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Nonexpansive Iterations in
Uniformly Convex W -hyperbolic Spaces

Laurenţiu Leuştean

Abstract. We propose the class of uniformly convex W -hyperbolic spaces
with monotone modulus of uniform convexity (UCW -hyperbolic spaces for
short) as an appropriate setting for the study of nonexpansive iterations.
UCW -hyperbolic spaces are a natural generalization both of uniformly convex
normed spaces and CAT(0) spaces. Furthermore, we apply proof mining tech-
niques to get effective rates of asymptotic regularity for Ishikawa iterations
of nonexpansive self-mappings of closed convex subsets in UCW -hyperbolic
spaces. These effective results are new even for uniformly convex Banach
spaces.

1. Introduction

In this paper we propose the class of uniformly convex W -hyperbolic spaces
with monotone modulus of uniform convexity (UCW -hyperbolic spaces for short)
as an appropriate setting for the study of nonexpansive iterations. This class of ge-
odesic spaces, which will be defined in Section 2, is a natural generalization both of
uniformly convex normed spaces and CAT(0) spaces. As we shall see in Section 2,
complete UCW -hyperbolic spaces have very nice properties. Thus, the intersection
of any decreasing sequence of bounded closed convex subsets is nonempty (Propo-
sition 2.2) and closed convex subsets are Chebyshev sets (Proposition 2.4).

The asymptotic center technique, introduced by Edelstein [6, 7], is one of the
most useful tools in metric fixed point theory of nonexpansive mappings in uni-
formly convex Banach spaces, due to the fact that bounded sequences have unique
asymptotic centers with respect to closed convex subsets. We prove that this basic
property is true for complete UCW -hyperbolic spaces, too (Proposition 3.3). The
main result of Section 3 is Theorem 3.5, which uses methods involving asymptotic
centers to get, for nonexpansive self-mappings T : C → C of convex closed sub-
sets of complete UCW -hyperbolic spaces, equivalent characterizations of the fact
that T has fixed points in terms of boundedness of different iterations associated
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with T . As an immediate consequence of Theorem 3.5, we obtain a generaliza-
tion to complete UCW -hyperbolic spaces of the well-known Browder-Goehde-Kirk
Theorem.

In the second part of the paper, we apply proof mining techniques to give
effective rates of asymptotic regularity for Ishikawa iterations of nonexpansive self-
mappings of closed convex subsets in UCW -hyperbolic spaces. We emphasize that
our results are new even for the normed case. By proof mining we mean the logical
analysis of mathematical proofs with the aim of extracting new numerically relevant
information hidden in the proofs. We refer to Kohlenbach’s book [16] for details
on proof mining.

If (X, ‖ · ‖) is a normed space, C ⊆ X a convex subset of X and T : C → C is
nonexpansive, then the Ishikawa iteration [11] starting with x ∈ C is defined by

(1) x0 := x, xn+1 = (1− λn)xn + λnT ((1− sn)xn + snTxn),

where (λn), (sn) are sequences in [0, 1]. By letting sn = 0 for all n ∈ N, we get the
Krasnoselski-Mann iteration as a special case.

In Section 4, we consider the important problem of asymptotic regularity asso-
ciated with the Ishikawa iterations:

lim
n→∞

d(xn, Txn) = 0.

Our point of departure is the following result, proved by Tan and Xu [27] for
uniformly convex Banach spaces and, recently, by Dhompongsa and Panyanak [4]
for complete CAT(0) spaces.

Proposition 1.1. Let X be a uniformly convex Banach space or a complete
CAT(0) space, C ⊆ X a bounded closed convex subset and T : C → C be nonexpan-
sive. Assume that

∑∞
n=0 λn(1− λn) diverges, lim sup

n
sn < 1 and

∑∞
n=0 sn(1− λn)

converges.
Then for all x ∈ C,

lim
n→∞

d(xn, Txn) = 0.

Using proof mining methods we obtain a quantitative version (Theorem 4.7) of
a two-fold generalization of the above proposition:

- firstly, we consider UCW -hyperbolic spaces;
- secondly, we assume that T has a fixed point instead of assuming the
boundedness of C.

The idea is to combine methods used in [20] to obtain effective rates of asymptotic
regularity for Krasnoselski-Mann iterates with the ones used in [21] to get rates of
asymptotic regularity for Halpern iterates.

In this way, we provide for the first time (even for the normed case) effective
rates of asymptotic regularity for the Ishikawa iterates, that is, rates of convergence
of (d(xn, Txn)) towards 0.

For bounded C (Corollary 4.9), the rate of asymptotic regularity is uniform in
the nonexpansive mapping T and the starting point x ∈ C of the iteration, and
it depends on C only via its diameter and on the space X only via a monotone
modulus of uniform convexity.
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2. UCW -hyperbolic spaces

We work in the setting of hyperbolic spaces as introduced by Kohlenbach [15].
In order to distinguish them from Gromov hyperbolic spaces [2] or from other
notions of ’hyperbolic space’ which can be found in the literature (see for example
[13, 8, 24]), we shall call them W-hyperbolic spaces.

A W -hyperbolic space (X, d,W ) is a metric space (X, d) together with a con-
vexity mapping W : X ×X × [0, 1] → X satisfying

(W1) d(z,W (x, y, λ)) ≤ (1− λ)d(z, x) + λd(z, y),

(W2) d(W (x, y, λ),W (x, y, λ̃)) = |λ− λ̃| · d(x, y),
(W3) W (x, y, λ) = W (y, x, 1− λ),

(W4) d(W (x, z, λ),W (y, w, λ)) ≤ (1− λ)d(x, y) + λd(z, w).

The convexity mapping W was first considered by Takahashi in [26], where
a triple (X, d,W ) satisfying (W1) is called a convex metric space. If (X, d,W )
satisfies (W1)–(W3), then we get the notion of space of hyperbolic type in the sense
of Goebel and Kirk [8]. (W4) was already considered by Itoh [12] under the name
‘condition III’ and it is used by Reich and Shafrir [24] and Kirk [13] to define their
notions of hyperbolic space. We refer to [16, pp. 384-387] for a detailed discussion.

The class of W -hyperbolic spaces includes normed spaces and convex subsets
thereof, the Hilbert ball (see [9] for a book treatment) as well as CAT(0) spaces.

If x, y ∈ X and λ ∈ [0, 1], then we use the notation (1−λ)x⊕λy for W (x, y, λ).
The following holds even for the more general setting of convex metric spaces [26]:
for all x, y ∈ X and λ ∈ [0, 1],

(2) d(x, (1− λ)x⊕ λy) = λd(x, y), and d(y, (1− λ)x⊕ λy) = (1− λ)d(x, y).

As a consequence, 1x⊕0y = x, 0x⊕1y = y and (1−λ)x⊕λx = λx⊕ (1−λ)x = x.
For all x, y ∈ X, we shall denote by [x, y] the set {(1 − λ)x ⊕ λy : λ ∈ [0, 1]}.

Thus, [x, x] = {x} and for x �= y, the mapping

γxy : [0, d(x, y)] → R, γ(α) =

(
1− α

d(x, y)

)
x⊕ α

d(x, y)
y

is a geodesic satisfying γxy
(
[0, d(x, y)]

)
= [x, y]. That is, any W -hyperbolic space

is a geodesic space.
A subset C ⊆ X is convex if [x, y] ⊆ C for all x, y ∈ C. A nice feature of our

setting is that any convex subset is itself a W -hyperbolic space with the restriction
of d and W to C. It is easy to see that open and closed balls are convex. Moreover,
using (W4), we get that the closure of a convex subset of a W -hyperbolic space is
again convex.

If C is a convex subset of X, then a function f : C → R is said to be convex if

f ((1− λ)x⊕ λy) ≤ (1− λ)f(x) + λf(y)

for all x, y ∈ C, λ ∈ [0, 1].
One of the most important classes of Banach spaces are the uniformly convex

ones, introduced by Clarkson in the 30’s [3]. Following [9, p. 105], we can define
uniform convexity for W -hyperbolic spaces, too.
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A W -hyperbolic space (X, d,W ) is uniformly convex [20] if for any r > 0 and
any ε ∈ (0, 2] there exists δ ∈ (0, 1] such that for all a, x, y ∈ X,

d(x, a) ≤ r
d(y, a) ≤ r
d(x, y) ≥ εr

⎫⎬
⎭ ⇒ d

(
1

2
x⊕ 1

2
y, a

)
≤ (1− δ)r.(3)

A mapping η : (0,∞)× (0, 2] → (0, 1] providing such a δ := η(r, ε) for given r > 0
and ε ∈ (0, 2] is called a modulus of uniform convexity. We call η monotone if it
decreases with r (for a fixed ε).

Lemma 2.1. [20, 18] Let (X, d,W ) be a uniformly convex W -hyperbolic space
and η be a modulus of uniform convexity. Assume that r > 0, ε ∈ (0, 2], a, x, y ∈ X
are such that

d(x, a) ≤ r, d(y, a) ≤ r and d(x, y) ≥ εr.

Then for any λ ∈ [0, 1],

(i) d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η(r, ε)

)
r;

(ii) for any ψ ∈ (0, 2] such that ψ ≤ ε,

d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η(r, ψ)

)
r ;

(iii) for any s ≥ r,

d((1− λ)x⊕ λy, a) ≤
(
1− 2λ(1− λ)η

(
s,

εr

s

))
s ;

(iv) if η is monotone, then for any s ≥ r,

d((1− λ)x⊕ λy, a) ≤ (1− 2λ(1− λ)η (s, ε)) r .

Proof. (i) is a generalization to our setting of a result due to Groetsch [10].
We refer to [20, Lemma 7] for the proof.

(ii),(iii) are immediate; see [18, Lemma 2.1].
(iv) Use (i) and the fact that η(r, ε) ≥ η(s, ε), hence 1 − 2λ(1 − λ)η(r, ε) ≤

1− 2λ(1− λ)η(s, ε). �

We shall refer to uniformly convex W -hyperbolic spaces with a monotone
modulus of uniform convexity as UCW -hyperbolic spaces. It turns out [20] that
CAT(0) spaces are UCW -hyperbolic spaces with modulus of uniform convexity
η(r, ε) = ε2/8 quadratic in ε. Thus, UCW -hyperbolic spaces are a natural gener-
alization of both uniformly convex normed spaces and CAT(0) spaces.

For the rest of this section, (X, d,W ) is a complete UCW -hyperbolic space and
η is a monotone modulus of uniform convexity.

Proposition 2.2. [18, Proposition 2.2] The intersection of any decreasing
sequence of nonempty bounded closed convex subsets of X is nonempty.

The next proposition, inspired by [9, Proposition 2.2], is essential for what
follows.

Proposition 2.3. Let C be a closed convex subset of X, f : C → [0,∞) be
convex and lower semicontinuous. Assume moreover that for all sequences (xn)
in C,

lim
n→∞

d(xn, a) = ∞ for some a ∈ X implies lim
n→∞

f(xn) = ∞.
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Then f attains its minimum on C. If, in addition,

f

(
1

2
x⊕ 1

2
y

)
< max{f(x), f(y)}

for all x �= y, then f attains its minimum at exactly one point.

Proof. Let α be the infimum of f on C and define

Cn :=

{
x ∈ C | f(x) ≤ α+

1

n

}
for all n ∈ N. It is easy to see that we can apply Proposition 2.2 to the sequence
(Cn)n∈N to get the existence of x� ∈

⋂
n∈N

Cn. It follows that f(x�) ≤ α + 1
n

for all n ≥ 1, hence f(x�) ≤ α. Since α is the infimum of f , we can conclude
that f(x�) = α, that is, f attains its minimum on C. The second part of the
conclusion is immediate. If f attains its minimum at two points x� �= y�, then
1
2x

� ⊕ 1
2y

� ∈ C, since C is convex, but f
(
1
2x

� ⊕ 1
2y

�
)
< max{f(x�), f(y�)} = α,

which is a contradiction. �
Let us recall that a subset C of a metric space (X, d) is called a Chebyshev

set if to each point x ∈ X there corresponds a unique point z ∈ C such that
d(x, z) = d(x,C)(= inf{d(x, y) | y ∈ C}). If C is a Chebyshev set, one can define
the nearest point projection P : X → C by assigning z to x.

Proposition 2.4. Every closed convex subset C of X is a Chebyshev set.

Proof. Let x ∈ X and define f : C → [0,∞), f(y) = d(x, y). Then f is
continuous, convex (by (W1)), and for any sequence (yn) in C, lim

n→∞
d(yn, a) = ∞

for some a ∈ X implies lim
n→∞

f(yn) = ∞, since f(yn) = d(x, yn) ≥ d(yn, a)−d(x, a).

Moreover, let y �= z ∈ C and denote M := max{f(y), f(z)} > 0. Then

d(x, y), d(x, z) ≤ M and d(y, z) ≥ ε ·M,

where ε :=
d(y, z)

M
and 0 < ε ≤ d(x, y) + d(x, z)

M
≤ 2. Hence, by uniform convexity

it follows that

d

(
1

2
y ⊕ 1

2
z, x

)
≤ (1− η(M, ε)) ·M < M.

Thus, f satisfies all the hypotheses of Proposition 2.3, so we can apply it to conclude
that f has a unique minimum. Hence, C is a Chebyshev set. �

3. Asymptotic centers and fixed point theory of nonexpansive
mappings

In the sequel, we recall basic facts about asymptotic centers. We refer to
[6, 7, 9] for all the unproved results.

Let (X, d) be a metric space, (xn) be a bounded sequence in X and C ⊆ X be
a subset of X. We define the following functionals:

rm(·, (xn)) : X → [0,∞), rm(y, (xn)) = sup{d(y, xn) | n ≥ m}
for m ∈ N,

r(·, (xn)) : X → [0,∞), r(y, (xn)) = lim sup
n

d(y, xn) = inf
m

rm(y, (xn))

= lim
m→∞

rm(y, (xn)).

197



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

198 LAURENŢIU LEUŞTEAN

The following lemma collects some basic properties of the above functionals.

Lemma 3.1. Let y ∈ X.

(i) rm(·, (xn)) is nonexpansive for all m ∈ N;
(ii) r(·, (xn)) is continuous and r(y, (xn)) → ∞ whenever d(y, a) → ∞ for

some a ∈ X;
(iii) r(y, (xn)) = 0 if and only if lim

n→∞
xn = y;

(iv) if (X, d,W ) is a convex metric space and C is convex, then r(·, (xn)) is
a convex function.

The asymptotic radius of (xn) with respect to C is defined by

r(C, (xn)) = inf{r(y, (xn)) | y ∈ C}.

The asymptotic radius of (xn), denoted by r((xn)), is the asymptotic radius of (xn)
with respect to X, that is, r((xn)) = r(X, (xn)).

A point c ∈ C is said to be an asymptotic center of (xn) with respect to C if

r(c, (xn)) = r(C, (xn)) = min{r(y, (xn)) | y ∈ C}.

We denote with A(C, (xn)) the set of asymptotic centers of (xn) with respect to C.
When C = X, we call c an asymptotic center of (xn) and we use the notation
A((xn)) for A(X, (xn)).

The following lemma, inspired by [7, Theorem 1], turns out to be very useful
in the following.

Lemma 3.2. Let (xn) be a bounded sequence in X with A(C, (xn)) = {c} and
(αn), (βn) be real sequences such that αn ≥ 0 for all n ∈ N, lim supn αn ≤ 1 and
lim supn βn ≤ 0.

Assume that y ∈ C is such that there exist p,N ∈ N satisfying

∀n ≥ N
(
d(y, xn+p) ≤ αnd(c, xn) + βn

)
.

Then y = c.

Proof. We have that

r(y, (xn)) = lim sup
n

d(y, xn) = lim sup
n

d(y, xn+p) ≤ lim sup
n

(
αnd(c, xn) + βn

)
≤ lim sup

n
αn · lim sup

n
d(c, xn) + lim sup

n
βn ≤ lim sup

n
d(c, xn)

= r(c, (xn)).

Since c is unique with the property that r(c, (xn)) = min{r(z, (xn)) | z ∈ C}, we
must have y = c. �

In general, the set A(C, (xn)) of asymptotic centers of a bounded sequence (xn)
with respect to C ⊆ X may be empty or even contain infinitely many points.

The following result shows that in the case of complete UCW -hyperbolic spaces,
the situation is as nice as for uniformly convex Banach spaces (see, for example, [9,
Theorem 4.1]).

Proposition 3.3. Let (X, d,W ) be a complete UCW -hyperbolic space. Every
bounded sequence (xn) in X has a unique asymptotic center with respect to any
closed convex subset C of X.
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Proof. Let η be a monotone modulus of uniform convexity. We apply Propo-
sition 2.3 to show that the function r(·, (xn)) : C → [0,∞) attains its minimum at
exactly one point. By Lemma 3.1, it remains to prove that

r

(
1

2
y ⊕ 1

2
z, (xn)

)
< max{r(y, (xn)), r(z, (xn))} whenever y, z ∈ C, y �= z.

Let M := max{r(y, (xn)), r(z, (xn))} > 0. For every ε ∈ (0, 1] there exists N such
that d(y, xn), d(z, xn) ≤ M + ε ≤ M + 1 for all n ≥ N . Moreover, d(y, z) =
d(y,z)
M+ε · (M + ε) ≥ d(y,z)

M+1 · (M + ε). Thus, we can apply Lemma 2.1. (iv) to get that
for all n ≥ N ,

d

(
1

2
y ⊕ 1

2
z, xn

)
≤

(
1− η

(
M + 1,

d(y, z)

M + 1

))
(M + ε),

hence

r

(
1

2
y ⊕ 1

2
z, (xn)

)
≤

(
1− η

(
M + 1,

d(y, z)

M + 1

))
(M + ε).

By letting ε → 0, it follows that

r

(
1

2
y ⊕ 1

2
z, (xn)

)
≤

(
1− η

(
M + 1,

d(y, z)

M + 1

))
·M < M.

This completes the proof. �

In the sequel, we assume that (X, d,W ) is a W -hyperbolic space, C ⊆ X is
convex and T : C → C is nonexpansive, that is,

d(Tx, Ty) ≤ d(x, y)

for all x, y ∈ C. We shall denote with Fix(T ) the set of fixed points of T .
For any λ ∈ (0, 1], the averaged mapping Tλ is defined by

Tλ : C → C, Tλ(x) = (1− λ)x⊕ λTx.

It is easy to see that Tλ is also nonexpansive and that Fix(T ) = Fix(Tλ).
The Krasnoselski iteration [19, 25] (xn) starting with x ∈ C is defined as the

Picard iteration
(
Tn
λ (x)

)
of Tλ, that is,

(4) x0 := x, xn+1 := (1− λ)xn ⊕ λTxn.

By allowing general sequences (λn) in [0, 1], we get the Krasnoselski-Mann iteration
[22] (called segmenting Mann iterate in [10]) (xn) starting with x ∈ C:

(5) x0 := x, xn+1 := (1− λn)xn ⊕ λnTxn.

We refer to [1, 14, 17, 24] for results on the general behavior of the Krasnoselski-
Mann iterations.

The following lemma collects some known properties of Krasnoselski-Mann it-
erates in W -hyperbolic spaces. For the sake of completeness we prove them here.

Lemma 3.4. Assume that (xn), (yn) are the Krasnoselski-Mann iterations start-
ing with x, y ∈ C. Then

(i) (d(xn, yn)) is decreasing;
(ii) if p is a fixed point of T , then (d(xn, p)) is decreasing;
(iii) d(xn+1, T y) ≤ d(xn, y) + (1− λn)d(y, Ty) for all n ∈ N.
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Proof.

d(xn+1, yn+1) ≤ (1− λn)d(xn, yn) + λnd(Txn, T yn) by (W4)

≤ d(xn, yn), since T is nonexpansive,

d(xn+1, p) ≤ (1− λn)d(xn, p) + λnd(Txn, p) by (W1)

= (1− λn)d(xn, p) + λnd(Txn, Tp)

≤ (1− λn)d(xn, p) + λnd(xn, p) = d(xn, p),

d(xn+1, T y) ≤ (1− λn)d(xn, T y) + λnd(Txn, T y) by (W1)

≤ (1− λn)d(xn, y) + (1− λn)d(Ty, y) + λnd(xn, y)

≤ d(xn, y) + (1− λn)d(Ty, y).

�
We can prove now the main theorem of this section.

Theorem 3.5. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X a
convex closed subset and T : C → C be nonexpansive.

The following are equivalentL

(i) T has a fixed point;
(ii) there exists a bounded sequence (un) in C such that lim

n→∞
d(un, Tun) = 0;

(iii) the sequence (Tnx) of Picard iterates is bounded for some x ∈ C;
(iv) the sequence (Tnx) of Picard iterates is bounded for all x ∈ C;
(v) the Krasnoselski-Mann iteration (xn) is bounded for some x ∈ C and for

(λn) in [0, 1] satisfying one of the following conditions:
(a) λn = λ ∈ (0, 1];
(b) lim

n→∞
λn = 1;

(c) lim supn λn < 1 and
∑∞

n=0 λn diverges;
(vi) the Krasnoselski-Mann iteration (xn) is bounded for all x ∈ C and all

(λn) in [0, 1].

Proof. (i) ⇒ (ii) Let p be a fixed point of T and define un := p for all n ∈ N.
(ii)⇒ (i) By Proposition 3.3, (un) has a unique asymptotic center c with respect

to C. We get that for all n ∈ N,

d(Tc, un) ≤ d(Tc, Tun) + d(Tun, un) ≤ d(c, un) + d(Tun, un).

We can apply now Lemma 3.2 with y := Tc and p := N := 0, αn := 1, βn :=
d(un, Tun) to get that Tc = c.

(i) ⇒ (iii) If p is a fixed point of T , then Tnp = p for all n ∈ N.
(iii) ⇒ (iv) Apply the fact that, since T is nonexpansive, d(Tnx, Tny) ≤ d(x, y)

for all x, y ∈ C.
(iv) ⇒ (i) Let c ∈ C be the unique asymptotic center of (Tnx). Then for all

n ∈ N,

d(Tc, Tn+1x) ≤ d(c, Tnx),

hence we can apply Lemma 3.2 with y := Tc, xn := Tnx and p := 1, N := 0,
αn := 1, βn := 0 to get that Tc = c.

(i) ⇒ (vi) Let p be a fixed point of T . Then for any x ∈ C, (λn) in [0, 1], the
sequence (d(xn, p)) is decreasing, hence bounded from above by d(x, p).

(vi) ⇒ (v) Obvious.
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(v) ⇒ (i)

(a) If λn = λ ∈ (0, 1], then (xn) is the Krasnoselski iteration, hence the
Picard iteration Tn

λ (x) of the nonexpansive mapping Tλ. Apply now
(iii) ⇒ (i) and the fact that Fix(T ) = Fix(Tλ) to get that T has fixed
points.

(b) Assume now that lim
n→∞

λn = 1 and let c ∈ C be the asymptotic center of

(xn). By Lemma 3.4.(iii), we get that

d(Tc, xn+1) ≤ d(c, xn) + (1− λn)d(c, T c).

Apply now Lemma 3.2 with y := Tc and p := 1, N := 0, αn := 1, βn :=
(1− λn)d(c, T c) to get that Tc = c.

(c) Finally, if (λn) is bounded away from 1 and divergent in sum, then
lim d(xn, Txn) = 0 by [17, Theorem 3.21], proved even for W -hyperbolic
space. Hence (ii) holds.

�

As an immediate consequence we obtain the generalization to complete UCW -
hyperbolic spaces of the well-known Browder-Goehde-Kirk Theorem.

Corollary 3.6. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X
a bounded convex closed subset and T : C → C be nonexpansive. Then T has fixed
points.

Theorem 3.5 states that, under some hypotheses on (λn), if the Krasnoselski-
Mann iteration starting from some point x ∈ C is bounded, then T has a fixed point.
For Banach spaces, a far-reaching result of this type was obtained by Reich [23] for
the very general Mann iterates [22], extending work of Dotson and Mann [5] done
in the setting of uniformly convex Banach spaces.

4. Rates of asymptotic regularity for the Ishikawa iterations

Let (X, d,W ) be a W-hyperbolic space, C ⊆ X a convex subset ofX and T : C → C
nonexpansive.

As in the case of normed spaces, we can define the Ishikawa iteration [11]
starting with x ∈ C by

(6) x0 := x, xn+1 = (1− λn)xn ⊕ λnT ((1− sn)xn ⊕ snTxn),

where (λn), (sn) are sequences in [0, 1]. By letting sn = 0 for all n ∈ N, we get the
Krasnoselski-Mann iteration as a special case.

We shall use the following notations

yn := (1− sn)xn ⊕ snTxn

and

Tn : C → C, Tn(x) = (1− λn)x⊕ λnT ((1− sn)x⊕ snTx).

Then

xn+1 = (1− λn)xn ⊕ λnTyn = Tnxn,

and it is easy to see that Fix(T ) ⊆ Fix(Tn) for all n ∈ N.
Before proving the main technical lemma, we give some basic properties of

Ishikawa iterates, which hold even in the very general setting of W -hyperbolic
spaces. Their proofs follow closely the ones of the corresponding properties in
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uniformly convex Banach spaces [27] or CAT(0) spaces [4], but, for the sake of
completeness, we include the details.

Lemma 4.1.

(i) For all n ∈ N,

d(xn, xn+1) = λnd(xn, T yn), d(Tyn, xn+1) = (1− λn)d(xn, T yn),(7)

d(yn, xn) = snd(xn, Txn), d(yn, Txn) = (1− sn)d(xn, Txn),(8)

(1− sn)d(xn, Txn) ≤ d(xn, T yn) ≤ (1 + sn)d(xn, Txn),(9)

d(yn, T yn) ≤ d(xn, Txn),(10)

d(xn+1, Txn+1) ≤ (1 + 2sn(1− λn))d(xn, Txn).(11)

(ii) Tn is nonexpansive for all n ∈ N;
(iii) For all p ∈ Fix(T ), the sequence (d(xn, p)) is decreasing, for all n ∈ N,

d(yn, p) ≤ d(xn, p) and d(xn, T yn), d(xn, Txn) ≤ 2d(xn, p).

Proof. (i) (7) and (8) follow from (2).

d(xn, Txn) ≤ d(xn, T yn) + d(Tyn, Txn) ≤ d(xn, T yn) + d(xn, yn)

= d(xn, T yn) + snd(xn, Txn) by (8),

hence (1− sn)d(xn, Txn) ≤ d(xn, T yn).

d(xn, T yn) ≤ d(xn, Txn) + d(Txn, T yn) ≤ d(xn, Txn) + T (xn, yn)

= (1 + sn)d(xn, Txn) by (8).

d(yn, T yn) ≤ (1− sn)d(xn, T yn) + snd(Txn, T yn) by (W1)

≤ (1− sn)(1 + sn)d(xn, Txn) + snd(xn, yn) by (9)

= d(xn, Txn) by (8).

Let us prove now (11). First, let us remark that

d(xn, Txn+1) ≤ d(xn, xn+1) + d(xn+1, Txn+1)

= λnd(xn, T yn) + d(xn+1, Txn+1) by (7)

and

d(yn, xn+1) ≤ (1− λn)d(yn, xn) + λnd(yn, T yn) by (W1).

Moreover,

d(xn+1, Txn+1) ≤ (1− λn)d(xn, Txn+1) + λnd(Tyn, Txn+1) by (W1)

≤ (1− λn)
[
d(xn, xn+1) + d(xn+1, Txn+1)

]
+ λnd(yn, xn+1)

≤ (1− λn)d(xn+1, Txn+1) + (1− λn)λnd(xn, T yn) +

+λn(1− λn)d(yn, xn) + λ2
nd(yn, T yn)

by (7) and (W1);

hence

d(xn+1, Txn+1) ≤ (1− λn)d(xn, T yn) + (1− λn)d(yn, xn) + λnd(yn, T yn)

≤ (1− λn)(1 + sn)d(xn, Txn) + (1− λn)snd(xn, Txn)

+λnd(xn, Txn) by (9), (8) and (10)

= (1 + 2sn(1− λn))d(xn, Txn).
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(ii)

d(Tnx, Tny) ≤ (1− λn)d(x, y) + λnd
(
T ((1− sn)x⊕ snTx), T ((1− sn)y ⊕ snTy)

)
≤ (1− λn)d(x, y) + λn

[
(1− sn)d(x, y) + snd(Tx, Ty)

]
by (W4)

≤ (1− λn)d(x, y) + λn

[
(1− sn)d(x, y) + snd(x, y)

]
= d(x, y).

(iii)

d(xn+1, p) = d(Tnxn, Tnp) ≤ d(xn, p),

d(yn, p) ≤ (1− sn)d(xn, p) + snd(Txn, p) = (1− sn)d(xn, p) + snd(Txn, Tp)

≤ d(xn, p),

d(xn, Txn) ≤ d(xn, p) + d(Txn, p) ≤ 2d(xn, p),

d(xn, T yn) ≤ d(xn, p) + d(Tyn, p) ≤ d(xn, p) + d(yn, p) ≤ 2d(xn, p).

�
Lemma 4.2. (Main technical lemma) Assume that (X, d,W ) is a UCW -

hyperbolic space with a monotone modulus of uniform convexity η and p ∈ Fix(T ).
Let x ∈ C, n ∈ N.

(i) If γ, β, β̃, a > 0 are such that

γ ≤ d(xn, p) ≤ β, β̃ and a ≤ d(xn, T yn),

then

d(xn+1, p) ≤ d(xn, p)− 2γλn(1− λn)η

(
β̃,

a

β

)
.

(ii) Assume moreover that η can be written as η(r, ε) = ε · η̃(r, ε) such that η̃
increases with ε (for a fixed r). If δ, a > 0 are such that

d(xn, p) ≤ δ and a ≤ d(xn, T yn),

then

d(xn+1, p) ≤ d(xn, p)− 2aλn(1− λn)η̃
(
δ,
a

δ

)
.

Proof. (i) First, let us remark that, using Lemma 4.1.(iii),

d(Tyn, p) = d(Tyn, Tp) ≤ d(yn, p) ≤ d(xn, p) ≤ β, β̃,

d(xn, T yn) ≥ a =

(
a

β

)
· β ≥

(
a

β

)
· d(xn, p), and

0 < a ≤ d(xn, T yn) ≤ 2d(xn, p) ≤ 2β, so
a

β
∈ (0, 2].

Thus, we can apply Lemma 2.1.(iv) with r := d(xn, p), s := β̃, ε := a
β to obtain

d(xn+1, p) = d((1− λn)xn ⊕ λnTyn, p)

≤
(
1− 2λn(1− λn)η

(
β̃,

a

β

))
d(xn, p)

= d(xn, p)− 2λn(1− λn)η

(
β̃,

a

β

)
d(xn, p)

≤ d(xn, p)− 2γλn(1− λn)η

(
β̃,

a

β

)
,
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since d(xn, p) ≥ γ by hypothesis.
(ii) Since, by Lemma 4.1.(iii), 0 < a ≤ d(xn, T yn) ≤ 2d(xn, p), we can apply (i)

with γ := β := d(xn, p) > 0 and β̃ := δ to get that

d(xn+1, p) ≤ d(xn, p)− 2d(xn, p)λn(1− λn)η

(
δ,

a

d(xn, p))

)

= d(xn, p)− 2aλn(1− λn)η̃

(
δ,

a

d(xn, p)

)

≤ d(xn, p)− 2aλn(1− λn)η̃
(
δ,
a

δ

)
,

since a
δ ≤ a

d(xn,p)
and η̃ increases with ε by hypothesis. �

We recall some terminology. Let (an)n≥0 be a sequence of real numbers. A
rate of divergence of a divergent series

∑∞
n=0 an is a function θ : N → N satisfying∑θ(n)

i=0 ai ≥ n for all n ∈ N.
If lim

n→∞
an = a ∈ R, then a function γ : (0,∞) → N is called

- a Cauchy modulus of (an) if |aγ(ε)+n − aγ(ε)| < ε for all ε > 0, n ∈ N;
- a rate of convergence of (an) if |aγ(ε)+n − a| < ε for all ε > 0, n ∈ N.

A Cauchy modulus of a convergent series
∑∞

n=0 an is a Cauchy modulus of the
sequence (sn) of partial sums, sn :=

∑n
i=0 ai.

Proposition 4.3. Let (X, d,W ) be a UCW -hyperbolic space, C ⊆ X be
a convex subset and T : C → C nonexpansive with Fix(T ) �= ∅. Assume that∑∞

n=0 λn(1− λn) is divergent. Then lim infn d(xn, T yn) = 0 for all x ∈ C.
Furthermore, if η is a monotone modulus of uniform convexity and θ : N → N

is a rate of divergence for
∑∞

n=0 λn(1− λn), then

for all x ∈ C, ε > 0, k ∈ N there exists N ∈ N such that

(12) k ≤ N ≤ h(ε, k, η, b, θ) and d(xN , T yN ) < ε,

where

h(ε, k, η, b, θ) :=

⎧⎪⎪⎨
⎪⎪⎩

θ

(⌈
b+ 1

ε · η
(
b,
ε

b

)
⌉
+ k

)
for ε ≤ 2b,

k otherwise,

with b > 0 such that b ≥ d(x, p) for some p ∈ Fix(T ).

Proof. Let x ∈ C, p ∈ Fix(T ) and b > 0 be such that d(x, p) ≤ b. Since
(d(xn, p)) is decreasing, it follows that d(xn, p) ≤ d(x, p) ≤ b for all n ∈ N.

Let ε > 0, k ∈ N and θ : N → N be as in the hypothesis. We shall prove the
existence of N satisfying (12), which implies lim infn d(xn, T yn) = 0.

First, let us remark that d(xn, T yn) ≤ 2d(xn, p) ≤ 2b for all n ∈ N, hence the
case ε > 2b is obvious. Let us consider ε < 2b and denote

P :=

⌈
b+ 1

εη
(
b, ε

b

)
⌉
,

so h(ε, k, η, b, θ) := θ(P + k) ≥ P + k > k.
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Assume by contradiction that d(xn, T yn) ≥ ε for all n = k, . . . , θ(P + k). Since

b ≥ d(xn, p) ≥ d(xn,Tyn)
2 ≥ ε

2 , we can apply Lemma 4.2.(i) with β := β̃ := b, γ := ε
2

and a := ε to obtain that for all n = k, . . . , θ(P + k),

d(xn+1, p) ≤ d(xn, p)− ελn(1− λn)η
(
b,
ε

b

)
.(13)

Adding (13) for n = k, . . . , θ(P + k), it follows that

d(xθ(P+k)+1, p) ≤ d(xk, p)− εη
(
b,
ε

b

) θ(P+k)∑
n=k

λn(1− λn)

≤ b− εη
(
b,
ε

b

)
· P ≤ b− (b+ 1) = −1,

that is, a contradiction. We have used the fact that

θ(P+k)∑
n=k

λn(1− λn) =

θ(P+k)∑
n=0

λn(1− λn)−
k−1∑
n=0

λn(1− λn)

≥
θ(P+k)∑
n=0

λn(1− λn)− k ≥ (P + k)− k = P.

�
As an immediate consequence of the above proposition, we get a rate of asymp-

totic regularity for the Krasnoselski-Mann iterates, similar with the one obtained
in [20, Theorem 1.4].

Corollary 4.4. Let (X, d,W ), η, C, T, b, (λn), θ be as in the hypotheses of
Proposition 4.3 and assume that (xn) is the Krasnoselski-Mann iteration starting
with x, defined by (5).

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and

(14) ∀ε > 0 ∀n ≥ Φ(ε, η, b, θ)
(
d(xn, Txn) < ε

)
,

where Φ(ε, η, b, θ) := h(ε, 0, η, b, θ), with h defined as above.

Proof. Applying Proposition 4.3 with sn := 0 (hence yn = xn) and k := 0,
we get the existence of N ≤ Φ(ε, η, b, θ) such that d(xN , TxN ) < ε. Use the fact
that (d(xn, Txn)) is decreasing to get (14). �

Proposition 4.5. In the hypotheses of the above proposition, assume moreover
that lim supn sn < 1. Then lim infn d(xn, Txn) = 0 for all x ∈ C.

Furthermore, if L,N0 ∈ N are such that sn ≤ 1 − 1
L for all n ≥ N0, then for

all x ∈ C, ε > 0, k ∈ N there exists N ∈ N satisfying

(15) k ≤ N ≤ Ψ(ε, k, η, b, θ, L,N0) and d(xN , TxN ) < ε,

where Ψ(ε, k, η, b, θ, L,N0) := h
(
ε
L , k +N0, η, b, θ

)
, h defined as in Proposition 4.3.

Proof. Let x ∈ C, ε > 0, k ∈ N. Applying Proposition 4.3 for k +N0 and ε
L ,

we get the existence of N such that N0 ≤ k + N0 ≤ N ≤ h
(
ε
L , k +N0, η, b, θ

)
=

Ψ(ε, k, η, b, θ, L,N0) and d(xN , T yN ) < ε
L . Using (9), the hypothesis gives

d(xN , TxN ) ≤ 1

1− sN
d(xN , T yN ) <

Lε

L
= ε.

�
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As a corollary, we obtain an approximate fixed point bound for the nonexpan-
sive mapping T .

Corollary 4.6. In the hypotheses of Proposition 4.5,

(16) ∀ε > 0 ∃N ≤ Φ(ε, η, b, θ, L,N0)

(
d(xN , TxN ) < ε

)
,

where Φ(ε, η, b, θ, L,N0) := Ψ(ε, 0, η, b, θ, L,N0), with Ψ defined as above.

We are ready now to prove the main result of this section.

Theorem 4.7. Let C be a convex subset of a UCW -hyperbolic space (X, d,W )
and T : C → C nonexpansive with Fix(T ) �= ∅. Assume that

∑∞
n=0 λn(1 − λn)

diverges, lim supn sn < 1 and
∑∞

n=0 sn(1−λn) converges. Then lim
n→∞

d(xn, Txn) =

0 for all x ∈ C.
Furthermore, if η is a monotone modulus of uniform convexity, θ is a rate of

divergence for
∑∞

n=0 λn(1−λn), L,N0 are such that sn ≤ 1− 1
L for all n ≥ N0 and

γ is a Cauchy modulus for
∑∞

n=0 sn(1− λn), then for all x ∈ C,

(17) ∀ε > 0∀n ≥ Φ(ε, η, b, θ, L,N0, γ)
(
d(xn, Txn) < ε

)
,

where

Φ(ε, η, b, θ, L,N0, γ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
lθ

(⌈
2L(b+ 1)

ε · η
(
b,

ε

2Lb

)
⌉
+ γ

( ε

8b

)
+N0 + 1

)
for ε ≤ 4Lb,

γ
(

ε
8b

)
+N0 + 1 otherwise,

with b > 0 such that b ≥ d(x, p) for some p ∈ Fix(T ).

Proof. Let x ∈ C, p ∈ Fix(T ) and b > 0 be such that d(x, p) ≤ b and let us
denote αn :=

∑n
i=0 si(1− λi). Since d(xn, Txn) ≤ 2d(xn, p) ≤ 2b for all n ∈ N, by

(11) we get that for all n ∈ N,

d(xn+1, Txn+1) ≤ (1 + 2sn(1− λn))d(xn, Txn) ≤ d(xn, Txn) + 4bsn(1− λn);

hence for all m ∈ N, n ≥ 1,

d(xm+n, Txm+n) ≤ d(xn, Txn) + 4b(αn+m−1 − αn−1).

Let ε > 0. Applying Proposition 4.5 with ε
2 and k := γ(ε/8b) + 1, we get N ∈ N

such that d(xN , TxN ) < ε
2 and

γ(ε/8b) + 1 ≤ N ≤ Ψ
(ε
2
, γ(ε/8b) + 1, b, θ, L,N0

)
= h

( ε

2L
, γ(ε/8b) + 1 +N0, η, b, θ

)
= Φ(ε, η, b, θ, L,N0, γ).

Since γ is a Cauchy modulus for (αn), it follows that for all m ∈ N,

αm+γ(ε/8b) − αγ(ε/8b) =
∣∣αm+γ(ε/8b) − αγ(ε/8b)

∣∣ < ε

8b
.
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Let now n ≥ Φ(ε, η, b, θ, L,N0, γ) ≥ N , hence n = N + p = γ(ε/8b) + 1 + q for
some p, q ∈ N. It follows that

d(xn, Txn) = d(xN+p, TxN+p) ≤ d(xN , TxN ) + 4b(αN+p−1 − αN−1)

= d(xN , TxN ) + 4b
(
αγ(ε/8b)+q − αN−1

)
<

ε

2
+ 4b(αγ(ε/8b)+q − αγ(ε/8b))

since N − 1 ≥ γ(ε/8b), so αN−1 ≥ αγ(ε/8b)

<
ε

2
+ 4b · ε

8b
= ε,

since γ is a Cauchy modulus for (αn). �

Remark 4.8. In the hypotheses of Theorem 4.7, assume, moreover, that η(r, ε)
can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases with ε (for a fixed r).
Then the bound Φ(ε, η, b, θ, L,N0, γ) can be replaced for ε ≤ 4Lb with

Φ̃(ε, η, b, θ, L,N0, γ) = θ

(⌈
L(b+ 1)

ε · η̃
(
b,

ε

2Lb

)
⌉
+ γ

( ε

8b

)
+N0 + 1

)
.

Proof. As we have seen in the proof of Theorem 4.7,

Φ(ε, η, b, θ, L,N0, γ) = h
( ε

2L
, γ

( ε

8b

)
+ 1 +N0, η, b, θ

)
,

where h is defined as in Proposition 4.3. It is easy to see that using the extra
assumptions on η, h(ε, k, η, b, θ) can be replaced for ε < 2b with

h̃(ε, k, η, b, θ) := θ

(⌈
b+ 1

2ε · η̃
(
b, ε

b

)
⌉
+ k

)
.

Just define P :=
⌈

b+1

2ε·η̃(b, εb )

⌉
and follow the proof of Proposition 4.3 using

Lemma 4.2.(ii) (with δ := b, a := ε) instead of Lemma 4.2.(i). �

Corollary 4.9. Let (X, d,W ) be a complete UCW -hyperbolic space, C ⊆ X
a convex closed bounded subset with diameter dC and T : C → C nonexpansive.
Assume that η, (λn), (sn), θ, L,N0, γ are as in the hypotheses of Theorem 4.7.

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and, moreover,

∀ε > 0 ∀n ≥ Φ(ε, η, dC , θ, L,N0, γ)
(
d(xn, Txn) < ε

)
,

where Φ(ε, η, dC , θ, L,N0, γ) is defined as in Theorem 4.7 by replacing b with dC .

Proof. We can apply Corollary 3.6 to get that Fix(T ) �= ∅. Moreover,
d(x, p) ≤ dC for any x ∈ C, p ∈ Fix(T ), hence we can take b := dC in
Theorem 4.7. �

Thus, for bounded C, we get an effective rate of asymptotic regularity which
depends on the error ε, on the modulus of uniform convexity η, on the diameter dC
of C, and on (λn), (sn) via θ, L,N0, γ, but does not depend on the nonexpansive
mapping T , the starting point x ∈ C of the iteration or other data related with C
and X.

The rate of asymptotic regularity can be further simplified in the case of con-
stant λn := λ ∈ (0, 1).
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Corollary 4.10. Let (X, d,W ), η, C, dC , T be as in the hypotheses of Corol-
lary 4.9. Assume that λn := λ ∈ (0, 1) for all n ∈ N.

Furthermore, let L,N0 be such that sn ≤ 1− 1
L for all n ≥ N0 and assume that

the series
∑∞

n=0 sn converges with Cauchy modulus δ.
Then for all x ∈ C,

(18) ∀ε > 0∀n ≥ Φ(ε, η, dC , λ, L,N0, δ)

(
d(xn, Txn) < ε

)
,

where

Φ(ε, η, dC , λ, L,N0, δ) :=

⎧⎪⎪⎨
⎪⎪⎩

⌈
1

λ(1− λ)
· 2L(dC + 1)

ε · η
(
dC ,

ε

2LdC

)
⌉
+M for ε ≤ 4LdC ,

M otherwise,

with M := δ
(

ε
8dC(1−λ)

)
+N0 + 1.

Moreover, if η(r, ε) can be written as η(r, ε) = ε · η̃(r, ε) such that η̃ increases
with ε (for a fixed r), then the bound Φ(ε, η, dC , λ, L,N0, δ) can be replaced for
ε ≤ 4LdC with

Φ(ε, η, dC , λ, L,N0, δ) =

⌈
1

λ(1− λ)
· L(dC + 1)

ε · η̃
(
dC ,

ε

2LdC

)
⌉
+M.

Proof. It is easy to see that

θ : N → N, θ(n) =

⌈
n

λ(1− λ)

⌉

is a rate of divergence for
∑∞

n=0 λ(1− λ). Moreover,

γ : (0,∞) → N, γ(ε) = δ

(
ε

1− λ

)

is a Cauchy modulus for
∑∞

n=0 sn(1−λ). Apply now Corollary 4.9 and Remark 4.8.
�

As we have seen in Section 2, CAT(0) spaces are UCW -hyperbolic spaces with

a modulus of uniform convexity η(r, ε) := ε2

8 , which has the form required in
Remark 4.8. Thus, the above result can be applied to CAT(0) spaces.

Corollary 4.11. Let X be a CAT(0) space, C ⊆ X a bounded convex closed
subset with diameter dC and T : C → C nonexpansive. Assume that λn = λ ∈ (0, 1)
for all n ∈ N and L,N0, (sn), δ are as in the hypotheses of Corollary 4.10

Then lim
n→∞

d(xn, Txn) = 0 for all x ∈ C and, moreover,

(19) ∀ε > 0∀n ≥ Φ(ε, dC , λ, L,N0, δ)
(
d(xn, Txn) < ε

)
,

where

Φ(ε, dC , λ, L,N0, δ) :=

{⌈
D
ε2

⌉
+M, for ε ≤ 4LdC ,

M otherwise,

with M := δ
(

ε
8dC(1−λ)

)
+N0 + 1, D = 16L2dC(dC+1)

λ(1−λ) .
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[17] U. Kohlenbach and L. Leuştean, Mann iterates of directionally nonexpansive mappings in

hyperbolic spaces, Abstract and Applied Analysis 2003 (2003), 449–477.
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