane containing dϕ(p), for each null direction p on M2. Then, ϕ is twistorial
with respect to �− if and only if, for any null geodesic γ on M2, �− ◦ γ is parallel along ϕ ◦ γ . If
N4 is self-dual then ϕ is twistorial with respect to �− if and only if, for any null geodesic γ on M2

there exists a (necessarily unique) anti-self-dual surface Sγ ⊆ N4 such that ϕ(γ ) ⊆ Sγ . Then, the
map γ 
→ Sγ is the twistorial representation of ϕ whose image is a pair of (local) curves in Z(N).

A nowhere degenerate surface in N4 will be called a (−)twistorial surface if the corresponding
inclusion map is twistorial, in the above sense.

Similarly, we define (+)twistorial surfaces by using instead the almost twistorial structure
(P+, N, π+, F +) of Example 2.6(ii). A nowhere degenerate surface on an oriented four-dimensional
conformal manifold is totally umbilical if and only if it is both (+)twistorial and (−)twistorial [11].

4. Twistorial maps to surfaces

We shall now describe the twistorial maps which we shall need, namely those with nowhere degenerate
fibres.

EXAMPLE 4.1 (cf. [3, 4, 10]) Let ϕ : M3 → N2 be a surjective submersion whose fibres are
nowhere null from a Riemannian manifold onto an oriented Riemannian manifold. Let D be a Weyl
connection on M3. We consider M3 to be endowed with the almost twistorial structure (P, M, π, F )

of Example 2.4, and N2 with the twistorial structure of Example 2.3 with Q → N the bundle of null
directions on N2.

At each x ∈ M there are precisely two horizontal null directions h+(x) and h−(x). Thus
to ϕ correspond the two disjoint embeddings M± = h±(M) ↪→ P given by x 
→ h±(x)⊥ =
Span(h±(x), ker dϕx).

As dim P = 4, dim F = 2 and dim M± = 3, at each degenerate plane p ∈ M±, d±(p) =
dim(F p ∩ TpM±) ∈ {1, 2}.
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By Proposition 3.5, d± = 2 on M± if and only if the fibres of ϕ : M3 → N2 form a conformal
foliation which is geodesic with respect to D. Therefore, ϕ is a twistorial map with P ′ = M+ 
 M−
(and � = dϕ|P ′ : P ′ → Q) if and only if it is a horizontally conformal submersion with geodesic
fibres (with respect to D). If D is Einstein–Weyl, then Z(M, ϕ) = C+ 
 C− is the leaf space of the
foliation induced by F on M+ 
 M− and the map Z(M, ϕ) → Z(M) is simply the inclusion C+ 

C− ↪→ Z(M). Obviously C+ and C− are transversal to the twistor lines in Z(M). Also, Z(N, ϕ) =
Z(N) is the space of null geodesics of N2, which, as a consequence of the horizontal conformality
of ϕ can be canonically identified with C+ 
 C−; then the twistorial representation of ϕ is simply the
identification map C+ 
 C− → Z(N). To retrieve ϕ from its twistorial representation, let x ∈ M3;
this corresponds to the twistor line tx ⊆ Z(M). Then, locally, tx meets C+ and C− in two points
which, under the identification C+ 
 C− = Z(N) correspond to two null geodesics on N2 whose
intersection is precisely ϕ(x).

If d± = 1 on M± then F induces a one-dimensional foliation on M+ ∪ M−. For example, if
ϕ : M3 → N2 is a horizontally conformal submersion (with nowhere null fibres) whose fibres are
nowhere geodesics, then d± = 1 on M± and the leaves of the induced foliation on M+ 
 M− project
onto the horizontal null geodesics. For such a horizontally conformal submersion, if D is Einstein–
Weyl, then, at least locally, any totally geodesic (with respect to D) degenerate surface contains
precisely one horizontal null geodesic and so we have two local sections Z± ↪→ N (M) of the
canonical projection [18] N (M) → Z(M), where N (M) is the space of null geodesics of M3 so
that Z+ 
 Z− is the space of null geodesics of M3 which are horizontal with respect to ϕ. If ϕ is
twistorial (with respect to D), then the fibres of N (M) → Z(M) induce a one-dimensional foliation
on Z+ 
 Z− whose leaf space is C+ 
 C−.

The following result (cf. Theorem 4.5 and Theorem 5.11, below), which is a consequence of
Proposition 1.5 and Example 4.1, is a rephrasing of the starting point of the classification results of
[3, 4] (see also [6, Chapters 1 and 6]), there given for the smooth category.

PROPOSITION 4.2 Let ϕ : M3 → N2 be the complexification of a real-analytic submersive map
between Riemannian manifolds. Equip M3 with the Levi-Civita connection and endow it with the
almost twistorial structure of Example 2.4; equip N2 with the twistorial structure of Example 2.3.

Then, ϕ is a twistorial map, in the sense of Example 4.1, if and only if it is the complexification of
a harmonic morphism.

DEFINITION 4.3 Let M4 be an oriented four-dimensional Riemannian manifold considered with the
almost twistorial structure τ− = (P−, M, π−, F −) of Example 2.6(ii), with π− : P− → M the bundle
of anti-self-dual planes. Let ϕ : M4 → Nn be a surjective submersive map with n (= dim N) = 2 or 3.
Let τ = (Q, N, π, G ) be the almost twistorial structure of Example 2.3 (if n = 2), or of Example 2.4
for some Weyl connection on N (if n = 3).

We shall say that ϕ is (−)twistorial (with respect to �) if ϕ : (M, τ−) → (N, τ) is a twistorial
map with respect to � = dϕ|P ′ : P ′ → Q for some P ′ ⊆ P− as in Lemma 3.2.

Similarly, we define what is meant by ϕ is (+)twistorial by using instead the almost twistorial
structure (P+, N, π+, F +) of Example 2.6(ii). We shall write (±)twistorial to mean (+)twistorial
or (−)twistorial.



116 R. PANTILIE AND J. C. WOOD

EXAMPLE 4.4 (cf. [37]) Let ϕ : M4 → N2 be a surjective submersion between oriented Riemannian
manifolds, whose fibres are nowhere degenerate. We consider M4 endowed with the almost twistorial
structure (P−, M, π−, F −) of Examples 2.6(ii) with P = P− the bundle of anti-self-dual planes on
M4, and N2 endowed with the twistorial structure (Q, N, π, G ) of Examples 2.3, with Q → N the
bundle of null directions on N2.

At each point x ∈ M4 there are precisely two horizontal null directions h+(x), h−(x) and two
vertical null directions v+(x), v−(x). Let p+(x) (respectively, p−(x)) be the (null) plane spanned
by h+(x) and v+(x) (respectively, h−(x), and v−(x)). Then, from the fact that any self-dual plane
intersects any anti-self-dual plane along a null line, it easily follows that either both p+(x) and
p−(x) are self-dual or both are anti-self-dual. We assume that we have chosen the orientations
such that both p+(x) and p−(x) are anti-self-dual planes. These give two disjoint embeddings
M± = p±(M) ↪→ P−.

As dim P− = 5, dim F = 2 and dim M± = 4, at each null plane p ∈ M± we have d±(p) =
dim(F p ∩ TpM±) ∈ {1, 2}.

By Proposition 3.5, d± = 2 on M± if and only if the two distributions p+ and p− are integrable
and totally geodesic. This is equivalent to the fact that the almost Hermitian structures J± defined by
J±(X) = ± iX for X ∈ p± are integrable. Then, on setting P ′ = M+ 
 M− and � = dϕ|P ′ :P ′ → Q,
ϕ is a (−)twistorial map with respect to � if and only if J− (= −J+) is integrable and ϕ is horizontally
conformal.

If ϕ is (−)twistorial, then the anti-self-dual surfaces on M4 which are leaves of the distributions
p+ or p− are foliated by horizontal null geodesics (this follows from the fact that ϕ is horizontally
conformal and, by definition, at each point x ∈ M4, the space p±(x) intersects the horizontal space
of ϕ at x along a null direction). If, further, M4 is self-dual, then Z(M, ϕ) = S+ 
 S− is the leaf
space of the foliation induced by F on M+ 
 M−, and the map Z(M, ϕ) → Z(M) is simply the
inclusion S+ 
 S− ↪→ Z(M). Obviously S+ and S− are transversal to the twistor lines. Furthermore,
as the preimage of a null geodesic on N2 through ϕ is a hypersurface on M4 foliated by anti-self-dual
surfaces, the two ‘surfaces’ S+ and S− in Z(M) are foliated by curves with leaf spaces C+ and C−.
Also, Z(N, ϕ) = Z(N) is the space of null geodesics of N2 which, as a consequence of the horizontal
conformality of ϕ, can be canonically identified with C+ 
 C−; then the twistorial representation of
ϕ is simply the projection S+ 
 S− → Z(N). To retrieve ϕ from its twistorial representation, let
x ∈ M4; this corresponds to the twistor line tx ⊆ Z(M). Then, locally, tx meets S+ and S− in two
points which are projected by S+ 
 S− → Z(N) to two points: one in C+ and the other in C−. These
correspond to two null geodesics on N2 whose intersection is precisely ϕ(x).

In a similar way to Example 4.1, if ϕ : M4 → N2 is a horizontally conformal submersion for which
J− (= −J+) is nowhere integrable then d± = 1 on M± and, if M4 is self-dual then, locally, each anti-
self-dual surface contains precisely one horizontal null geodesic and so we have two local sections
Z± ↪→ N (M) of the canonical projection (see LeBrun’s papers in [28], cf. [18]) N (M) → Z(M),
where N (M) is the space of null geodesics of M4 [25]. Note that if ϕ is (−)twistorial then the fibres
of N (M) → Z(M) induce on Z+ 
 Z− a one-dimensional foliation whose leaf space is S+ 
 S−.

A horizontally conformal submersion ϕ : M4 → N2 with nowhere degenerate fibres is
(−)twistorial if and only if its fibres are (−)twistorial in the sense of Example 3.6. In particular, a hor-
izontally conformal submersion ϕ : M4 → N2 with nowhere degenerate fibres is both (+)twistorial
and (−)twistorial if and only if it has totally umbilical fibres (cf. Example 3.6).

The following theorem is a reformulation of a result of [37] (cf. Proposition 4.2 and Theorem 5.11,
below).
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THEOREM 4.5 Let M4 be an orientable four-dimensional Einstein manifold and let ϕ : M4 → N2 be
the complexification of a submersive harmonic morphism.

Then, with a suitable choice of orientations, ϕ is (−)twistorial.

REMARK 4.6

(1) Let M be a manifold endowed with an almost twistorial structure τ = (P, M, π, F ),
(dim F = k), such that the map P → Gk(T M) given by p 
→ dπ(F p) is an embedding of
P in the Grassmann bundle of k-dimensional planes on M .

Then τ is integrable if, locally, there are sufficiently many twistorial maps from (M, τ);
for example, if for each p ∈ P there exists a (local) twistorial map ϕ from (M, τ) such
that ker dϕπ(p) = p then τ is integrable. In the above examples this condition is also neces-
sary; moreover other similar necessary and sufficient conditions can easily be formulated. In
Theorem 5.3 below we shall see that the existence of a single suitable twistorial map may be
sufficient for a twistorial structure to be integrable.

(2) Twistorial maps as in Example 4.1, Example 4.4 and as in the next section appear, in a more
or less explicit way, in [26].

5. Twistorial maps with one-dimensional fibres from four-dimensional
Riemannian manifolds

In this section we continue to work in the complex-analytic category. The almost twistorial structures
which may appear in this section will be those of Examples 2.4 and 2.6. As usual, the results can be
applied to the real-analytic category by complexification (Remark 3.4).

Let ϕ : M4 → N3 be a surjective submersive map with nowhere degenerate fibres from an oriented
four-dimensional Riemannian manifold to a three-dimensional Riemannian manifold. Suppose, for
the moment, that M4 is self-dual and is endowed with the twistorial structure of Example 2.6(ii),
with P = P− the bundle of anti-self-dual planes of M4, and that N3 is endowed with the twistorial
structure of Example 2.4, which corresponds to an Einstein–Weyl connection D on N3, with Q the
bundle of degenerate planes on N3. Then, it is clear that ϕ is (−)twistorial for a suitable choice of
P ′ ⊆ P if and only if it maps some, if not all, of the anti-self-dual surfaces on M4 to totally geodesic
degenerate surfaces on (N3, D) (cf. [18, 20]). But, unless we introduce some extra structure, there
is no reason to ignore any of the anti-self-dual surfaces on M4. Moreover, if ϕ maps anti-self-dual
surfaces on M4 to totally geodesic degenerate surfaces on (N3, D) then, in particular, dϕ maps anti-
self-dual planes on M4 to degenerate planes on N3, which is equivalent to the condition that ϕ be
horizontally conformal (indeed, the differential dϕx , (x ∈ M), maps the orthogonal complement, in
H x , of a null direction l ⊆ H x onto the orthogonal complement of a null direction k ⊆ Tϕ(x)N if
and only if the adjoint of dϕx maps k onto l; thus, as the horizontal projection of any anti-self-dual
plane is a degenerate horizontal plane and any degenerate horizontal plane is obtained in this way,
dϕ maps anti-self-dual planes on M4 to degenerate planes on N3 if and only if the adjoint of dϕ is
conformal at each point).

Therefore, given an oriented Riemannian manifold M4 and a horizontally conformal submer-
sion ϕ : M4 → N3 with nowhere degenerate fibres onto a Riemannian manifold, we shall look
for necessary and sufficient conditions under which there exists a Weyl connection D on N3 with
respect to which ϕ : M4 → (N3, D) is a (−)twistorial map with P ′ = P− the bundle of anti-self-dual
planes on M4.
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To do this, we first place the discussion in a slightly more general context. Let M4 be an oriented
Riemannian manifold and let H be a nowhere degenerate three-dimensional distribution. Denote,
as usual, V = H ⊥ and assume that (V , g|V) and (H , g|H) are oriented so that the isomorphism
(T M, g) = (V , g|V) ⊕ (H , g|H) is orientation preserving. Let IH be the integrability 2-form of H
defined by IH(X, Y ) = −g(U, [X, Y ]) for all local sections X, Y of H , where U is the positive unit
section of V .Also, let BH be the second fundamental form of H defined by BH(X, Y ) = 1

2V (∇XY +
∇Y X) for any local horizontal vector fields X and Y , where ∇ is the Levi-Civita connection of (M4, g).
Then we define a section BH of H ∗ ⊗ H ∗ by BH(X, Y ) = g(U, BH(X, Y )) for any horizontal X

and Y ; we shall denote by BH
0 the trace-free part of BH. Let ∗H,g be the Hodge star operator on

(H , g|H).
Recall (see [13] ) that if D is a conformal connection on a conformal manifold (M, c) and g is a

local representative of c on some open set U , then the Lee form of D with respect to g is the one-form
α ∈ �(T ∗U) characterized by Dg = −2α ⊗ g. The Lee form of a conformal partial connection can
be defined in a similar way. Also, if D is a partial connection on H , over H , then its torsion
T , with respect to V , is defined by T (X, Y ) = DXY − DY X − H [X, Y ] for any local sections X

and Y of H . We now introduce a conformal partial connection which encodes the condition of
twistoriality.

DEFINITION 5.1 (cf. [9]) The conformal partial connections D± induced by g on H are the unique
conformal partial connections on (H , g|H), over H , whose Lee forms α± and torsion tensors T±,
with respect to V , are given by

α± = trace(BV)b ± ∗H,gI
H ,

∗H,gT± = ∓2BH
0 ,

(5.1)

where we have identified H ⊗ H ∗ and H ∗ ⊗ H ∗ by using g|H.

If H is totally umbilical then D− is the horizontal part of a Weyl connection of [9, §4].
Let πH: P H → M be the bundle of degenerate planes of H . As in Example 2.4, D− induces a

twistor distribution F H− defined by setting F H− (p) ⊆ TpP H equal to the horizontal lift at p ∈ P H,
with respect to D−, of p ⊆ H

πH(p)
. Assume, for simplicity, that V = ker dϕ, where ϕ: M4 → N3

is a surjective submersion.

PROPOSITION 5.2 (a) Let γ be a null geodesic on (M4, g).

(1) If γ is horizontal then it is a geodesic of D−.
(2) Suppose that γ is not horizontal at x0 = γ (0); let p0− ⊆ Tx0M be the anti-self-dual plane

containing (dγ /dz)(0) and let p0 = H (p0−). Denote by c the (local) horizontal curve such
that c(0) = x0 and ϕ ◦ c = ϕ ◦ γ .

If p is the field of horizontal degenerate planes along c such that p(0) = p0 then
(dp/dz)(0) ∈ F H− .
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(b) Moreover, if D is a conformal partial connection on (H , g|H) which has this property for
all non-horizontal null geodesics on (M4, g), and whose torsion T D , with respect to V , is such that
∗T D is self-adjoint and trace-free, then D = D−. In particular, D− is conformally invariant.

Proof . (1) Suppose that γ is horizontal and let Y be its velocity vector field. Then BH
0 (Y, Y ) = 0

and hence also (∗H,gT−)(Y ) = 0; equivalently, T− restricted to Y⊥ is zero, and thus
g(Y, T−(X, Y )) = 0 for any X ∈ Y⊥.

Because γ is a null curve and D− is conformal, we have that D− Y Y ∈ Y⊥ at each point
of γ . Thus, to prove that γ is a geodesic of D−, it is sufficient to prove that g(D− Y Y, X) = 0
for any X ∈ Y⊥. The proof follows from the fact that D− Y Y = ∇Y Y + 2α−(Y )Y , where ∇
is the Levi-Civita connection of g.

(2) If γ is not horizontal then we can write dγ /dz = X + i U , where X is horizontal, U is
vertical and g(X, X) = g(U, U) = a2 �= 0. Extend X and U to local sections of H and V ,
respectively. We can assume that X is a basic vector field and a−1U is positive on (V , g|V).
Then, along γ , we have

∇X+i U(X + i U) = ∇XX − ∇UU + i (∇XU + ∇UX) = 0, (5.2)

where ∇ is the Levi-Civita connection of (M4, g).
We see from (5.2) that, for any horizontal vector field Y , we have

g(∇XX, Y ) − g(∇UU, Y ) + i g(∇XU, Y ) + i g(∇UX, Y ) = 0

along γ .
Now, assume that Y is null (and horizontal) and g(X, Y ) = 0. Then, by using the fact that X is

basic, the last relation implies that

g(∇XX, Y ) = a2
{
g(trace(BV), Y ) − i IH(a−1X, Y ) + 2iBH(a−1X, Y )

}
(5.3)

along γ , where we have assumed that {a−1U} is a positive local frame of (V , g|V).
On the other hand, let D be a conformal partial connection on (H , g|H), let T be its torsion with

respect to V , and let α be its Lee form with respect to g|H. Then we have

g(∇XX, Y ) = g(DXX, Y ) + α(Y )g(X, X) + g(X, T (X, Y )). (5.4)

Let {X0, X1, X2, X3} be a positive local orthonormal frame on (M4, g) such that X0 = a−1U

and X1 = a−1X. Then
{
X1, X2, X3

}
is a positive orthonormal local frame of (H , g|H). Take Y =

X2 + iX3 and note that p0− is spanned by {Xx0 + i Ux0 , Yx0} and p0 by {Xx0 , Yx0}. Also, c is the
integral curve of X through x0 so that pz is spanned by {Xc(z), Yc(z)} at each z.

Then (dp/dz)(0) is horizontal with respect to the connection induced by D on πH : P H → M if
and only if (DXX)x0 ∈ p0; equivalently g

(
(DXX)x0 , Yx0

) = 0. By (5.3) and (5.4), the last condition
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is equivalent to

α(Y ) − g(trace(BV), Y ) + i IH(X1, Y ) = −g(X1, T (X1, Y )) + 2iBH(X1, Y ) (5.5)

at x0. Condition (5.5) is equivalent to

(
α − trace(BV)b + ∗H,gI

H)
(Y ) = −g(X1, T (X1, Y )) + 2iBH(X1, Y ) (5.6)

at x0. It is easy to see that, if in (5.6) we replace α and T by α− and T−, respectively, then both sides
are zero. Hence, (dp/dz)(0) ∈ FH− .

Suppose now that D satisfies condition (2) of the proposition. Then (5.6) must hold. Moreover,
the relation obtained from (5.6) by replacing Y with Ỹ = X2 − iX3 and X1 by −X1 (so that
{X0, −X1, X2, −X3} is positive) must also hold, namely

(
α − trace(BV)b + ∗H,gI

H)
(Ỹ ) = −g(X1, T (X1, Ỹ )) − 2iBH(X1, Ỹ ) (5.7)

at x0. By taking the sum of (5.6) and (5.7) we obtain

(
α − trace(BV)b + ∗H,gI

H)
(X2) = −g(X1, (∗T )(X3)) − 2BH(X1, X3) (5.8)

at x0.
From the fact that the right-hand side of (5.8) does not depend on X2 it follows that ∗T + 2BH

is proportional to g|H. But ∗T is self-adjoint and trace-free, hence ∗T + 2BH
0 = 0. Then, by (5.8),

we also have α = trace(BV)b − ∗H,gI
H and hence D = D−.

The following theorem is a reformulation of results of [9] (see Definitions 4.3 and 5.1 for
(−)twistorial map and D−, respectively). It involves the dilation λ; recall that this is defined only up
to sign, however, we use it only to define a one-form (5.9) which does not depend on that choice.

THEOREM 5.3 Let (M4, g) and (N3, h) be orientable Riemannian manifolds and let ϕ : (M4, g) →
(N3, h) be a surjective horizontally conformal submersion with connected nowhere degenerate fibres.

Suppose that orientations on (M4, g), (V , g|V) and (H , g|H) are chosen such that the
isomorphism (T M, g) = (V , g|V) ⊕ (H , g|H) is orientation preserving.

Then, the following assertions are equivalent:

(i) there exists aWeyl connection D on N3 with respect to which ϕ is (−)twistorial (with P ′ = P−
the bundle of anti-self-dual planes on (M4, g));
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(ii) the one-form
trace(BV)b − λ−1dHλ − ∗H,gI

H (5.9)

is basic, where λ is the dilation of ϕ, dH = H ◦ d and ∗H,g is the Hodge star-operator on
(H , g|H);

(iii) the two-form d
(
trace(BV)b + 1

3 trace(BH)b
)

is self-dual.
Moreover, if any of the assertions (i), (ii) or (iii) holds then

(a) ϕ∗(D)H = D−; in particular, D is the unique Weyl connection that satisfies (i);
(b) M4 is self-dual if and only if D is Einstein–Weyl.

If M4 is self-dual then, the following assertion can be added to the assertions (i) to (iii).

(iv) there exists a (unique) Einstein–Weyl connection D on N3 such that, for any local map
ψ : N3 → P 2 which is twistorial in the sense of Example 4.1, the map ψ ◦ ϕ: M4 → P 2 is
(−)twistorial (in the sense of Example 4.4).

Proof . Let π− : P− → M be the bundle of anti-self-dual planes on M4 and let � = dϕ|P− be the
map induced by ϕ from P− to the bundle of degenerate planes on N3. Assertion (i) is equivalent to the
existence of a Weyl connection D on N3 such that for any x ∈ M4 and any null geodesic γ on M4 with
γ (0) = x, if we denote by p the field of anti-self-dual planes along γ such that (dγ /dz)(z) ∈ p(z)

for all z, then d�
(
dp/dz)(0)

) ∈ F , where F is the twistor distribution induced by D on the bundle
of degenerate planes on N3 (Example 2.4). Thus, by Proposition 5.2, assertion (i) is equivalent to
the existence of a Weyl connection D on N3 such that ϕ∗(D)H = D−. Now, applying the conformal
change ϕ∗(h)|H = λ2 g|H to (5.1) introduces the term −λ−1dHλ so that the Lee form of D− with
respect to ϕ∗(h)|H is equal to the one-form (5.9). Hence we have the equivalence of (i) and (ii).
Furthermore, if (i) holds then assertion (a) also holds.

The equivalence (ii) ⇐⇒ (iii) can be found in the proof of [9, Proposition 4.4].
The fact that, if M4 is self-dual, then (i) ⇐⇒ (iv) is obvious. Also, if M4 is self-dual and ϕ

is (−)twistorial, then from Theorem 2.5 it follows that D is Einstein–Weyl. Conversely, if ϕ is
(−)twistorial and D is Einstein–Weyl, then by composing ϕ with local twistorial maps (N3, D) → P 2

we obtain sufficiently many local twistorial maps M4 → P 2 to show that any anti-self-dual plane on
M4 is tangent to some anti-self-dual surface in M4. Thus, by Theorem 2.7, M4 is self-dual.

REMARK 5.4

(1) Calderbank [9] calls a horizontally conformal submersion, between real-analytic Riemannian
manifolds, satisfying condition (iii) of Theorem 5.3 self-dual. We have thus interpreted self-
dual submersions as those which are (−)twistorial.

(2) By using the null-tetrad formalism (see [27] ), the equivalence (i) ⇐⇒ (ii) of Theorem 5.3
can also be obtained after a straightforward but tedious computation.

In the following, let ϕ : (M4, cM) → (N3, cN) be a surjective horizontally conformal submersion
with nowhere degenerate fibres from a four-dimensional oriented conformal manifold to a three-
dimensional conformal manifold. Let L be the line bundle over N3 associated with the bundle of
conformal frames on N3 through the morphism of Lie groups ρ : CO(3, K) → K \ {0} (K = R or
C ), characterized by a ∈ CO(3, K) if and only if at a = ρ(a)2I (in the smooth category, L can
be defined as the line bundle associated to the frame bundle of N3 through the morphism of Lie
groups GL(3, R) → (0, ∞)R \ {0}, a 
→ (det(a))1/3; cf. [9]). Note that L can be defined on any
odd-dimensional conformal manifold (N, cN) and that its local sections correspond to oriented local
representatives of cN . Let E be some line bundle over N and let Ẽ = ϕ∗(E).
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To any pair (s, ∇), where s is a section of L∗ over some open subset U of N and ∇ is a connection on
E|U , there can be associated a connection ∇̃ of Ẽ|ϕ−1(U) as follows: assume, initially, that s is nowhere
zero, let h be the oriented local representative of cN over U corresponding to it and let g be the oriented
local representative of cM over ϕ−1(U) such that ϕ : (ϕ−1(U), g) → (U, h) is a Riemannian submer-
sion. Denote, as usual, V = ker dϕ, H = V ⊥, and let ω ∈ �(ϕ−1(U), V ∗) be the induced orientation
on V |ϕ−1(U) such that the isomorphism

(
T (ϕ−1(U)), g

) = (
V |ϕ−1(U), g|V

) ⊕ (
H |ϕ−1(U), ϕ

∗(h)
)

is
orientation preserving. If A is the local connection form of ∇ with respect to some nowhere zero local
section σ ∈ �(U, E), then we set the local connection form of ∇̃ corresponding to ϕ∗(σ ) equal to

Ã = −ω + ϕ∗(A).

We shall call ∇̃ the pull-back, by ϕ, of the pair (s, ∇). Note that, if u is a nowhere zero function
locally defined on N , the pull-back by ϕ of (us, ∇) is given by −u ω + ϕ∗(A). Hence, we can extend
the definition of the pull-back by ϕ of any pair (s, ∇) where the local section s of L∗ may have zeros.

The monopole equation of [20] can be written as follows:

(d − α)u = ∗F, (5.10)

where u is a function on a three-dimensional oriented Riemannian manifold (N3, h), α is a one-form
on N3, F is a two-form on N3 and ∗ is the Hodge star-operator of (N3, h). By interpreting α as the
Lee form with respect to h of a Weyl connection on (N3, [h]), and F as the curvature form of some
connection on some line bundle over (N3, h), the equation (5.10) can be written as follows.

DEFINITION 5.5 [10, 20] Let D be a Weyl connection on (N3, cN). A monopole on (N3, c, D) is a
pair (s, ∇), where s is a section of L∗ and ∇ is a connection on a line bundle E over N3 such that

∗NDs = F. (5.11)

Here F is the curvature form of ∇. A monopole is called non-trivial if s �= 0.

REMARK 5.6 Let (N3, c) be a three-dimensional conformal manifold endowed with a Weyl
connection D.

(1) It is well known (see [10] ) that if (N3, c, D) is Einstein–Weyl then, at least locally, there
exist non-trivial monopoles on (N3, c, D).

Conversely, let (N3, c) be a three-dimensional conformal manifold and let E be a line
bundle over N endowed with a connection ∇. Also, let s be a nowhere zero (local) section of
L∗ and let h be the oriented (local) representative of c corresponding to s. Define a one-form
α such that − ∗h α = ϕ∗(F ), where F is the curvature form of ∇. Then (s, ∇) is a monopole
on (N3, c, D), where D is the Weyl connection on (N3, c) whose Lee form with respect to h

is α.
(2) Let h be a local representative of c over some open subset U of N and let α be the Lee form

of D with respect to h. Then, it is well known (and easy to prove) that, on small enough open
subsets U , monopoles on (N3, c, D) correspond to solutions of the equation �u = d∗(uα),
where � is the Laplacian and d∗ is the codifferential on (U, h). Hence, if (N3, c, D) is (the
complexification of) a real-analytic conformal manifold endowed with a real-analytic Weyl
connection then, at least locally, there exist non-trivial monopoles on (N3, c, D).

Assertion (i) of the following proposition is essentially in [9, 10].
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COROLLARY 5.7 Let ϕ : (M4, cM) → (N3, cN) be a surjective horizontally conformal submersion
with nowhere degenerate fibres and let D be a Weyl connection on (N3, cN).

(i) If ϕ : (M4, cM) → (N3, cN , D) is a (−)twistorial map, then it pulls back monopoles on
(N3, cN , D) to self-dual connections on (M4, cM).

(ii) Conversely, suppose that there exists a non-trivial monopole on (N3, cN , D) which is pulled
back by ϕ to a self-dual connection on (M4, cM). Then, ϕ : (M4, cM) → (N3, cN , D) is
(−)twistorial.

Proof . Let (s, ∇) be a non-trivial monopole. We may assume that s is nowhere zero so that it
corresponds to an oriented local representative h of cN . Let α be the Lee form of D with respect to h.
Then (5.11) is equivalent to

− ∗h α = F. (5.12)

IfA is a local connection of∇, then the corresponding local connection form of ∇̃ is Ã = −ω + ϕ∗(A),
where ω ∈ �(V ∗) is as above. Now, by using the fact that

dω = −trace(BV)b ∧ ω + IH (5.13)

it is easy to prove that dÃ is self-dual if and only if

− ∗h α− = ϕ∗(dA), (5.14)

where α− = trace(BV)b − ∗H,gI
H is the Lee form of D− with respect to h.

From (5.12) and (5.14) it follows that α− = α is basic. The result follows from Theorem 5.3.

Let Mm be a manifold of dimension m ≥ 3 endowed with a three-dimensional distribution H .
Suppose that H is endowed with a conformal structure c and a conformal partial connection D. In a
similar fashion to the above, we consider a line bundle L over M whose nowhere zero local sections
correspond to oriented local representatives of c.

Suppose that there exists a foliation V which is complementary to H and assume, for simplicity,
that there exists a submersion ϕ : Mm → N3 whose fibres are leaves of V .

Then Definition 5.5 can be easily generalized by defining a monopole on (H , c, D) (with respect
to ϕ) to be a pair (s, ∇), where s is a section of L∗ and ∇ is a connection on a line bundle E over
N3 such that ∗HDs = ϕ∗(F ), and where F is the curvature form of ∇. (One could also consider
line bundles on M endowed with partial connections over H but then the resulting equation would
depend on a local section of E.)

Furthermore, if (M4, c) is a four-dimensional oriented conformal manifold then a construction
similar to the above associates to any pair (s, ∇) a connection ∇̃ on ϕ∗(E). We then have the following
simple fact (which may be known) whose proof is similar to the proof of Corollary 5.7.

PROPOSITION 5.8 Let ϕ : (M4, c) → N3 be a surjective submersion with nowhere degenerate fibres
from an oriented four-dimensional conformal manifold. Suppose that D is a conformal partial con-
nection on (H , c|H) and let E be a line bundle over N3. Let s be a section of L∗ and ∇ a connection
on E.

Then any two of the following assertions imply the third:

(i) (s, ∇) is a non-trivial monopole on (H , c|H, D);
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(ii) ∇̃ is self-dual;
(iii) D = D−.

Next, we show how harmonic morphisms fit into the above discussion.

PROPOSITION 5.9 Let V be (the complexification) of a one-dimensional (nowhere degenerate)
conformal foliation on a four-dimensional oriented conformal manifold (M4, c); let H = V ⊥.

Then the following assertions are equivalent:

(i) there exist local representatives g of c with respect to which V is locally defined by harmonic
morphisms;

(ii) there exist non-trivial monopoles (s, ∇) on (H , c|H, D−) for which ∇̃ is flat.

Proof . By Theorem 1.8, assertion (i) is equivalent to the following:
(i′) locally, there exist representatives g of c with respect to which V is geodesic.
Also, from (5.13), we easily obtain that a pair (s, ∇) is as in assertion (ii) if and only if the following

hold:

(a) V has geodesic fibres with respect to the local representative g of c whose horizontal
component corresponds to s;

(b) if θ is the local volume form induced by g on V then dθ is equal to the pull-back by ϕ of the
curvature form of ∇.

We have thus shown that (ii) ⇒ (i).
Conversely, suppose that (i) holds and let s be a nowhere zero local section of L∗ such that, with

respect to the corresponding oriented local representative g of c, the foliation V is geodesic. Then
IH = dθ , where θ is the local volume form induced by g on V . Moreover, because V is geodesic with
respect to g, we have, locally, dθ = ϕ∗(dA) for some one-form A on N3. Furthermore, by Definition
5.1, we have − ∗H,g α− = IH. Hence − ∗H,g α− = ϕ∗(dA); equivalently, the pair formed by s and
the connection determined by A, on the trivial line bundle over N3, is a monopole on (H , c|H, D−).
The proposition is proved.

The following result gives another characterization for twistorial harmonic morphisms between
orientable Riemannian manifolds of dimension four and three, respectively.

COROLLARY 5.10 Let (M4, g) and (N3, h) be orientable Riemannian manifolds. Let ϕ : (M4, g) →
(N3, h) be a surjective submersive harmonic morphism with connected nowhere degenerate fibres.
Suppose that orientations on (M4, g), (N3, h), (V , g|V) and (H , g|H) are chosen such that the
isomorphisms (T M, g) = (V , g|V) ⊕ (H |H) and (H , g|H) = (ϕ∗(T N), ϕ∗(h) ) are orientation
preserving.

Then, the following assertions are equivalent.

(i) There exists a Weyl connection D on N3 with respect to which ϕ is (−)twistorial.
(ii) There exists a basic one-form α on M4 such that

(dH − α)(λ−2) = ∗H �, (5.15)

where λ is a dilation of ϕ, ∗H is the Hodge star operator on
(
H , ϕ∗(h)

)
and � is the curvature

form of the horizontal distribution (that is, in the notation of Theorem 1.8, � = dθ).
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Moreover, if (i) or (ii) holds then the Weyl connection D of assertion (i) is unique and the one-form
α of assertion (ii) is the pull-back of the Lee form of D with respect to h.

Proof . By comparing the fundamental equation (1.1) with (5.9) and by using the fact that IH = λ �,
it follows that a one-form α on M4 satisfies (5.15) if and only if it is the Lee form of D− with respect
to ϕ∗(h). The proof follows from Theorem 5.3.

From [31, Corollary 1.9] we obtain the following result on maps from Einstein manifolds (cf.
Proposition 4.2 and Theorem 4.5).

THEOREM 5.11 Let M4 be an orientable four-dimensional Einstein manifold and let ϕ: M4 → N3 be
the complexification of a submersive harmonic morphism.

Then, there exists a Weyl connection on N3 with respect to which, with a suitable choice of
orientations, ϕ is (−)twistorial.

Another consequence of Theorem 5.3 is that a one-dimensional conformal foliation with nowhere
degenerate leaves on an oriented four-dimensional Riemannnian manifold is both (+)twistorial and
(−)twistorial (Remark 3.4(5)) if and only if it is locally generated by conformal vector fields [9] (the
‘if’ part follows also from [20] ). In particular, (the complexification of) any one-dimensional homo-
thetic foliation locally defined by harmonic morphisms on an oriented four-dimensional Riemannian
manifold is both (+)twistorial and (−)twistorial.

With the same notation as above and in section 1, we have the following consequences of Theorem
5.3 (in which we do not claim that (i) ⇐⇒ (iii) is new).

COROLLARY 5.12 Let V be a one-dimensional conformal foliation with integrable orthogonal
complement on an oriented four-dimensional conformal manifold (M4, c).

Then the following assertions are equivalent:

(i) V is (±)twistorial;
(ii) V produces harmonic morphisms with respect to any local representative of c for which V

has geodesic leaves;
(iii) locally, there exist representatives of c with respect to which V is defined by totally geodesic

Riemannian submersions.

We end this section with a result on (±)twistorial maps from conformally flat four-manifolds.
Recall (see [35]) that, any conformally flat four-manifold can be locally embedded in the four-
dimensional non-singular quadric Q4.

PROPOSITION 5.13 Let M4 be an oriented conformally flat four-manifold and let ϕ : M4 → N3 be a
horizontally conformal submersion with nowhere degenerate fibres. Then, the following assertions
are equivalent:

(i) ϕ is (−)twistorial;
(ii) ϕ is (+)twistorial.

Furthermore, if ϕ is (±)twistorial and M4 is locally embedded in Q4, then the twistor space Z(N)

of the induced Einstein–Weyl connection on N3 is, locally, a surface in Q4 such that the space of
horizontal null geodesics of ϕ is equal to the space of null geodesics on Q4 which pass through
Z(N) ⊆ Q4.
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6. The classification of twistorial harmonic morphisms with one-dimensional fibres from
self-dual four-manifolds

In the last two sections we shall work in the real-analytic category.
First, we list the four types of (−)twistorial harmonic morphisms with one-dimensional fibres

which can be defined on a four-dimensional Riemannian manifold. Later on we shall see how they
come from equation (5.15).

Type 1 (‘Killing type’ [8]). Harmonic morphisms ϕ : M4 → N3 whose fibres are locally generated
by nowhere zero Killing vector fields (see section 1).

Type 2 (‘warped-product type’ [2]). Horizontally homothetic submersions with geodesic fibres
orthogonal to an umbilical foliation by hypersurfaces (see Remark 1.9(1)).

Type 3 (cf. [30, 31, 33]). ϕ : (M4, g) → (N3, h) is a real-analytic map which is, locally, the
canonical projection R × N3 → N3, (ρ, x) 
→ x, and

g = ρ h + ρ−1(dρ + A)2, (6.1)

where A is a one-form on N3 which satisfies the Beltrami fields equation dA = − ∗ A.
Type 4 (cf. [9]). (N3, h) is endowed with a Weyl connection D, ϕ: (M4, g) → (N3, h) is a real-

analytic map which is, locally, the canonical projection R × N3 → N3, (ρ, x) 
→ x, and

g = (eρ + c) h + 1

eρ + c
(dρ − α)2, (6.2)

where the Lee form α of D with respect to h satisfies the equation

dα − c ∗ α + ∗dc = 0

on N3 with c : N3 → R a function (if eρ + c < 0, then we replace g with −g).

REMARK 6.1

(1) Note that maps of types 3 and 4 are always harmonic morphisms by Theorem 1.8.
(2) Let ϕ : (Mn+1, g) → (Nn, h) (n ≥ 1) be a submersive harmonic morphism with

one-dimensional fibres. Then, the components of the fibres of ϕ form a homothetic folia-
tion if and only if either ϕ is of type 1 or, up to a conformal change of (Mn+1, g) with factor
constant along the fibres, ϕ is of type 2.

(3) If ϕ : (M4, g) → (N3, h) is a harmonic morphism of type 3 then ρ and ϕ∗(A) are glob-
ally defined on M4. Indeed, if we denote by λ the dilation of ϕ then ρ = λ−2 and
ϕ∗(A) = −dH

(
λ−2

)
.

(4) If ϕ is a harmonic morphism of type 4 with dα = 0 then the horizontal distribution is integrable
and, after a conformal change with basic factor, ϕ is of type 2. If α �= 0, then in general, ρ

and c ◦ ϕ are globally defined on M4 (this follows from the fact that, up to signs, we have
θ = dρ − α and λ−2 = eρ + c ◦ ϕ, where λ is the dilation of ϕ); in particular, eρ + c ◦ ϕ has
constant sign on M4.

PROPOSITION 6.2 Let ϕ : (M4, g) → (N3, h, D) be a harmonic morphism of type 4 with c �= 0. Then,
outside the zero set of c, after a conformal change with factor constant along the fibres and a suitable
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change of coordinates we may assume that c = ±1—that is, ϕ is, locally, the canonical projection
R × N3 → N3, (ρ, x) 
→ x, and

g = (eρ ± 1) h + 1

eρ ± 1
(dρ − α)2, (6.3)

where the Lee form α of D with respect to h satisfies the Beltrami fields equation

dα = ± ∗ α (6.4)

on N3.

Proof . We shall show that g̃ = |c| g is as in (6.3), (6.4) after the change of coordinates
ρ̃ = ρ − log |c|.

Assume for simplicity that c > 0 and let h̃ = c2h. Then the dilation λ̃, fundamental vector field Ṽ

and connection form θ̃ of the harmonic morphism ϕ : (M4, g̃) → (N3, h̃) are as follows: λ̃2 = cλ2,
Ṽ = V and θ̃ = θ . Also the Lee form of D with respect to h̃ is α̃ = α − d log c.

It is easy to see that
dα − c ∗ α + ∗dc = 0

written with respect to h̃ becomes ∗dα̃ = c α̃. But, if we denote by ∗̃ the Hodge-star operator on
(N3, h̃), then ∗̃|�2 = c−1 ∗|�2 and hence

∗̃dα̃ = α̃. (6.5)

Now it is easy to see that, with respect to ρ̃, h̃ and α̃, the metric g̃ has the required form.

Now we are able to state the main result of this section.

THEOREM 6.3 Let M4 and N3 be real-analytic Riemannian manifolds of dimensions four and three,
respectively. Suppose that N3 is endowed with a Weyl connection D.

Then ϕ : M4 → (N3, D) is a (−)twistorial harmonic morphism if and only if, up to conformal
changes of the metric on the domain and codomain, ϕ is of type 1, 2, 3 or 4; further, the conformal
factor on M4 can be taken to be constant along the fibres of ϕ. If ϕ is of type 2, then D is the Levi-
Civita connection of some metric in the conformal class of N3, whilst if ϕ is of type 3, then D is the
Levi-Civita connection of N3.

Proof . By Corollary 5.10, equation (5.15) is satisfied. If V (λ−2) = 0 then ϕ is of type 1. From [32,
Corollary 1.5] it follows that V (λ−2) is real-analytic, and from now on we shall assume that V (λ−2)

is nowhere zero on some open set. Moreover, by replacing, if necessary, V with −V , we can assume
that V (λ−2) is positive at each point.



128 R. PANTILIE AND J. C. WOOD

Let X be a basic vector field. Note that the left-hand side of (5.15) must be basic and hence, using
[V, X] = 0 we obtain X(V (λ−2)) − V (λ−2)α(X) = 0. Thus

α = dH(log V (λ−2)) . (6.6)

This implies that X(log V (λ−2)) is basic. Hence

X(V (log V (λ−2))) = V (X(log V (λ−2))) = 0.

It follows that, if V (log V (λ−2)) is non-constant then H is integrable; equivalently � = 0 on an
open set, and hence, by real-analyticity, on M4. This, together with (5.15), gives α = −2dH(log λ);
hence dH(log λ) is basic, that is, V (X(log λ)) = 0 for any basic vector field X. Because H is
integrable this implies that V is homothetic, and hence after a conformal change with basic factor we
get that ϕ is of type 2 (see Remark 6.1(2)). Moreover, as α is exact, D is the Levi-Civita connection
of some Riemannian metric in the conformal class of N3.

From now on we shall suppose that V (log V (λ−2)) = a for some constant a ∈ R. If a = 0 this
implies that V (λ−2) is basic. We can write V = ∂/∂ρ for some function ρ which is zero on a chosen
section of ϕ. Hence λ−2 = bρ + c for some basic functions b and c. After suitable conformal changes
on N3 and M4 we have λ−2 = ρ + c/b, that is, V (λ−2) = 1. By (6.6), this implies that α = 0 and
hence D is the Levi-Civita connection of N3. Moreover, we can locally write θ = d(λ−2) + ϕ∗(A)

for some one-form A on N3. Hence dH(λ−2) = −ϕ∗(A) and � = dθ = ϕ∗(dA) which together with
(5.15) gives −A = ∗dA. Thus we have proved that, if a = 0 then, up to a conformal change with
basic factor, ϕ is of type 3.

It remains to consider the case when V (log V (λ−2)) = a for some non-zero constant a. Then, if we
set ρ = log V (λ−2), we can assume that V = a ∂/∂ρ. As V (λ−2) = eρ we have that aλ−2 = eρ + c

for some basic function c. Hence

λ−2 = 1

a
(eρ + c). (6.7)

From dVρ = aθ and (6.6) we get dρ = aθ + α; equivalently

θ = 1

a

(
dρ − α

)
. (6.8)

Now, we can write

a(dH − α)(λ−2) = a
(
dH − dHρ

) (
1

a
(eρ + c)

)

= eρdHρ + dHc − eρdHρ − cdHρ

= dHc − cdHρ = dc − cdHρ = dc − cα. (6.9)

On the other hand, from (6.8) it follows that a � = adθ = −dα which, together with (5.15) and
(6.9), gives dc − cα = − ∗ dα. Thus we have proved that, if ϕ is not of type 1, 2 or 3 then

dα − c ∗ α + ∗dc = 0 (6.10)
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and, locally, the metric of M4 can be written in the form

g = 1

a

{
(eρ + c) h + 1

eρ + c
(dρ − α)2

}
(6.11)

where, obviously, we can assume that a = ±1 and that c is non-zero; since, if c = 0, then after a
suitable conformal change of basic factor, ϕ is of type 2.

The following result is an immediate consequence of Theorem 5.3 and Theorem 6.3.

COROLLARY 6.4 Let M4 be a self-dual manifold with a real-analytic metric and let ϕ : M4 → (N3, D)

be a (−)twistorial harmonic morphism.
Then D is Einstein–Weyl and, up to conformal changes of the metrics, ϕ is of type 1, 2, 3 or

4; further, the conformal factor on M4 can be taken to be constant along the fibres of ϕ. If ϕ is of
type 2, then both M4 and N3 are conformally flat, whilst if ϕ is of type 3, then N3 has constant
curvature.

7. Constructions of self-dual metrics

In this section we show that harmonic morphisms are related to known constructions of self-dual
metrics.

Firstly, we recall the following construction of Jones and Tod [20] (see [26], cf. [15, 17]).

THEOREM 7.1 Let (N3, [h], D) be an Einstein–Weyl three-manifold and let (M4, N3, S1) be a (local)
principal bundle endowed with a (local) principal connection H ⊆ T M . Define a Riemannian metric
g on M4 by

g = v ϕ∗(h) + v−1 θ2, (7.1)

where ϕ : M4 → N3 is the projection of the principal bundle (M4, N3, S1), v = u ◦ ϕ for some
positive smooth function u on N3 and θ is the connection form of H .

Then (M4, g) is self-dual (respectively, anti-self-dual) if the following S1-monopole equation holds
on N3:

(d − α) u = ∗F (respectively, (d − α)u = − ∗ F ), (7.2)

where α is the Lee form of D with respect to h and F ∈ �(�2(T ∗N)) is the curvature form of H .

REMARK 7.2 The construction of Theorem 7.1 clearly gives harmonic morphisms of type 1 and, if
H is flat, of type 2, up to a conformal change with basic factor.

THEOREM 7.3 (Type 3, cf. [9, 33]) Let (N3, h) be a constant curvature three-manifold and let A be
a one-form on N3. Define a Riemannian metric on (0, ∞) × N3 by

g = ρ h + ρ−1(dρ + A)2 (ρ ∈ (0, ∞) ). (7.3)

Then g is self-dual (respectively, anti-self-dual) if the following Beltrami fields equation holds on N3:

dA = − ∗ A (respectively, dA = ∗A). (7.4)
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THEOREM 7.4 (Type 4 [9]) Let (N3, [h], D) be an Einstein–Weyl three-manifold. Define a Riemannian
metric on (0, ∞) × N3 by

g = (eρ ± 1) h + 1

eρ ± 1
(dρ − α)2 (ρ ∈ (0, ∞) ), (7.5)

where α is the Lee form of D with respect to h.
Then g is self-dual (respectively, anti-self-dual) if the following Beltrami fields equation holds

on N3:
dα = ± ∗ α (respectively, dα = ∓ ∗ α ) . (7.6)

REMARK 7.5

(1) The construction of Theorem 7.1 gives Einstein metrics if α = 0 and h is flat, in which case
g is Ricci-flat self-dual [15, 17] (see [33]).

(2) The construction of Theorem 7.3 gives Einstein metrics if and only if (N3, h) has constant
sectional curvature equal to 1/4, in which case g is Ricci-flat self-dual. The construction of
Theorem 7.4 gives Einstein metrics if and only if α = 0 and so h has constant curvature, in
which case g also has constant curvature. These facts follow from [33, Theorem 1.5] and are
also true if we make a conformal change of g with factor constant along the fibres of ϕ.

(3) Let A be a solution of the Beltrami fields equation (7.4) on a three-dimensional Riemannian
manifold (N3, h) with constant curvature. Then the components of A with respect to an
orthonormal basis of left invariant one-forms are eigenfunctions of the Laplace–Beltrami
operator of (N3, h) (cf. [33]; note that the corresponding eigenvalues are imaginary if (N3, h)

has negative sectional curvature).
(4) Let (N3, [h], D) be an Einstein–Weyl space for which there exists a surjective submersion

π : Z(N) → CP 1 whose fibres are transversal to the twistor lines. Then, it is well known
that, for any x1, x2 ∈ CP 1 = S2, the angle formed by any leaf of the foliation corresponding
to π−1(x1) and any leaf of the foliation corresponding to π−1(x2) is equal to distS2(x1, x2)

(see [10, 14]).
For example, if D is the Levi-Civita connection of a Riemannian manifold (N3, h) with

constant non-negative sectional curvature then (N3, [h], D) has this property (see [6] ). It
follows that, if the codomain of a harmonic morphism of type 3 has non-negative constant
sectional curvature then its domain is hyper-Hermitian.

(5) Calderbank [9] gives the type 4 construction with the extra condition on (N3, [h], D) that it
is an Einstein–Weyl space for which there exists a surjective submersion π : Z(N) → CP 1

whose fibres are transversal to the twistor lines. Then the construction gives hyper-Hermitian
metrics which, after a suitable conformal change, are Einstein with non-zero scalar curvature.
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Note added in proof

For other treatments of twistorial structures and harmonic morphisms, see E. Loubeau, R.
Pantilie, Harmonic morphisms between Weyl spaces and twistorial maps, http://maths2.univ-
brest.fr/∼loubeau/weyl.ps, preprint, Brest University, 2004, and R. Pantilie, Harmonic morphisms
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between Weyl spaces, to appear in Proceedings of the Seventh International Workshop on Differential
Geomentry and Its Applications, Deva, Romania, 5–11 September 2005.
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