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Abstract

This paper provides an effective uniform rate of metastability (in the sense of Tao) on the strong
convergence of Halpern iterations of nonexpansive mappings in CAT(0) spaces. The extraction of this rate
from an ineffective proof due to Saejung is an instance of the general proof mining program which uses
tools from mathematical logic to uncover hidden computational content from proofs. This methodology is
applied here for the first time to a proof that uses Banach limits and hence makes a substantial reference to
the axiom of choice.
c� 2012 Elsevier Inc. All rights reserved.
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1. Introduction

This paper applies techniques from mathematical logic to extract an explicit uniform rate of
metastability (in the sense of Tao [49,50]) from a recent proof due to Saejung [42] of a strong
convergence theorem for Halpern iterations in the context of CAT(0) spaces. The theorem in
question has been established originally in the context of Hilbert spaces by Wittmann in the
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important paper [52] and can there be viewed as a strong nonlinear generalization of the classical
von Neumann mean ergodic theorem. Indeed, Wittmann’s theorem says that under suitable
conditions on a sequence of scalars (�n) in [0, 1], including the case �n := 1

n+1 , the so-called
Halpern iteration

x0 := x, xn+1 := �n+1x + (1 � �n+1)T xn

of a nonexpansive selfmapping T : C ! C of a bounded closed and convex subset C ✓ X
strongly converges to a fixed point of T . If T is, moreover, linear and �n := 1

n+1 , then xn

coincides with the ergodic average 1
n+1

Pn
i=0 T i x from the mean ergodic theorem.

Since Wittmann’s theorem does not refer to any linearity but only to a convexity structure of
the underlying space X (in order to make sense of the Halpern iteration) it can be formulated in
the context of hyperbolic spaces and was established by Saejung [42] for the important subclass
of CAT(0) spaces which play the analogous role in the context of hyperbolic spaces as the Hilbert
spaces do among all Banach spaces.

As shown in [3], even for the (linear) mean ergodic theorem, there, in general, is no
computable rate of convergence for (xn). The next best thing to achieve, therefore, is a rate
of metastability, i.e. a bound �(k, g) such that

(1) 8k 2 N 8g : N ! N 9n  �(k, g) 8i, j 2 [n, n + g(n)]
⇣

kxi � x jk  2�k
⌘

.

There are general logical metatheorems due to the first author [22] and Gerhardy and the
first author [13] that guarantee the extractability of computable and highly uniform such bounds
�(k, g) from large classes of (even highly ineffective) proofs. Moreover, these bounds have a
restricted complexity depending on the principles that are used in the proof rather than merely
being computable (see [23] for a comprehensive treatment).

A rate of metastability is an instance of the concept of no-counterexample interpretation that
was introduced in the context of mathematical logic by Kreisel in the 50s [28,29]: as g may be
viewed as an attempt to refute the Cauchy property of (xn), the functional�(k, g) in (1) provides
a bound on a counterexample n to such a refutation. Note that since g may be an arbitrary number
theoretic function, the seemingly weaker form

(2) 8k 2 N 8g : N ! N 9n 2 N 8i, j 2 [n, n + g(n)]
⇣

kxi � x jk  2�k
⌘

of the Cauchy property actually implies back the full Cauchy property, though only ineffectively
so. Because of the latter point, the existence of an effective bound on (2) does not contradict the
aforementioned fact that there is no effective Cauchy rate for (xn) available.

By the uniformity of the bound � we refer to the fact that it is independent of the operator T ,
the point x 2 C as well as of C and X but only depends – in addition to k and g – on a bound on
the diameter of C (for the case of unbounded C see Remark 4.5(iii)) as well as – in the case of
general (�n) – certain moduli on (�n).

Based on the aforementioned logical metatheorems, [3] extracted an explicit such uniform
bound � for the mean ergodic theorem from its usual textbook proof (such a bound is also
implicit in an even stronger result due to Jones et al. [19]). Subsequently, in [25] the current
authors extracted such bound for the more general class of uniformly convex Banach spaces
from a proof due to Birkhoff. That bound – when specialized to the Hilbert space setting – even
turned out to be numerically better than the one from [3].

In [24], the first author extracted – making use of a rate of asymptotic regularity due to the
second author [30] – a rate of metastability of similar complexity for Wittmann’s nonlinear
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ergodic theorem (in the Hilbert case). Wittmann’s proof is based on weak compactness which,
though covered by the existing proof mining machinery, in general can cause bounds of extremely
poor quality. In the case at hand that could be avoided as during the logical extraction procedure
the use of weak compactness turned out to be eliminable.

In the present paper, we extract a rate of metastability from Saejung’s [42] generalization
of Wittmann’s theorem to the CAT(0)-setting. In addition to the interest of this specific result,
our paper is of broader relevance in the proof mining program as it opens up new frontiers for
its applicability namely to proofs that prima facie use some substantial amount of the axiom of
choice. This stems from the use of Banach limits made in [42]. The existence of Banach limits
is either proved by applying the Hahn–Banach theorem to l1 which due to the nonseparability
of that space needs the axiom of choice, or via ultralimits which, again, needs choice. While
weak compactness as used in Wittmann’s proof at least was in principle covered by existing
metatheorems mentioned above, this is not the case for Banach limits. Though it seems likely that
these metatheorems can be extended to incorporate at least basic reasoning with Banach limits as
we intend to discuss in a different paper, we take the route in this paper to show how to replace the
use of Banach limits in the present proof by a direct arithmetical reasoning. As the way Banach
limits are used in the proof at hand seems to be rather typical for other proofs in fixed point theory,
our paper may also be seen as providing a blueprint for doing similar unwindings in those cases as
well. Usually, a Banach limit is used to establish the almost convergence in the sense of Lorentz
of some sequence (an) of reals towards a which – together with lim supn!1(an+1 �an)  0 – in
turn implies that lim supn!1 an  a. This line of reasoning goes back to Lorentz’ classical paper
[34] whose relevance in nonlinear ergodic theory was first realized by Reich [36]. In [44], Banach
limits are used in this way to establish Wittmann’s theorem for uniformly Gâteaux differentiable
Banach spaces (under suitable conditions on C). This paper has subsequently been analyzed
using the method developed in this paper in [26]. Other relevant papers using Banach limits in
the context of nonlinear ergodic theory are [8,41,27].

As an intermediate step in proving our main results we also obtain in Section 6 (essentially
due to the second author in [31]) a uniform effective rate of asymptotic regularity. i.e. a rate of
convergence of (d(xn, T xn)) towards 0, which holds in general W -hyperbolic spaces. As this
bound, in particular, does not depend on x and T , it provides a quantitative version of the main
result in [1] (see their ‘ Theorem 3.3’).

2. Preliminaries

We shall consider hyperbolic spaces as introduced by the first author [22]. In order to
distinguish them from Gromov hyperbolic spaces or from other notions of hyperbolic space that
can be found in the metric fixed point theory literature (see for example [20,16,40]), we shall call
them W -hyperbolic spaces.

A W -hyperbolic space (X, d, W ) is a metric space (X, d) together with a mapping W :
X ⇥ X ⇥ [0, 1] ! X satisfying

(W1) d(z, W (x, y, �))  (1 � �)d(z, x) + �d(z, y),

(W2) d(W (x, y, �), W (x, y, �̃)) = |�� �̃| · d(x, y),

(W3) W (x, y, �) = W (y, x, 1 � �),

(W4) d(W (x, z, �), W (y, w, �))  (1 � �)d(x, y) + �d(z, w).
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The convexity mapping W was first considered by Takahashi in [48], where a triple (X, d, W )

satisfying (W1) is called a convex metric space. We refer to [23, pp. 384–387] for a detailed
discussion.

The class of W -hyperbolic spaces includes normed spaces and convex subsets thereof, the
Hilbert ball (see [17] for a book treatment) as well as CAT(0) spaces [5].

If x, y 2 X and � 2 [0, 1], then we use the notation (1 � �)x � �y for W (x, y, �). It is easy
to see that for all x, y 2 X and � 2 [0, 1],

d(x, (1 � �)x � �y) = �d(x, y) and d(y, (1 � �)x � �y) = (1 � �)d(x, y). (1)

Furthermore, 1x � 0y = x, 0x � 1y = y and (1 � �)x � �x = �x � (1 � �)x = x .
For all x, y 2 X , we shall denote by [x, y] the set {(1 � �)x � �y : � 2 [0, 1]}. A subset

C ✓ X is said to be convex if [x, y] ✓ C for all x, y 2 C . A nice feature of our setting is that
any convex subset is itself a W -hyperbolic space with the restriction of d and W to C .

Let us recall now some notions on geodesic spaces. Let (X, d) be a metric space. A geodesic
path, geodesic for short, in X is a map � : [a, b] ! X which is distance-preserving, that is

d(� (s), � (t)) = |s � t | for all s, t 2 [a, b]. (2)

A geodesic segment in X is the image of a geodesic � : [a, b] ! X , the points x := � (a) and
y := � (b) being the endpoints of the segment. We say that the geodesic segment � ([a, b]) joins
x and y. The metric space (X, d) is said to be a (uniquely) geodesic space if every two distinct
points are joined by a (unique) geodesic segment. It is easy to see that any W -hyperbolic space
is geodesic.

A CAT(0) space is a geodesic space (X, d) satisfying the so-called CN-inequality of
Bruhat–Tits [9]: for all x, y, z 2 X and m 2 X with d(x, m) = d(y, m) = 1

2 d(x, y),

d(z, m)2  1
2

d(z, x)2 + 1
2

d(z, y)2 � 1
4

d(x, y)2. (3)

The fact that this definition of a CAT(0) space is equivalent to the usual definition using
geodesic triangles is an exercise in [5, p. 163]. Complete CAT(0) spaces are often called
Hadamard spaces. One can show that CAT(0) spaces are uniquely geodesic and that a normed
space is a CAT(0) space if and only if it is a pre-Hilbert space.

CAT(0) spaces can be defined also in terms of W -hyperbolic spaces.

Lemma 2.1 ([23, pp. 386–388]). Let (X, d) be a metric space. The following are equivalent.

(i) X is a CAT(0) space.
(ii) There exists a convexity mapping W such that (X, d, W ) is a W -hyperbolic space satisfying

the CN inequality (3).

The following property of CAT(0) spaces will be very useful in the following. We refer to [11,
Lemma 2.5] for a proof.

Proposition 2.2. Let (X, d) be a CAT(0) space. Then for all x, y, z 2 X and � 2 [0, 1].

d2((1 � �)x � �y, z)  (1 � �)d2(x, z) + �d2(y, z) � �(1 � �)d2(x, y). (4)

We recall now some terminology needed for our quantitative results. Let (an)n�1 be a
sequence of real numbers and a 2 R. In the following N = {0, 1, 2, . . .} and Z+ = {1, 2, . . .}.
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If the series
P1

n=1 an is divergent, then a function � : Z+ ! Z+ is called a rate of divergence
of the series if

P� (n)
k=1 ak � n for all n 2 Z+.

If limn!1 an = a, then a function � : (0, 1) ! Z+ is said to be a rate of convergence of
(an) if

8" > 0 8n � � (") (|an � a|  ") . (5)

Assume that (an) is Cauchy. Then

(i) a mapping � : (0, 1) ! Z+ is called a Cauchy modulus of (an) if

8" > 0 8n 2 N
�

|a� (")+n � a� (")|  "
�

(6)

(ii) a mapping  : (0, 1) ⇥ NN ! Z+ is called a rate of metastability of (an) if

8" > 0 8g : N ! N 9N   (", g) 8m, n 2 [N , N + g(N )] (|an � am |  "). (7)

Finally, we say that lim supn!1 an  0 with effective rate ✓ : (0, 1) ! Z+ if

8" > 0 8n � ✓(") (an  "). (8)

The concepts of Cauchy modulus and rates of convergence and metastability extend mutatis
mutandis to sequences in general metric spaces.

3. Halpern iterations

Let C be a convex subset of a normed space X and T : C ! C nonexpansive. The so-called
Halpern iteration is defined as follows:

x0 := x, xn+1 := �n+1u + (1 � �n+1)T xn, (9)

where (�n)n�1 is a sequence in [0, 1], x 2 C is the starting point and u 2 C is the anchor.
If T is positively homogeneous (i.e. T (t x) = tT (x) for all t � 0 and all x 2 C), �n = 1

n+1
and u = x , then

xn = 1
n + 1

Sn x, where S0x = x, Sn+1x = x + T (Sn x). (10)

Furthermore, if T is linear, then xn = 1
n+1

Pn
i=0 T i x , so the Halpern iteration could be regarded

as a nonlinear generalization of the usual Cesàro average. We refer to [51,32] for a systematic
study of the behavior of iterations given by (10).

The following problem was formulated by Reich [38] (see also [35]) and it is still open in its
full generality.

Problem 3.1 ([38, Problem 6]). Let X be a Banach space. Is there a sequence (�n) such that
whenever a weakly compact convex subset C of X possesses the fixed point property for
nonexpansive mappings, then (xn) converges to a fixed point of T for all x 2 C and all
nonexpansive mappings T : C ! C ?

Different conditions on (�n) were considered in the literature (see also [47] for even more
conditions):

(C1) lim
n!1 �n = 0,
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(C2)
1
X

n=1

|�n+1 � �n| converges,

(C3)
1
X

n=1

�n = 1,

(C4)
1
Y

n=1

(1 � �n) = 0,

and, in the case �n > 0 for all n � 1,

(C5) lim
n!1

�n � �n+1

�2
n+1

= 0,

(C6) lim
n!1

�n � �n+1

�n+1
= 0.

For sequences �n in (0, 1), conditions (C3) and (C4) are equivalent.
Halpern [18] initiated the study in the Hilbert space setting of the convergence of a particular

case of the scheme (9). He proved that the sequence (xn), obtained by taking u = 0 in (9),
converges to a fixed point of T for (�n) satisfying certain conditions, two of which are (C1) and
(C3). Lions [33] improved Halpern’s result by showing the convergence of the general (xn) if
(�n) satisfies (C1), (C3) and (C5). However, both Halpern’s and Lions’ conditions exclude the
natural choice �n = 1

n+1 .
This was overcome by Wittmann [52], who obtained the most important result on the

convergence of Halpern iterations in Hilbert spaces.

Theorem 3.2 ([52]). Let C be a closed convex subset of a Hilbert space X and T : C ! C
a nonexpansive mapping such that the set Fi x(T ) of fixed points of T is nonempty. Assume
that (�n) satisfies (C1)–(C3). Then for any x 2 C, the Halpern iteration (xn) converges to the
projection Px of x on Fix(T ).

All the partial answers to Reich’s problem require that the sequence (�n) satisfies (C1) and
(C3). Halpern [18] showed in fact that conditions (C1) and (C3) are necessary in the sense that
if, for every closed convex subset C of a Hilbert space X and every nonexpansive mappings
T : C ! C such that Fix(T ) 6= ;, the Halpern iteration (xn) converges to a fixed point of T ,
then (�n) must satisfy (C1) and (C3). That (C1) and (C3) alone are not sufficient to guarantee the
convergence of (xn) was shown in [47]. Recently, Chidume and Chidume [10] and Suzuki [46]
have proved that if the nonexpansive mapping T in (9) is averaged, then (C1) and (C3) suffice
for obtaining the convergence of (xn).

Halpern obtained his result by applying a limit theorem for the resolvent, first shown by
Browder [6]. This approach has the advantage that the result can be immediately generalized,
once the limit theorem for the resolvent is generalized. This was done by Reich [37].

Theorem 3.3 ([37]). Let C be a closed convex subset of a uniformly smooth Banach space X,
and let T : C ! C be nonexpansive such that Fix(T ) 6= ;. For each u 2 C and t 2 (0, 1), let
zu

t denote the unique fixed point of the contraction mapping

Tt (·) = tu + (1 � t)T (·).
Then limt!0+ zu

t exists and is a fixed point of T .
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A similar result was obtained by Kirk [21] for CAT(0) spaces (for the Hilbert ball, which is
an example of a CAT(0) space, this is already due to [17]). As a consequence of Theorem 3.3,
a partial positive answer to Problem 3.1 was obtained [37] for uniformly smooth Banach spaces
and �n = 1

(n+1)↵ with 0 < ↵ < 1. Furthermore, Reich [39] proved the strong convergence
of (xn) in the setting of uniformly smooth Banach spaces that have a weakly sequentially
continuous duality mapping for general (�n) satisfying (C1), (C3) and being decreasing. Another
partial answer in the case of uniformly smooth Banach spaces was obtained by Xu [53] for (�n)

satisfying (C1), (C3) and (C6) (which is weaker than Lions’ (C5)). In [44], Shioji and Takahashi
extended Wittmann’s result to Banach spaces with uniformly Gâteaux differentiable norm and
with the property that limt!0+ zu

t exists and is a fixed point of T .

4. Main results

Let T : C ! C be a nonexpansive selfmapping of a convex subset C of a W -hyperbolic
space (X, d, W ). We can define the Halpern iteration in this setting too:

x0 := x, xn+1 := �n+1u � (1 � �n+1)T xn, (11)

where x, u 2 C and (�n)n�1 is a sequence in [0, 1].
The following theorem generalizes Wittmann’s theorem to CAT(0) spaces and was obtained

by Saejung [42] (a similar result for the Hilbert ball had already been proved in [27]).

Theorem 4.1. Let C be a closed convex subset of a complete CAT(0) space X and T : C ! C
a nonexpansive mapping such that the set Fi x(T ) of fixed points of T is nonempty. Assume that
(�n) satisfies (C1)–(C3). Then for any u, x 2 C, the iteration (xn) converges to the projection
Pu of u on Fix(T ).

By [21, Theorem 18], Fix(T ) 6= ; is guaranteed to hold if C is bounded. In this paper, we
only consider this case and our bounds will depend on an upper bound M on the diameter dC of
C. However, similar to [24], it is not hard to adopt our bounds to the case where the condition
M � dC is being replaced by M � d(u, p), d(x, p) for some fixed point p 2 C of T (see
Remark 4.5(iii)).

The main results of the paper are effective versions of Theorem 4.1, obtained by applying
proof mining techniques to Saejung‘s proof. As this proof is essentially ineffective – as we
discussed in the introduction – a computable rate of convergence does not exist, while an
effective and highly uniform rate of metastability (depending only on the input data displayed
in Theorems 4.2 and 4.3) is guaranteed to exist (via our elimination of Banach limits from the
proof) by [22, Theorem 3.7.3] (note that the conditions on ↵,�, ✓ as well as T are all purely
universal while the conclusion 9N8m, n 2 [N , N + g(N )] (d(xn, xm) < ") can be written as
a purely existential formula and that quantification over all (�n) in [0, 1] can be represented as
8y  s for some simple function s : N2 ! N).

Theorem 4.2. Assume that X is a complete CAT(0) space, C ✓ X is a closed bounded convex
subset with diameter dC and T : C ! C is nonexpansive. Let (�n) satisfy (C1)–(C3).

Then the Halpern iteration (xn) is Cauchy.
Furthermore, let ↵ be a rate of convergence of (�n), � be a Cauchy modulus of sn :=
Pn

i=1 |�i+1 � �i | and ✓ be a rate of divergence of
P1

n=1 �n+1.
Then for all " 2 (0, 2) and g : N ! N,

9N  ⌃ (", g, M, ✓,↵,�) 8m, n 2 [N , N + g(N )] (d(xn, xm)  "),
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where

⌃ (", g, M, ✓,↵,�) = ✓+
✓

� � 1 +
⇠

ln
✓

12M2

"2

◆⇡◆

+ 1 (12)

with M 2 Z+ such that M � dC ,

"0 = "2

24(M + 1)2 ,

� = max
⇢

�⇤
k ("2/12) |

⇠

1
"0

⇡

 k  ff ⇤(dM2/"2
0e)

(0) +
⇠

1
"0

⇡�

,

�⇤
k (") = �̃

✓

"

4M(P̃k ("/2) + 1)

◆

+ P̃k ("/2) ,

P̃k (") =
⇠

12M2(k + 1)

"
�
✓

"

12M(k + 1)

◆⇡

,

�̃(", M, ✓,�) = ✓

✓

�
⇣ "

4M

⌘

+ 1 +
⇠

ln
✓

2M
"

◆⇡◆

+ 1,

�(", M, ✓,↵,�) = max
n

�̃
⇣"

2
, M, ✓,�

⌘

,↵
⇣ "

4M

⌘o

,

�⇤
k(", g) = "

3g",k
�

⇥k(") � �⇤
k ("/3)

� ,

⇥k(") = ✓

✓

�⇤
k

⇣"

3

⌘

� 1 +
⇠

ln
✓

3M2

"

◆⇡◆

+ 1,

g",k(n) = n + g
⇣

n + �⇤
k

⇣"

3

⌘⌘

, ✓+(n) = max{✓(i) | i  n},

f (k) = max
⇢⇠

M2

�⇤
k("

2/4, g)

⇡

, k
�

� k, f ⇤(k) = f
✓

k +
⇠

1
"0

⇡◆

+
⇠

1
"0

⇡

,

ff ⇤(k) = k + f ⇤(k).

Proof. See Section 10. ⇤
A similar result can be obtained by assuming that (�n) satisfies (C1), (C2) and (C4) with

corresponding rates.

Theorem 4.3. Assume that X is a complete CAT(0) space, C ✓ X is a closed bounded convex
subset with diameter dC and T : C ! C is nonexpansive. Let (�n) satisfy (C1), (C2), (C4) and
�n 2 (0, 1) for all n � 2.

Then the Halpern iteration (xn) is Cauchy.
Furthermore, if ↵ is a rate of convergence of (�n), � is a Cauchy modulus of sn := Pn

i=1 |�i+1�
�i | and ✓ is a rate of convergence of

Q1
n=1(1 � �n+1) towards 0, then for all " 2 (0, 2) and

g : N ! N,

9N  ⌃ (", g, M, ✓,↵,�, (�n)) 8m, n 2 [N , N + g(N )] (d(xn, xm)  "),

where

⌃ (", g, M, ✓,↵,�, (�n)) := max
⇢

⇥k("
2/4) |

⇠

1
"0

⇡

k ff ⇤(dM2/"2
0e)

(0) +
⇠

1
"0

⇡�

, (13)
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with M 2 Z+ such that M � dC ,

0 < D 
�("/4M)
Y

n=1

(1 � �n+1),

�̃(", M, ✓,�, D) = ✓

✓

D"
2M

◆

+ 1,

�(", M, ✓,↵,�, D) = max
⇢

✓

✓

D"
4M

◆

+ 1,↵
⇣ "

4M

⌘

�

,

⇥k(") = ✓

✓

Dk"

3M2

◆

+ 1,

0 < Dk 
�⇤

k ("/3)�1
Y

n=1

(1 � �n+1),

and the other constants and functionals being defined as in Theorem 4.2.

Proof. We use Proposition 6.2, Lemma 5.3 and follow the same line as in the proof of
Theorem 4.2. ⇤

One can modify Theorems 4.2 and 4.3 so that only metastable versions of ↵,� and ✓ are
needed. However, we refrain from doing so as the result would be rather unreadable and in the
practical cases at hand – such as �n = 1

n+1 – full rates ↵,�, ✓ are easy to compute.

Corollary 4.4. Assume that �n = 1
n+1 for all n � 1. Then for all " 2 (0, 1) and g : N ! N,

9N  ⌃ (", g, M) 8m, n 2 [N , N + g(N )] (d(xn, xm)  "),

where

⌃ (", g, M) =
&

12M2(�⇤
L("2/12) + 1)

"2

'

� 1 (14)

with

L = ff ⇤(dM2/"2
0e)

(0) +
⇠

1
"0

⇡

,

P̃k(") =
⇠

12M2(k + 1)

"
·
✓⇠

48M(k + 1)

"
+ 2304M4(k + 1)2

"2

⇡

� 1
◆⇡

,

�⇤
k (") =

&

8M2(P̃k ("/2) + 1)

"
+ 128M4(P̃k ("/2) + 1)2

"2

'

� 1 + P̃k ("/2) ,

⇥k(") =
&

3M2(�⇤
k ("/3) + 1)

"

'

� 1,

while the other constants and functionals are defined as in Theorem 4.2.

Proof. Since
Qn

k=1

⇣

1 � 1
k+2

⌘

= 2
n+2 , we get that ✓(") :=

l

2
"

m

� 2 is a rate of convergence of
Q1

n=1

⇣

1 � 1
n+2

⌘

towards 0. Furthermore, we can take Dk := 2
�⇤

k ("/3)+1 in Theorem 4.3 and –
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using Corollary 6.3 – � :=  , �̃ :=  ̃ from that corollary. We then get Pk("), �
⇤
k (") as above

and

⇥k(") = ✓

✓

Dk"

3M2

◆

+ 1 =
&

3M2(�⇤
k ("/3) + 1)

"

'

� 1.

The claim now follows by (the proof of) Theorem 4.3 using that �⇤
k increases with k. ⇤

Despite its superficially quite different look, the bound in Corollary 4.4 has an overall similar
structure as the bound extracted for the Hilbert space case in [24]: the bound results from
applying a certain function ⇥k(") to a number k := L which is the result of an iteration of a
function f̃ ⇤ (starting at some arbitrary value, e.g. 0), where f̃ ⇤(k) is – disregarding many details
– something close to ⇥k(") + g(⇥k(")). This is also the structure of the bound in [24, Theorem
3.3] (where �⇤ plays the role of f̃ ⇤). Note that the number of iterations essentially is M6/"4

while it was roughly M4/"4 in the bound in [24, Theorem 3.3]. The main difference, though, is
that now ⇥k is significantly more involved compared to [24] (most of its terms stemming from
the remains of the original Banach-limit argument).

Remark 4.5. (i) By replacing (X, d) by (X, dM ) with dM (x, y) := 1
M d(x, y) one can always

arrange that 1 � dC and then apply the above bounds for 1 instead of M but with "/M
instead of " to compensate for this rescaling. One then gets a bound in which " and M only
occur in the form "/M and the number of iterations is (essentially) M4/"4. However, in
doing so M would enter the bound at many unnecessary places as well.

(ii) The assumption on the completeness of X and the closedness of C facilitates the proofs
but is not necessary in the above results. If the results would fail for an incomplete
X then it is easy to show that they would fail already for the metric completion bX
of X and the closure C of C in bX (since T extends to a nonexpansive operator bT :
C ! C). Alternatively, one could use directly appropriate approximate fixed points
rather than fixed points in the applications of Banach’s fixed point theorem in Section 9
below.

(iii) Subsequently, our results have been further generalized in [43] to the case of unbounded
C provided that T possesses a fixed point p. Then the above bounds hold with M � dC
being replaced by M � 4 max{d(u, x), d(u, p)}. In [43] our method is also adapted
to obtain similar bounds for more general schemes of so-called modified Halpern
iterations.

5. Quantitative lemmas on sequences of real numbers

The following lemma about sequences of real numbers was proved in [2].

Lemma 5.1. Let (sn) be a sequence of nonnegative real numbers, (↵n) be a sequence of
real numbers in [0, 1] with

P1
n=1 ↵n = 1, and (tn) be a sequence of real numbers with

lim supn!1 tn  0. Suppose that

sn+1  (1 � ↵n)sn + ↵ntn for all n � 1.

Then limn!1 sn = 0.

We prove now quantitative versions of Lemma 5.1, which also allow for an error term �.
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Lemma 5.2. Let " 2 (0, 2), g : N ! N, M 2 Z+, ✓ : Z+ ! Z+ and  : (0, 1) ! Z+. Define

⇥ := ⇥(", M, ✓, ) = ✓

✓

 
⇣"

3

⌘

� 1 +
⇠

ln
✓

3M
"

◆⇡◆

+ 1, (15)

� := �(", g, M, ✓, ) = "

3g"(⇥ �  ("/3))
, (16)

where g"(n) = n + g(n +  ("/3)).

Assume that (↵n) is a sequence in [0, 1] such that
P1

n=1 ↵n = 1 with rate of divergence ✓ . Let
(tn) be a sequence of real numbers satisfying

8n �  ("/3) (tn  "/3). (17)

Let (sn) be a bounded sequence with upper bound M satisfying

sn+1  (1 � ↵n)sn + ↵ntn +� for all n � 1. (18)

Then

8n 2 [⇥,⇥ + g(⇥)] (sn  ").

Proof. By induction on m one shows that for all n �  ("/3) and m � 1,

sn+m 
"

n+m�1
Y

j=n

(1 � ↵ j )

#

sn +
"

1 �
n+m�1
Y

j=n

(1 � ↵ j )

#

"

3
+ m�. (19)

m = 1: By (18) and (17), we have that

sn+1  (1 � ↵n)sn + ↵ntn +�  (1 � ↵n)sn + ↵n
"

3
+�

= (1 � ↵n)sn + (1 � (1 � ↵n))
"

3
+�.

m ) m + 1: We have that

sn+m+1  (1 � ↵n+m)sn+m + ↵n+mtn+m +�

 (1 � ↵n+m)

"

n+m�1
Y

j=n

(1 � ↵ j )

#

sn + (1 � ↵n+m)

"

1 �
n+m�1
Y

j=n

(1 � ↵ j )

#

"

3

+ (1 � ↵n+m)m�+ ↵n+mtn+m +� by the induction hypothesis


"

n+m
Y

j=n

(1 � ↵ j )

#

sn + (1 � ↵n+m)

"

1 �
n+m�1
Y

j=n

(1 � ↵ j )

#

"

3

+↵n+m
"

3
+ (m + 1)�

=
"

n+m
Y

j=n

(1 � ↵ j )

#

sn +
"

1 � ↵n+m �
n+m
Y

j=n

(1 � ↵ j ) + ↵n+m

#

"

3
+ (m + 1)�

=
"

n+m
Y

j=n

(1 � ↵ j )

#

sn +
"

1 �
n+m
Y

j=n

(1 � ↵ j )

#

"

3
+ (m + 1)�.
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Using the fact that 1 � x  exp(�x) for all x 2 [0, 1), we get that

n+m�1
Y

j=n

(1 � ↵ j ) 
n+m�1
Y

j=n

exp(�↵ j ) = exp

 

�
n+m�1
X

j=n

↵ j

!

;

hence

sn+m  exp

 

�
n+m�1
X

j=n

↵ j

!

sn + "

3
+ m�  exp

 

�
n+m�1
X

j=n

↵ j

!

M + "

3
+ m� (20)

for all n �  ("/3) and m � 1.
For simplicity, let us denote dm,n := M exp

⇣

�Pn+m�1
j=n ↵ j

⌘

. As in [30], we get that

dm,n  "

3
, exp

 

�
n+m�1
X

j=n

↵ j

!

 "

3M
, �

n+m�1
X

j=n

↵ j  ln
⇣ "

3M

⌘

,
n+m�1
X

j=n

↵ j � � ln
⇣ "

3M

⌘

= ln
✓

3M
"

◆

,
n+m�1
X

j=1

↵ j �
n�1
X

j=1

↵ j + ln
✓

3M
"

◆

.

Let

L := ⇥ �  ("/3) = ✓

✓

 ("/3) � 1 +
⇠

ln
✓

3M
"

◆⇡◆

+ 1 �  ("/3). (21)

Since ✓ is a rate of divergence of
P1

n=1 ↵n and ↵n  1, it is obvious that ✓(n) � n for all n � 1;
hence L � 1. For all m � L , we have that

 ("/3)+m�1
X

j=1

↵ j �
 ("/3)+L�1

X

j=1

↵ j �  ("/3) � 1 +
⇠

ln
✓

3M
"

◆⇡

�
 ("/3)�1
X

j=1

↵ j + ln
✓

3M
"

◆

;

hence

dm, ("/3)  "

3
for all m � L .

Apply now (20) with n :=  ("/3) to get that for all m � L ,

s ("/3)+m  2"
3

+ m�. (22)

Let n 2 [⇥,⇥ + g(⇥)]. Then

L  n �  ("/3)  ⇥ + g(⇥) �  ("/3) = L + g(L +  ("/3)) = g"(L);
hence we can apply (22) with m := n �  ("/3) to get that

sn  2"
3

+ g"(L)� = ". ⇤

It is well-known that for a sequence (↵n) in (0, 1) we have that
P1

n=1 ↵n = 1 if and
only if

Q1
n=1(1 � ↵n) = 0. This suggests a second quantitative version of Lemma 5.1, where,
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instead of a rate of divergence for
P1

n=1 ↵n , we assume the existence of a rate of convergence of
Q1

n=1(1 � ↵n) towards 0.

Lemma 5.3. Let " > 0, g : N ! N, M 2 Z+, D > 0 and ✓, : (0, 1) ! Z+. Define

⇥ := ⇥(", M, ✓, , D) = max
⇢

✓

✓

D"
3M

◆

+ 1, 
⇣"

3

⌘

�

(23)

� := �(", g, M, ✓, , D) = "

3g"(⇥ �  ("/3))
, (24)

where g"(n) = n + g(n +  ("/3)).

Assume that (↵n) is a sequence in (0, 1) such that
Q1

n=1(1 � ↵n) = 0 with rate of convergence
✓ . Let (tn) be a sequence of real numbers satisfying

8n �  ("/3) (tn  "/3). (25)

Assume furthermore that

D 
 ("/3)�1
Y

n=1

(1 � ↵n). (26)

Let (sn) be a bounded sequence with upper bound M satisfying

sn+1  (1 � ↵n)sn + ↵ntn +� for all n � 1. (27)

Then

8n 2 [⇥,⇥ + g(⇥)] (sn  ").

Proof. We shall denote Pn := Qn
j=1(1 � ↵ j ) for all n � 1. By convention, P0 = 1. We get as in

the proof of Lemma 5.2 that for all n �  ("/3) and m � 1,

sn+m 
"

n+m�1
Y

j=n

(1 � ↵ j )

#

sn +
"

1 �
n+m�1
Y

j=n

(1 � ↵ j )

#

"

3
+ m�. (28)

Hence, for all n �  ("/3) and m � 1,

sn+m 
"

n+m�1
Y

j=n

(1 � ↵ j )

#

sn + "

3
+ m� 

"

n+m�1
Y

j=n

(1 � ↵ j )

#

M + "

3
+ m�

= M Pn+m�1

Pn�1
+ "

3
+ m�.

By taking n :=  ("/3), we get that for all m � 1,

s ("/3)+m  M P ("/3)+m�1

P ("/3)�1
+ "

3
+ m�. (29)

Define now

L := ⇥ �  ("/3) = max
⇢

✓

✓

D"
3M

◆

+ 1 �  ("/3), 0
�

(30)
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and take n 2 [⇥,⇥ + g(⇥)] arbitrary. Then L  n �  ("/3)  g"(L) and, applying (29) with
m := n �  ("/3), it follows that

sn  M Pn�1

P ("/3)�1
+ "

3
+ (n �  ("/3))�  M P⇥�1

P ("/3)�1
+ "

3
+ g"(L)�

 M
P ("/3)�1

· D"
3M

+ 2"
3

,

as ⇥ � 1 � ✓
� D"

3M

�

. By (26), we get that sn  ". ⇤

The above lemma turns out to be very useful to get better bounds in the case ↵n = 1
n+1 , as

P1
n=1

1
n+1 has an exponential rate of divergence, while

Q1
n=1

⇣

1 � 1
n+1

⌘

has a linear rate of
convergence towards 0.

Corollary 5.4. Let " 2 (0, 3), g : N ! N, M 2 Z+,  : (0, 1) ! Z+. Define

⇥ := ⇥(", M, ) =
⇠

3M ("/3)

"

⇡

+ 1,

� := �(", g, M, ) = "

3g"(⇥ �  ("/3))
, (31)

where g"(n) = n + g(n +  ("/3)).

Assume that (tn) is a sequence of real numbers satisfying

8n �  ("/3) (tn  "/3). (32)

Let (sn) be a bounded sequence with upper bound M satisfying

sn+1 
✓

1 � 1
n + 1

◆

sn + 1
n + 1

tn +� for all n � 1. (33)

Then

8n 2 [⇥,⇥ + g(⇥)] (sn  "). (34)

Proof. Remark that for all n � 1, we have that
Qn

k=1

⇣

1 � 1
k+1

⌘

= 1
n+1 ; hence ✓(") :=

l

1
"

m

is a rate of convergence of
Q1

n=1

⇣

1 � 1
n+1

⌘

towards 0. Furthermore, we can take D := 1
 ("/3)

in Lemma 5.3. Since " 2 (0, 3), we have that 3M ("/3)
" �  ("/3); hence

l

3M ("/3)
"

m

+ 1
>  ("/3). ⇤

The proof of Lemmas 5.2 and 5.3 can actually be reformulated to give a full rate of
convergence for (sn) provided that one does not have the error term � or that � can be made
arbitrarily small while still keeping  and (17) unchanged (note that ⇥ – in contrast to� – does
not depend on g). This error term stems from the fact that we have to eliminate the use of an
ineffective arithmetical comprehension hidden in forming the limit z of a certain sequence of
points (ztk ) which is used in Saejung’s proof to construct the sequence which plays the role of
(tn) in the use of Lemma 5.2 or Lemma 5.3 (see [42, (2.21)–(2.23)]). Instead of z, we take ztk
where k is sufficiently large so that d(zt j , z) < " for all j � k. This error can be incorporated
(also when switching from ztk to zt j for j � k) into the error already present in (17) with some k
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depending on k but it adds the error� j := M2t j (see (73) below compared to [42, (2.21)]), which
we provided for in (18). The error � j , however, can be made arbitrarily small by increasing j
without changing  k in (17) (see the proof of the main Theorem 4.2). This would give us a
rate of convergence in our Theorem 4.2 provided that we had a Cauchy rate on (ztk ). However,
we effectively only get a rate of metastability for this sequence (see Proposition 9.3 and the
discussion preceding this proposition). As a result, k and in turn  k become dependent on the
counterfunction g. This has the consequence that now, via  k , also ⇥ in our application of
Lemma 5.2 (in the proof of Theorem 4.2) becomes dependent on g. It is this issue which is
responsible for the fact that we only get an effective rate of metastability in Theorem 4.2 (rather
than a Cauchy rate), which – as discussed in the introduction – in fact is best possible.

The following quantitative lemma is the main ingredient in getting effective rates of
asymptotic regularity for the Halpern iteration.

Lemma 5.5. Let (�n)n�1 be a sequence in [0, 1] and (an)n�1, (bn)n�1 be sequences in R+ such
that for all n � 1,

an+1  (1 � �n+1)an + bn . (35)

Assume that
P1

n=1 bn is convergent and � is a Cauchy modulus of sn := Pn
i=1 bi .

(i) If
P1

n=1 �n+1 is divergent with rate of divergence ✓ , then

8" 2 (0, 2) 8n � � (an  ") ,

where

� := �(", M, ✓, � ) = ✓

✓

�
⇣"

2

⌘

+ 1 +
⇠

ln
✓

2M
"

◆⇡◆

+ 1 (36)

and M 2 Z+ is an upper bound on (an).
(ii) If �n 2 (0, 1) for all n � 2 and

Q1
n=1(1 � �n+1) = 0 with rate of convergence ✓ , then

8" 2 (0, 2) 8n � � (an  ") ,

where

� := �(", M, ✓, � , D) = ✓

✓

D"
2M

◆

+ 1, (37)

M 2 Z+ is an upper bound on (an), and

0 < D 
� ("/2)
Y

n=1

(1 � �n+1). (38)

Proof. (i) Follow the proof of [30, Lemma 9].
(ii) The proof of (ii) is basically contained in the proof of [30, Lemma 9]. For the sake of

completeness we give it here. We denote Pn := Qn
k=1(1 ��k+1) for all n � 1. Let " 2 (0, 2)

and define

N := �
⇣"

2

⌘

+ 1. (39)

Applying [30, Lemma 8] with n := N , it follows that for all m � 1,

aN+m 
"

N+m�1
Y

j=N

(1 � � j+1)

#

aN +
N+m�1
X

j=N

b j
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= PN+m�1

PN�1
· aN +

⇣

s� ( "2 )+m � s� ( "2 )
⌘

 M PN+m�1

PN�1
+ "

2
.

Let

L := � � N = ✓

✓

D"
2M

◆

+ 1 � N . (40)

Then for all m � L , we have that N + m � 1 � ✓
� D"

2M

�

; hence

M PN+m�1

PN�1
 D"

2PN�1
 "

2
.

This also implies that L � 1 since, otherwise,

1  M  M PN+L�1

PN�1
 "

2
contradicting " 2 (0, 2). Hence the lemma follows. ⇤

6. Effective rates of asymptotic regularity

The first step towards proving the convergence of the Halpern iterations is to obtain the so-
called ‘asymptotic regularity’ and this can be done in the very general setting of W -hyperbolic
spaces.

Asymptotic regularity is a very important concept in metric fixed-point theory, formally
introduced by Browder and Petryshyn in [7]. A mapping T of a metric space (X, d) into itself
is said to be asymptotically regular if limn!1 d(xn, T xn) = 0 for all x 2 X , where xn := T n x
is the Picard iteration starting with x . We shall say that a sequence (yn) in X is asymptotically
regular if limn!1 d(yn, T yn) = 0. A rate of convergence of (d(yn, T yn))n towards 0 will be
called a rate of asymptotic regularity.

The following two propositions provide effective rates of asymptotic regularity for the Halpern
iteration. Proposition 6.1 generalizes to W -hyperbolic spaces a result obtained by the second
author for Banach spaces [30]. Proposition 6.2 is new even for the case of Banach spaces.

Let (X, d, W ) be a W -hyperbolic space, C ✓ X be a bounded convex subset with diameter
dC , T : C ! C be nonexpansive and (xn) given by (11).

Proposition 6.1. Assume that (�n) satisfies (C1)–(C3). Then (xn) is asymptotically regular and
limn!1 d(xn, xn+1) = 0.

Furthermore, if ↵ is a rate of convergence of (�n), � is a Cauchy modulus of sn :=
Pn

i=1 |�i+1 � �i | and ✓ is a rate of divergence of
P1

n=1 �n+1, then for all " 2 (0, 2),

8n � �̃ (d(xn, xn+1)  ") and 8n � � (d(xn, T xn)  ") ,

where

�̃ := �̃(", M, ✓,�) := ✓

✓

�
⇣ "

4M

⌘

+ 1 +
⇠

ln
✓

2M
"

◆⇡◆

+ 1, (41)

� := �(", M, ✓,↵,�) = max
⇢

✓

✓

�
⇣ "

8M

⌘

+ 1 +
⇠

ln
✓

4M
"

◆⇡◆

+ 1,↵
⇣ "

4M

⌘

�

, (42)

with M 2 Z+ such that M � dC .
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Proof. See Section 7. ⇤
Thus, we obtain an effective rate of asymptotic regularity �(", M, ✓,↵,�) which depends

only on the error ", on an upper bound M on the diameter dC of C , and on (�n) via ↵,�, ✓ . In
particular, the rate � does not depend on u, x or T , so Proposition 6.1 provides a quantitative
version of the main theorem in [1]. Note that what is called ‘Property I’ and ‘Property S’ in [1]
has been studied under the name of ‘axioms (W2) and (W4)’ in [22].

Proposition 6.2. Assume that �n 2 (0, 1) for all n � 2 and that (�n) satisfies (C1),
(C2) and (C4). Then (xn) is asymptotically regular and limn!1 d(xn, xn+1) = 0.
Furthermore, if ↵ is a rate of convergence of (�n), � is a Cauchy modulus of sn := Pn

i=1 |�i+1�
�i | and ✓ is a rate of convergence of

Q1
n=1(1 � �n+1) = 0 towards 0, then for all " 2 (0, 2),

8n � �̃ (d(xn, xn+1)  ") and 8n � � (d(xn, T xn)  ") ,

where

�̃(", M, ✓,�, D) := ✓

✓

D"
2M

◆

+ 1, (43)

�(", M, ✓,↵,�, D) = max
⇢

✓

✓

D"
4M

◆

+ 1,↵
⇣ "

4M

⌘

�

, (44)

with M 2 Z+ such that M � dC and 0 < D  Q�("/4M)
n=1 (1 � �n+1).

Proof. Follow the proof of Proposition 6.1, applying Lemma 5.5(ii) instead of Lemma 5.5(i).
⇤
That we even get full rates of convergence in Propositions 6.1 and 6.2 is due to the fact

that the original proof of asymptotic regularity is essentially constructive. For such proofs, the
requirement of the statement to be proved to have the form 8x9y Aq f (x, y) with quantifier-free
Aq f , which is crucial for ineffective proofs, is not needed (note that the Cauchy property is a
898-statement). This is because we do not have to preprocess the proof using some negative
translation (which maps proofs with classical logic into ones with constructive logic only) and
can directly apply proof-theoretic techniques such as (an appropriate monotone form of) Kreisel’s
so-called modified realizability interpretation. Logical metatheorems covering such situations are
proved in [14]. As a consequence of getting full rates of convergence in Propositions 6.1 and 6.2
one then also has to strengthen the premises on the convergence of (�n) and

P1
n=1 |�n+1 � �n|

by full rates of convergence ↵,�. If we would interpret the proof as an ineffective one using the
metatheorems from [22], then one would only get a rate of metastability in the conclusion but
also would only need rates of metastability for these premises (note that

P1
n=1 �n = 1 is a

89-statement so that there is no difference here between a full rate and a rate of metastability).
As an immediate consequence of Proposition 6.2, for �n = 1

n+1 we get a quadratic (in 1/")
rate of asymptotic regularity. For Banach spaces, this rate of asymptotic regularity was obtained
by the first author in [24]. In [30], the second author obtained an exponential rate of asymptotic
regularity due to the fact that he used the version for Banach spaces of Proposition 6.1, which
needs a rate of divergence of

P1
n=1

1
n+1 .

Corollary 6.3. Assume that �n = 1
n+1 for all n � 1. Then for all " 2 (0, 1),

8n �  ̃(", M) (d(xn, xn+1)  ") and 8n �  (", M) (d(xn, T xn)  ") , (45)
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where

 ̃(", M) :=
⇠

2M
"

+ 8M2

"2

⇡

� 1 and  (", M) :=
⇠

4M
"

+ 16M2

"2

⇡

� 1, (46)

with M 2 Z+ such that M � dC .

Proof. Obviously, limn!1 1
n+1 = 0 with a rate of convergence ↵(") =

l

1
"

m

� 1 � 1. As we

have already seen, ✓(") :=
l

2
"

m

� 2 is a rate of convergence of
Q1

n=1

⇣

1 � 1
n+2

⌘

towards 0.
Furthermore,

sn :=
n
X

k=1

�

�

�

�

1
k + 2

� 1
k + 1

�

�

�

�

= 1
2

� 1
n + 2

.

It follows easily that limn!1 sn = 1/2 with Cauchy modulus �(") :=
n

d1/"e � 1 if " � 1/2
d1/"e � 2 if " < 1/2.

Finally,
Q�("/4M)

n=1

⇣

1 � 1
n+2

⌘

= 2
d4M/"e , as "

4M < 1
2 , so we can take D := 2

d4M/"e . Apply now
Proposition 6.2 and use the fact that dxe  x + 1 to get the result. ⇤

7. Proof of Proposition 6.1

The following lemma collects some useful properties of Halpern iterations that hold for
unbounded C too.

Lemma 7.1. Assume that (xn) is the Halpern iteration starting with x 2 C. Then

(i) For all n � 0,

d(xn+1, T xn) = �n+1d(T xn, u) and d(xn+1, u) = (1 � �n+1)d(T xn, u). (47)

(ii) For all n � 0,

d(T xn, u)  d(u, T u) + d(xn, u), (48)

d(xn, T xn)  d(xn+1, xn) + �n+1d(T xn, u), (49)

d(xn+1, u)  (1 � �n+1) (d(u, T u) + d(xn, u)) , (50)

d(xn+1, xn)  �n+1d(xn, u) + (1 � �n+1)d(T xn, xn). (51)

(iii) For all n � 1,

d(xn+1, xn)  (1 � �n+1)d(xn, xn�1) + |�n+1 � �n| d(u, T xn�1). (52)

(iv) If (xn) is bounded, then (T xn) is also bounded. Moreover, if M � d(u, T u) and M �
d(xn, u) for all n � 0,

d(xn, T xn)  d(xn+1, xn) + 2M�n+1 and (53)

d(xn+1, xn)  (1 � �n+1)d(xn, xn�1) + 2M |�n+1 � �n| (54)

for all n � 1.

Proof. (i) By (1).
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(ii)

d(T xn, u)  d(u, T u) + d(T u, T xn)  d(u, T u) + d(xn, u),

d(xn, T xn)  d(xn+1, xn) + d(T xn, xn+1) = d(xn+1, xn) + �n+1d(T xn, u)

d(xn+1, u) = (1 � �n+1)d(T xn, u)  (1 � �n+1) (d(u, T u) + d(xn, u))

d(xn+1, xn)  �n+1d(xn, u) + (1 � �n+1)d(xn, T xn) by (W1).
(iii)

d(xn+1, xn) = d(�n+1u � (1 � �n+1)T xn, �nu � (1 � �n)T xn�1)

 d(�n+1u � (1 � �n+1)T xn, �n+1u � (1 � �n+1)T xn�1)

+ d(�n+1u � (1 � �n+1)T xn�1, �nu � (1 � �n)T xn�1)

 (1 � �n+1)d(T xn, T xn�1) + |�n+1 � �n|d(u, T xn�1)

by (W4) and (W2)

 (1 � �n+1)d(xn, xn�1) + |�n+1 � �n|d(u, T xn�1)

(iv) is an easy consequence of (ii), (iii). ⇤
In the following, we give the proof of Proposition 6.1.
Let us consider the sequences

an := d(xn, xn�1), bn := 2M |�n+1 � �n|.
By (54), we get that

an+1  (1 � �n+1)an + bn for all n � 1.

Moreover,
P1

n=1 �n+1 is divergent with rate of divergence ✓ and it is easy to see that

� : (0, 1) ! Z+, � (") := �
⇣ "

2M

⌘

is a Cauchy modulus of sn := Pn
i=1 bi .

Thus, the hypotheses of Lemma 5.5(i) are satisfied, so we can apply it to get that for all
" 2 (0, 2) and for all n � �̃(", M, ✓,�)

d(xn, xn�1)  ", (55)

where

�̃(", M, ✓,�) := ✓

✓

�
⇣ "

4M

⌘

+ 1 +
⇠

ln
✓

2M
"

◆⇡◆

+ 1.

By (53), for all n � 2,

d(xn�1, T xn�1)  d(xn, xn�1) + 2M�n . (56)

Since ↵ is a rate of convergence of (�n) towards 0, we get that

2M�n  "

2
for all n � ↵

⇣ "

4M

⌘

. (57)

Combining (55)–(57) it follows that

d(xn�1, T xn�1)  "

for all n � max
n

�̃
�

"
2 , M, ✓,�

�

,↵
�

"
4M

�

o

, so the conclusion of the theorem follows.
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8. Elimination of Banach limits

Let us recall that a Banach limit [4] is a linear functional µ : `1 ! R satisfying the following
properties:

(i) µ((xn)) � 0 if xn � 0 for all n � 0;
(ii) µ(1) = 1;

(iii) µ((xn)) = µ((xn+1)).

Here 1 is the sequence (1, 1, . . .) and (xn+1) is the sequence (x1, x2, . . .).
As we have already said, to prove the existence of Banach limits one needs the axiom of

choice (see, e.g., [45]). Banach limits are mainly used in Saejung’s convergence proof to get the
following.

Lemma 8.1 ([44]). Let (ak) 2 `1 and a 2 R be such that µ((ak))  a for all Banach limits µ

and lim supk!1(ak+1 � ak)  0. Then lim supk!1 ak  a.

Given a sequence (ak)k�1, consider for all n, p � 1 the following average

Cn,p((ak)) = 1
p

n+p�1
X

i=n

ai . (58)

For simplicity we shall write Cn,p(ak).
Lemma 8.1 is proved using a result that goes back to Lorentz [34].

Lemma 8.2. Let (ak) 2 `1 and a 2 R. The following are equivalent:

(i) µ((ak))  a for all Banach limits µ.
(ii) For all " > 0 there exists P � 1 such that Cn,p(ak)  a + " for all p � P and n � 1.

In fact, one only needs the implication ‘(i) ) (ii)’ which is established in [44] using the
following sublinear functional

q : l1 ! R, q((ak)) := lim sup
p!1

sup
n�1

1
p

n+p�1
X

i=n

ai = lim sup
p!1

sup
n�1

Cn,p(ak).

Now fix (ak) 2 l1 and use the Hahn–Banach theorem to show the existence of a linear functional
µ : l1 ! R such that µ  q and µ((ak)) = q((ak)). Then µ is a Banach limit and so – by (i)
– q((ak)) = µ((ak))  a which gives (ii). Our elimination of the use of the Banach limit µ was
obtained in two steps: first, the proof that – for the sequence in question in the proof from [42] –
the fact µ((ak))  a holds for all Banach limits µ could be modified to directly showing this for
q instead of µ. This already established the actual elimination of the use of the axiom of choice
hidden in the application of the Hahn–Banach theorem (for the nonseparable space l1) since
the existence of q follows by just using uniform arithmetical comprehension in the form of an
operator E : NN ! {0, 1} defined by

E( f ) = 0 $ 8n 2 N( f (n) = 0),

that is needed (and sufficient) to form both the ‘sup’ as well as the ‘lim sup’ in the definition
of q (as a function in (ak)). Using an argument due to Feferman [12], the use of E can (over
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the system used to formalize the overall proof) be eliminated in favor of ordinary (non-uniform)
arithmetic comprehension

8 f : N2 ! N 9g : N ! N 8k 2 N (g(k) = 0 $ 8n 2 N ( f (k, n) = 0)) ,

which is covered (as a very special case of general comprehension over numbers) by the existing
logical metatheorems and results in extractable bounds of restricted complexity, namely bounds
that are definable by primitive recursive functionals in the extended sense of Gödel’s calculus
T [15] (which, however, contains the famous so-called Ackermann function), though in general
not of ordinarily primitive recursive type.

In order to get a bound having the latter much more restricted complexity we – in a second
step – also eliminated the use of q in favor of just elementary lemmas on the finitary objects
Cn,p. In the following, rather than going through these two steps separately, we just present the
resulting elementary lemmas on the averages Cn,p which we will need later. The first lemma
collects some obvious facts.

Lemma 8.3. Let (ak), (bk) be sequences of real numbers and ↵ 2 R.

(i) If ak  bk for all k � N, then Cn,p(ak)  Cn,p(bk) for all n � N and p � 1.
(ii) If ak = c 2 R for all k � N, then Cn,p(ak) = c for all n � N and p � 1.

(iii) For all n, p � 1, Cn,p(ak + bk) = Cn,p(ak) + Cn,p(bk) and Cn,p(↵ak) = ↵Cn,p(ak).

Lemma 8.4. Let (ak) be a sequence of real numbers, a 2 R and P : (0, 1) ! Z+ be such that

8" > 0 8n � 1
�

Cn,P(")(ak)  a + "
�

. (59)

Assume that lim supk!1(ak+1 � ak)  0 with effective rate ✓ .
Then lim supk!1 ak  a with effective rate  , given by

 (", P, ✓) = ✓

✓

"

P̃ + 1

◆

+ P̃, (60)

where P̃ := P
�

"
2

�

.

Proof. By hypothesis,

Cn,P̃ (ak)  a + "

2
for all n � 1,

and

ak+1 � ak  "

P̃ + 1
for all k � ✓

✓

"

P̃ + 1

◆

.

Let n �  (", P, ✓). Then n = n0 + P̃ for some n0 � ✓
⇣

"

P̃+1

⌘

. We get that for each

i = 0, . . . , P̃ � 1,

an = an0+P̃ = an0+i + (an0+i+1 � an0+i )

+ (an0+i+2 � an0+i+1) + · · · + (an0+P̃ � an0+P̃�1)

 an0+i + (P̃ � i)"

P̃ + 1
.
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By adding the inequalities, we get that

P̃an 
⇣

an0 + an0+1 + · · · + an0+P̃�1

⌘

+ (1 + 2 + · · · + P̃)"

P̃ + 1

=
⇣

an0 + an0+1 + · · · + an0+P̃�1

⌘

+ P̃"
2

;

hence

an  Cn0,P̃ (ak) + "

2
 a + "

2
+ "

2
= a + ". ⇤

Lemma 8.5. Assume that (ak) is nonnegative and limk!1 ak = 0. Then limp!1 Cn,p(ak) = 0
uniformly in n.

Furthermore, if ' is a rate of convergence of (ak), then for all " 2 (0, 2),

8p � P(",', L) 8n � 1
�

Cn,p(ak)  "
�

,

where

P(",', L) =
⇠

2L'("/2)

"

⇡

, (61)

with L 2 R being an upper bound on (ak).

Proof. Let ', L , " be as in the hypothesis. We shall denote P(",', L) simply by P . Since ' is a
rate of convergence of (ak), we have that ak  "

2 for all k � '("/2). Furthermore,

L'("/2)

p
 "

2
for all p � P. (62)

Let p � P and n � 1. We have two cases:

(i) n � '("/2). Then

Cn,p(ak) = 1
p

n+p�1
X

i=n

ai  1
p

· p"
2

= "

2
< ".

(ii) n < '("/2). Then

Cn,p(ak)  1
p

'("/2)�1
X

i=n

ai + 1
p

'("/2)+p�1
X

i='("/2)

ai

 ('("/2) � n) L
p

+ "

2
 '("/2)L

p
+ "

2
 ".

Thus, we have proved that Cn,p(ak)  " for all p � P and n � 1. ⇤

9. Quantitative properties of an approximate fixed point sequence

In the following, X is a complete CAT(0) space, C ✓ X is a bounded convex closed subset
and T : C ! C is a nonexpansive mapping. We assume that C is bounded with diameter dC and
consider M 2 Z+ with M � dC .
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For t 2 (0, 1) and u 2 C , define

T u
t : C ! C, T u

t (y) = tu � (1 � t)T y. (63)

It is easy to see that T u
t is a contraction with contractive constant L := 1� t , so it has a unique

fixed point zu
t 2 C by Banach’s Contraction Mapping Principle. Hence, zu

t is the unique solution
of the fixed point equation

zu
t = tu � (1 � t)T zu

t . (64)

Proposition 9.1. Let (yn) be a sequence in C, u 2 C, t 2 (0, 1), and (zu
t ) be defined by (64).

Define for all n � 1

� t
n := (1 � t)d2(u, T zu

t ) � d2(yn, u). (65)

(i) For all n � 1,

d2(yn, zu
t )  d2(yn, u) + 1

t
an � (1 � t)d2(u, T zu

t ), (66)

where

an := d2(yn, T yn) + 2Md(yn, T yn). (67)

(ii) If (yn) is asymptotically regular with rate of asymptotic regularity ', then for all " 2 (0, 2),

8p � P(", t, M,')8m � 1
�

Cm,p(�
t
n)  "

�

, (68)

where

P(", t, M,') =
⇠

6M2

t"
'

✓

t"
6M

◆⇡

. (69)

(iii) Assume that (yn) is asymptotically regular and limn!1 d(yn, yn+1) = 0. Then
lim supn!1 � t

n  0. Furthermore, if ' is a rate of asymptotic regularity of (yn), and '̃
is a rate of convergence of (d(yn, yn+1)) towards 0, then lim supn!1 � t

n  0 with effective
rate  , defined by

 (", t, M,', '̃) = '̃

✓

"

2M(P("/2, t, M,') + 1)

◆

+ P ("/2, t, M,') , (70)

with P given by (69).

Proof. For simplicity, we shall denote zu
t by zt .

(i) We get that for all n � 1,

d2(yn, zt ) = d2(yn, tu � (1 � t)T zt )

 td2(yn, u) + (1 � t)d2(yn, T zt ) � t (1 � t)d2(u, T zt ) by (4)

 td2(yn, u) + (1 � t) (d(yn, T yn) + d(T yn, T zt ))
2

� t (1 � t)d2(u, T zt ) by the triangle inequality

 td2(yn, u) + (1 � t) (d(yn, T yn) + d(yn, zt ))
2 � t (1 � t)d2(u, T zt )

by the nonexpansiveness of T

= td2(yn, u) + (1 � t)d2(yn, T yn) + 2(1 � t)d(yn, T yn)d(yn, zt )
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+ (1 � t)d2(yn, zt ) � t (1 � t)d2(u, T zt )

 td2(yn, u) + (1 � t)d2(yn, T yn) + 2M(1 � t)d(yn, T yn)

+ (1 � t)d2(yn, zt ) � t (1 � t)d2(u, T zt ).

Thus, for all n � 1,

td2(yn, zt )  td2(yn, u) + (1 � t)d2(yn, T yn)

+ 2M(1 � t)d(yn, T yn) � t (1 � t)d2(u, T zt )

 td2(yn, u) + d2(yn, T yn) + 2Md(yn, T yn) � t (1 � t)d2(u, T zt ).

Hence, (66) follows.

(ii) Let " 2 (0, 2). By (66), we get that

0  d2(yn, u) + 1
t

an � (1 � t)d2(u, T zt );

hence � t
n  1

t an for all n � 1. It follows by Lemma 8.3(i) that

Cm,p(�
t
n)  Cm,p

✓

1
t

an

◆

for all m � 1, p � 1.

Furthermore, limn!1 an = limn!1
�

d2(yn, T yn) + 2Md(yn, T yn)
�

= 0 and, given a rate
of asymptotic regularity for (yn), we can easily verify that '

�

"
3M

�

is a rate of convergence
of (an) towards 0.

Then '
� t"

3M

�

is a rate of convergence of 1
t an towards 0. Since L := 3M2

t is an upper

bound for
⇣

1
t an

⌘

, we can apply Lemma 8.5 for this sequence to conclude that

Cm,p

✓

1
t

an

◆

 " for all p � P(", t, M,') and m � 1. (71)

(iii) We have that

|� t
n+1 � � t

n | = |((1 � t)d2(u, T zt ) � d2(yn+1, u))

� ((1 � t)d2(u, T zt ) � d2(yn, u))|
= |d2(yn, u) � d2(yn+1, u)|
= |d(yn, u) + d(yn+1, u)| · |d(yn, u) � d(yn+1, u)|
 2Md(yn, yn+1).

Since limn!1 2Md(yn, yn+1) = 0, we get that

lim sup
n!1

(� t
n+1 � � t

n)  0

with effective rate '̃
�

"
2M

�

. Apply (ii) and Lemma 8.4 to conclude that

lim sup
n!1

� t
n  0 (72)

with effective rate  (", t, M,', '̃). ⇤
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Lemma 9.2. Let u, x 2 C and (xn) be the Halpern iteration defined by (11). Then for all
t 2 (0, 1) and n � 0,

d2(xn+1, zu
t )  (1 � �n+1)d2(xn, zu

t )

+ �n+1

⇣

(1 � t)d2(u, T zu
t ) � d2(xn+1, u)

⌘

+ M2t. (73)

Proof.

d2(xn+1, zu
t )

 �n+1d2(u, zu
t ) + (1 � �n+1)d2(T xn, zu

t ) � �n+1(1 � �n+1)d2(u, T xn)

by (4) applied to d2(xn+1, zu
t ) = d2(�n+1u � (1 � �n+1)T xn, zu

t )

 �n+1d2(u, zu
t ) � �n+1(1 � �n+1)d2(u, T xn)

+ (1 � �n+1)
⇣

td2(T xn, u) + (1 � t)d2(T xn, T zu
t ) � t (1 � t)d2(u, T zu

t )
⌘

again by (4) applied to d2(T xn, zu
t ) = d2(T xn, tu � (1 � t)T zu

t )

 �n+1d2(u, zu
t ) � �n+1(1 � �n+1)d2(u, T xn)

+ (1 � �n+1)
⇣

td2(T xn, u) + (1 � t)d2(xn, zu
t ) � t (1 � t)d2(u, T zu

t )
⌘

by the nonexpansiveness of T

= (1 � �n+1)(1 � t)d2(xn, zu
t )

+ d2(T xn, u) ((1 � �n+1)t � �n+1(1 � �n+1))

+ �n+1(1 � t)2d2(u, T zu
t ) � (1 � �n+1)t (1 � t)d2(u, T zu

t )

since d(u, zu
t ) = (1 � t)d(u, T zu

t )

= (1 � �n+1)(1 � t)d2(xn, zu
t )

+ �n+1

⇣

(1 � t)d2(u, T zu
t ) � (1 � �n+1)

2d2(T xn, u)
⌘

+ d2(T xn, u)
⇣

(1 � �n+1)t � �n+1(1 � �n+1) + �n+1(1 � �n+1)
2
⌘

+ d2(u, T zu
t )
⇣

�n+1(1 � t)2 � (1 � �n+1)t (1 � t) � �n+1(1 � t)
⌘

= (1 � �n+1)(1 � t)d2(xn, zu
t ) + �n+1

⇣

(1 � t)d2(u, T zu
t ) � d2(xn+1, u)

⌘

+ d2(T xn, u)
⇣

t � �n+1t + �3
n+1 � �2

n+1

⌘

+ d2(u, T zu
t )(t2 � t)

since d(xn+1, u) = (1 � �n+1)d(T xn, u)

 (1 � �n+1)(1 � t)d2(xn, zu
t ) + �n+1

⇣

(1 � t)d2(u, T zu
t ) � d2(xn+1, u)

⌘

+ td2(T xn, u)

 (1 � �n+1)d2(xn, zu
t ) + �n+1

⇣

(1 � t)d2(u, T zu
t ) � d2(xn+1, u)

⌘

+ M2t. ⇤

In [6], Browder showed that for Hilbert spaces X and zu
t defined as above one has, for t ! 0,

the strong convergence of zu
t towards the fixed point of T that is closest to u. Halpern [18]

gave a much more elementary proof of this result. In fact, it follows from his proof that the
strong convergence of (zu

tk )k holds for any nonincreasing sequence (tk) in (0, 1) (while the limit
in general will not be a fixed point of T unless tk converges towards 0). In [24], the first author
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extracted explicit and highly uniform rates of metastability from both proofs (again effective rates
of convergence are ruled out on general grounds; see [24]). In [21], Kirk showed that Halpern’s
proof goes through (essentially unchanged) in the context of CAT(0) spaces (for the Hilbert ball
this is already due to [17]). Consequently, this also holds for the bound extracted from Halpern’s
proof in [24]:

Proposition 9.3. Let (tk) be a nonincreasing sequence in (0, 1). Then for all " > 0 and
g : N ! N the following holds

9K0  K (", g, M) 8i, j 2 [K0, K0 + g(K0)]
⇣

d(zu
ti , zu

t j
)  "

⌘

,

where

K (", g, M) := g̃(dM2/"2e)(0), (74)

with g̃(k) := k + g(k).

Proof. For the case of X being a Hilbert space, Proposition 9.3 is proved in [24]. Things extend
unchanged to the CAT(0)-setting with the same reasoning as in [21]. ⇤

Remark 9.4. (i) Reasoning as in [24], Proposition 9.3 implies the following rate of metasta-
bility for sequences (tk) that are not necessarily nonincreasing: let (tk)k�0 be a sequence in
(0, 1) that converges towards 0 with rate of convergence � and � : N ! N be defined by
�(k) = �

⇣

1
k+1

⌘

; hence

8k 2 N 8i � �(k)

✓

ti  1
k + 1

◆

.

Finally, let h : N ! N be such that tk � 1
h(k)+1 for all k 2 N. Then for all " > 0 and

g : N ! N the following holds

9K0  K (", g, M,�) 8i, j 2 [K0, K0 + g(K0)]
⇣

d(zu
ti , zu

t j
)  "

⌘

,

where

K (", g, M,� , h) := �+
⇣

g(d4M2/"2e)
h,� (0)

⌘

,

with gh,� (k) := max{h(i) | i  �(k) + g(�(k))}.
(ii) Instead of a rate of convergence � it suffices in ‘(i)’ above to have a rate of metastability �g;

hence a mapping �g such that

8k 2 N 8i 2 [�g(k), g̃(�g(k))]
✓

ti  1
k + 1

◆

.

10. Proof of Theorem 4.2

Let " 2 (0, 2) and g : N ! N be fixed. Let �̃,� be as in Proposition 6.1. To make the proof
easier to read, we shall omit parameters M,�, �̃, ✓,↵,� for all the functionals which appear in
the following.

Take

"0 := "2

24(M + 1)2 . (75)
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Then "0 < 1 and

"2
0 + 2M"0 + M2"0  "0(M + 1)2  "2

24
. (76)

We consider in the sequel tk := 1
k+1 , with rate of convergence towards 0 given by � (") :=

l

1
"

m

.

Denote zu
tk simply by zu

k and let

� k
n := k

k + 1
d2(u, T zu

k ) � d2(xn+1, u).

Thus, � k
n is defined as in (65) by taking t := 1

k+1 and yn := xn+1.

We can apply Propositions 9.1(iii) and 6.1 to conclude that lim supn!1 � k
n  0 for each

k � 0, with effective rate �k , given by

�k(") = �̃
✓

"

2M(P̃k (") + 1)

◆

+ P̃k (") , where

P̃k (") =
⇠

12M2(k + 1)

"
�
✓

"

12M(k + 1)

◆⇡

.

For all k � 0, let us denote

�⇤
k (") := �k("/2),

⇥k(") := ⇥(", M2, ✓,�⇤
k ) = ✓

✓

�⇤
k ("/3) � 1 +

⇠

ln
✓

3M2

"

◆⇡◆

+ 1,

�⇤
k(", g) := �(", g, M2, ✓,�⇤

k ) = "

3g",k
�

⇥k(") � �⇤
k ("/3)

� ,

where g",k(n) = n + g(n + �⇤
k ("/3)), ⇥ is defined by (15) and � by (16). Now let

f, f ⇤ : N ! N, f (k) := max

(

�

 

�⇤
k("

2/4, g)

M2

!

, k

)

� k,

f ⇤(k) := f (k + � ("0)) + � ("0).

We can apply Proposition 9.3 for "0 and f ⇤ to get the existence of K1  K ("0, f ⇤) such that
for all k, l 2 [K1, K1 + f ⇤(K1)]

d(zu
k , zu

l )  "0, (77)

where K is defined by (74). Let

K0 := K1 + � ("0),

K ⇤("0, f ) := K ("0, f ⇤) + � ("0) = ff ⇤(dM2/"2
0e)

(0) + � ("0),

with ff ⇤(k) := k + f ⇤(k).
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Then � ("0)  K0  K ⇤("0, f ) and it is easy to see, using (77), that

8k, l 2 [K0, K0 + f (K0)]
�

d(zu
k , zu

l )  "0
�

. (78)

It follows that for all k, l 2 [K0, K0 + f (K0)],

d2(u, T zu
k )  (d(u, T zu

l ) + d(T zu
l , T zu

k ))2

 d2(u, T zu
l ) + d2(T zu

l , T zu
k ) + 2d(u, T zu

l )d(T zu
l , T zu

k )

 d2(u, T zu
l ) + d2(zu

l , zu
k ) + 2Md(zu

l , zu
k )

 d2(u, T zu
l ) + "2

0 + 2M"0.

Let

J := K0 + f (K0) = max

(

�

 

�⇤
K0

("2/4, g)

M2

!

, K0

)

. (79)

Then for all n � 1,

� J
n = J

J + 1
d2(u, T zu

J ) � d2(xn+1, u)

 J
J + 1

⇣

d2(u, T zu
K0

) + "2
0 + 2M"0

⌘

� d2(xn+1, u)

 d2(u, T zu
K0

) � d2(xn+1, u) + "2
0 + 2M"0

= K0

K0 + 1
d2(u, T zu

K0
) � d2(xn+1, u) + "2

0 + 2M"0 + 1
K0 + 1

d2(u, T zu
K0

)

= � K0
n + "2

0 + 2M"0 + 1
K0 + 1

d2(u, T zu
K0

)  � K0
n + "2

0 + 2M"0 + 1
K0 + 1

M2

 � K0
n + "2

0 + 2M"0 + M2"0 as K0 � � ("0)

 � K0
n + "2

24
by (76).

It follows that for all n � �⇤
K0

("2/12),

� J
n  � K0

n + "2

24
 "2

12
.

Applying (73) with t := 1
J+1 , we get that for all n � 1,

d2(xn+1, zu
J )  (1 � �n+1)d2(xn, zu

J )

+ �n+1

✓

J
J + 1

d2(u, T zu
J ) � d2(xn+1, u)

◆

+ M2

J + 1

= (1 � �n+1)d2(xn, zu
J ) + �n+1�

J
n + M2

J + 1
 (1 � �n+1)d2(xn, zu

J ) + �n+1�
J

n +�⇤
K0

("2/4, g)
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since J � �

✓

�⇤
K0

("2/4,g)

M2

◆

; hence 1
J+1  �⇤

K0
("2/4,g)

M2 . It follows that we can apply Lemma 5.2

with " := "2/4 to conclude that for all n 2 [N , N + g(N )]

d2(xn, zu
J )  "2

4
, hence d(xn, zu

J )  "

2
, (80)

where N := ⇥K0("
2/4).

Let now

✓+(n) := max{✓(i) | i  n},
� := max{�⇤

k ("2/12) | � ("0)  k  K ⇤("0, f )} � �⇤
K0

("2/12),

⌃ (", g) := ✓+
✓

� � 1 +
⇠

ln
✓

12M2

"2

◆⇡◆

+ 1

� ✓+
✓

�⇤
K0

("2/12) � 1 +
⇠

ln
✓

12M2

"2

◆⇡◆

+ 1

� ✓

✓

�⇤
K0

("2/12) � 1 +
⇠

ln
✓

12M2

"2

◆⇡◆

+ 1

= ⇥K0("
2/4) = N .

We get finally that N  ⌃ (", g) is such that for all n, m 2 [N , N + g(N )],
d(xn, xm)  d(xn, zu

J ) + d(xm, zu
J )  ". ⇤ (81)
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