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Abstract

This article is devoted to the analysis of the convergence rates of several numerical approximation schemes for linear
and nonlinear Schrodinger equations on the real line. Recently, the authors have introduced viscous and two-grid numerical
approximation schemes that mimic at the discrete level the so-called Strichartz dispersive estimates of the continuous Schrodinger
equation. This allows to guarantee the convergence of numerical approximations for initial data in L%(R), a fact that cannot be
proved in the nonlinear setting for standard conservative schemes unless more regularity of the initial data is assumed. In the present
article we obtain explicit convergence rates and prove that dispersive schemes fulfilling the Strichartz estimates are better behaved
for HS(R) data if 0 < s < 1/2. Indeed, while dispersive schemes ensure a polynomial convergence rate, non-dispersive ones only
yield logarithmic ones.
© 2012 Elsevier Masson SAS. All rights reserved.

Résumé

Cet article concerne 1’analyse de la vitesse de convergence de plusieurs schémas d’approximation numérique pour I’équation de
Schrodinger linéaire et non-linéaire en 1-d. Récemment, les auteurs ont introduit des schémas d’ approximation numérique visqueux
et bi-maille qui satisfont, au niveau de la discrétisation, des estimations dispersives analogues aux estimations de Strichartz pour
I’équation de Schrodinger continue. Ceci permet de garantir la convergence des approximations numériques pour des données
initiales dans LZ(R), ce qui ne peut pas &tre montré dans le cadre non-linéaire pour des schémas conservatifs standard, sauf si
les données initiales sont plus régulieres. On établit aussi les vitesses explicites de convergence et on montre que les schémas
dispersifs satisfaisant les estimations de Strichartz ont un meilleur comportement pour des données dans HS(R), si 0 < s < 1/2.
En effet, alors que les schémas dispersifs garantissent une vitesse polynomiale de convergence, les nondispersifs ne convergent que
de maniere logarithmique.
© 2012 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Let us consider the linear (LSE) and the nonlinear (NSE) Schrodinger equations:

iuy +32u=0, xeR, t#0, (D)

u0,x) =¢x), xek, '
and

iug +0%u=fu), xeR,t#0, (1.2)

u(0,x) = p(x), x eR, '
respectively.

The linear equation (1.1) is solved by u(x, t) = S(t)¢, where S(¢) = e!'2 is the free Schrodinger operator and has
two important properties. First, the conservation of the L?-norm

||l/t([) ||L2(R) - ”w”LZ(R) (]3)

which shows that it is in fact a group of isometries in L>(R), and a dispersive estimate of the form:

1
|S(t)(p(x)| = |M(tax)| < W”(PHLI(R)v xeR, r#0. (1.4)
The space—time estimate

SO Lo Loy < Cllel2m)s (1.5)

due to Strichartz [27], guarantees that the solutions decay as ¢ becomes large and that they gain some spatial
integrability.
Inequality (1.5) was generalized by Ginibre and Velo [10]. They proved:

HS(.)QDHL‘/(R,L"(R)) < C(C])H‘/’”LZ(R) (16)

for the so-called 1/2-admissible pairs (g, r). We recall that the exponent pair (g, r) is a-admissible (cf. [22]) if
2<q,r<o00,(g,r,a)# (2,00,1), and
1 1 1 (1.7)
.- o 5 .

We see that (1.5) is a particular instance of (1.6) in whichae =1/2 and g =r =6.

The extension of these estimates to the inhomogeneous linear Schrédinger equation is due to Yajima [30] and
Cazenave and Weissler [6]. These estimates can also be extended to a larger class of equations for which the Laplacian
is replaced by any self-adjoint operator such that the L>-norm of the fundamental solution behaves like ¢ ~1/? [22].

The Strichartz estimates play an important role in the proof of the well-posedness of the nonlinear Schrodinger
equation. Typically they are used for nonlinearities for which the energy methods fail to provide well-posedness
results. In this way, Tsutsumi [29] proved the existence and uniqueness for L?(R)-initial data for power-like nonlin-
earities F'(u) = |u|Pu, in the range of exponents 0 < p < 4. More precisely it was proved that the NSE is globally
well posed in L (R, L2(R) N LfOC(R, L"(R)), where (g, r) is a 1/2-admissible pair depending on the exponent p.
This result was complemented by Cazenave and Weissler [7] who proved the local existence in the critical case p = 4.
The case of H!-solutions was analyzed by Baillon, Cazenave and Figueira [1], Lin and Strauss [23], Ginibre and Velo
[8,9], Cazenave [4], and, in a more general context, by Kato [20,21].

This analysis has been extended to semi-discrete numerical schemes for Schrodinger equations by Ignat and Zuazua
in [16,17,19]. In these articles it was first pointed out that conservative numerical schemes often fail to be dispersive,
in the sense that numerical solutions do not fulfill the integrability properties above. This is due to the pathological
behavior of high frequency spurious numerical solutions. Then several numerical schemes were developed fulfilling
the dispersive properties, uniformly in the mesh-parameter. In the sequel these schemes will be referred to as being
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dispersive. As proved in those articles these schemes may be used in the nonlinear context to prove convergence
towards the solutions of the NSE, for the range of exponents p and the functional setting above. The analysis of fully
discrete schemes was later developed in [13] where necessary and sufficient conditions were given guaranteeing that
the dispersive properties of the continuous model are maintained uniformly with respect to the mesh-size parameters
at the discrete level. The present paper is devoted to further analyze the convergence of these numerical schemes, the
main goal being the obtention of convergence rates.

Despite of the fact that non-dispersive schemes (in the sense that they do not satisfy the discrete analogue of (1.5))
cannot be applied directly in the L?-setting for nonlinear equations one could still use them by first approximating the
L2-initial data by smooth ones. This paper is devoted to prove that, even if this is done, dispersive schemes are better
behaved than the non-dispersive ones in what concerns the order of convergence for rough initial data.

The main results of the paper are as follows. In Theorem 3.1 we prove that the error committed when the LSE
is approximated by a dispersive numerical scheme in the L9(0, T'; " (hZ))-norms is of the same order as the one
classical consistency + stability analysis yields. Using the ideas of [3, Chapter 6], we can also estimate the error
in the L9(0, T; 1" (hZ))-norms, r > 2, for non-dispersive schemes; for example for the classical three-point second
order approximation of the Laplace operator. In this case, in contrast with the good properties of dispersive schemes,
for H® (R)-initial data with small s, 1/2 — 1/r <s <4+ 1/2 — 1/r, the error losses a factor of order 43/>(/2=1/7)
with respect to the case L°°(0, T'; [12(hZ)) which can be handled by classical energy methods (see Example 1 in
Section 3.2). Summarizing, we see that the dispersive properties of numerical schemes are needed to guarantee that
the convergence rate of numerical solutions is kept in the spaces L?(0, T'; [" (hZ)).

In the context of the NSE we prove that the dispersive methods introduced in this paper converge to the solutions of
NSE with the same order as in the linear problem. To be more precise, in Theorem 5.4 we prove a polynomial order of
convergence, #°/2, in the case of a dispersive approximation scheme of order two for the Laplace operator for initial
data H*(R?) when 0 < s < 4. In the case of the classical non-dispersive schemes this convergence rate can only be
guaranteed for smooth enough initial data, H*(R), 1/2 < s < 4 (see Theorem 6.1).

In Section 6 we show that non-dispersive numerical schemes with rough data behave badly. Indeed, when using
non-dispersive numerical schemes, combined with a H ! (R)-approximation of the initial data ¢ € H’(R)\H I(R), one
gets an order of convergence |log#|~*/(!1=%) which is much weaker than the /*/>-one that dispersive schemes ensure.

The paper is organized as follows. In Section 2 we first obtain a quite general result which allows us to estimate the
difference of two families of operators that admit Strichartz estimates. We then particularize it to operators acting on
discrete spaces [” (hZ), obtaining results which will be used in the following sections to get the order of convergence
for approximations of the NSE. In Sections 3 and 4 we revisit the dispersive schemes for LSE introduced in [15-17,19]
which are based, respectively, on the use of artificial numerical viscosity and a two-grid preconditioning technique of
the initial data.

Section 5 is devoted to analyze approximations of the NSE based on the dispersive schemes analyzed in previous
sections. Section 6 contains classical material on conservative schemes that we include here in order to emphasize the
advantages of the dispersive methods. Finally, Section 7 contains some technical results used along the paper.

The analysis in this paper can be extended to fully discrete dispersive schemes introduced and analyzed in [13] and
to the multidimensional case. However, several technical aspects need to be dealt with carefully. In particular, one has
to take care of the well-posedness of the NSE (see [5,24]). Furthermore, suitable versions of the technical harmonic
analysis results employed in the paper (see, for instance, Section 7) would also be needed (see [12]). This will be the
object of future work.

Our methods use Fourier analysis techniques in an essential manner. Adapting this theory to numerical approxima-
tion schemes in non-regular meshes is by now a completely open subject.

2. Estimates on linear semigroups

In this section we will obtain Ltq L', estimates for the difference of two semigroups Sa(f) and Sp(f) which admit
Strichartz estimates. Once this result is obtained in an abstract setting we particularize it to the discrete spaces [” (hZ).

2.1. An abstract result

First we state a well-known result by Keel and Tao [22].
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Proposition 2.1. (See [22, Theorem 1.2].) Let H be a Hilbert space, (X, dx) be a measure space and U(t): H —
L?(X) be a one parameter family of mappings with t € R, which obey the energy estimate

[V f] 2x) < ClS I 2.1)
and the decay estimate
[UOU ) 8 ooy < Clt =sI7llgll L1 x) (22)
for some o > 0. Then
||U(t)f||Lq(R,L’(X)) < C||f||H7 (23)
H f(U(S)*F(S, )) ds < C”F”LQ/(R,LW(X))’ (24)
2 H
t
/ Ut —s)F(s)ds < C||F||L‘§/(R,L;/(X)) (25)
LI(R,L"(X))

0

forall (q,r) and (g, ), a-admissible pairs.

The following theorem provides the key estimate in obtaining the order of convergence when the LSE is approxi-
mated by a dispersive scheme.

Theorem 2.1. Let (X,dx) be a measure space, A: D(A) — L*(X), B: D(B) — L%(X) two linear m-dissipative
operators with D(A) — D(B) continuously and satisfying AB = BA. Assume that (Sa(t));>0 and (Sg(t));>0 the
semigroups generated by A and B satisfy assumptions (2.1) and (2.2) with H = L*(X). Then for any two a-admissible
pairs (q,r), (¢, ) the following hold:

(i) There exists a positive constant C(q) such that

||SA(t)§0 - SB(t)gl)”Lq(]’Lr(X)) < C(q)mln{||¢||L2(X)v |I| || (A - B)QOH LZ(X)} (26)
for all bounded intervals I and ¢ € D(A).

(ii) There exists a positive constant C(q, q) such that
t t
[ sat=91761ds = [ su=515)ds
0 0
<C@.min{I £l 17 ooy A= BYF | L 1o ) 2.7)

for all bounded intervals I and f € L‘;/(I, Lf/(X)) such that (A — B) f € Lq/(l, Lf/(X)).

La(I,L" (X))

Proof. Using that the operators S4 and Sp verify hypotheses (2.1) and (2.2) of Proposition 2.1 with H = L?*(X),
by (2.3) we obtain

I1S4®¢ = SeO || L4 (1 1rixy) < C@DI@N L2 (x) (2.8)
and, by (2.5),

t t

/Sm—s)f(s)ds—/Sgu—s)f(s)ds

0 0

< C(q» é)”f”L‘?/(R,L;/(X))‘ (29)
L1(R,L" (X))

In view of (2.8) and (2.9) it is then sufficient to prove the following estimates:

|49 = S5O | 1a(s 1rxy) < C@HI|(A = B 15, (2.10)
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and
t t

/SAa—s)f(s)ds—fSB(z—s)f(s)ds

0 0

<SC@.DUIA =BV | o g 1 xyy- @1D)
La(I,L" (X))

In the case of (2.10) we write the difference Ss(-) — Sp(-) as follows
t
5409 = Su@ = [ Sult =54 = BISa6)0ds. @.12)
0

In order to justify this identity let us recall that for any ¢ € D(A) — D(B) we have that u(t) = Sa(t)p €
C ([0, o0), D(A)) N C([0, 00), L*(X)) and v(r) = Sp(t)g € C([0,00), D(B)) N C!([0, 00), L?>(X)) verify the
systems u; = Au, u(0) = ¢, and v; = Bv, v(0) = ¢ respectively. Thus w = u — v € C([0,00), D(B)) N
C1([0, o0), L?(X)) satisfy the system w; = Bw + (A — B)u, w(0) = 0. Since (A — B)u € C([0, 00), L*(X)) we
obtain that w satisfies (2.12).

Going back to (2.12) and using that A and B commute we get the following identity which is the key of our
estimates:

t

SA(I)w—SB(I)<0=/SB(I—S)SA(S)(A—B)tpdS- (2.13)
0

We apply Proposition 2.1 to the semigroup Sp(-) and function F(s) = Sa(s)(A — B)g in this identity and, by (2.5)
with 7 =2 and ¢ = oo, we get

“SA(t)(P - SB(t)(P” La(I,L7 (X)) < C(C]) ” SA(S)(A - B)gDHLl(I,LZ(X))

SCOUI[(A= B¢ 125, (2.14)

Thus, (2.10) is proved. As a consequence (2.8) and (2.10) give us (2.6).
We now prove the inhomogenous estimate (2.11). Using again (2.13) we have

t—s

Sat —s5)f(s) = Sp(t —s)f(s) = / Sp(t —s —0)Sa(0)(A—B) f(s)do.
0

We integrate this identity in the s variable. Applying Fubini’s theorem on the triangle {(s,0): 0 <s <f, 0 <o <
t — s} and using that A and B commute, we get:

t t

Af(@t) = /SA(t—s)f(s)ds—/Sg(t—s)f(s)ds
0 0

r—s

= f/SB(t—s—a)SA(cr)(A—B)f(s)dads
0 0
t t—o

= //SB(t—s—a)SA(a)ds(A—B)f(s)da
0 0
t

t—o
= /SA(a)fSB(t—s—a)(A—B)f(s)dsda
0

0
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t o
"*:f“’fSA(t—o)fSB(o—s)(A—B)f(s)dsdo
0 0
t
= /SA(t—a)Al(A—B)f(a)da, (2.15)
0

where
t

A1g(t) = / Sp(t —1)g(r)dr.
0
Applying the inhomogeneous estimate (2.5) to the operator S4(-) with (', 7") = (1, 2) we obtain
IAfllLa.r oo < C(‘I)HAI(A - B)fHLl(I,L2(X)) < C@l| ”Al(A - B)f||L°°(I,L2(X))' (2.16)
Using again (2.5) for the semigroup Sp(-), F = (A — B) f and (g, r) = (00, 2) we get
||A1(A - B)f||L<><>(1,L2(X)) < C(‘})” (A=-B)f |L4’(1,LF’(X))'
Combining (2.16) and (2.17) we deduce (2.11). Estimates (2.9) and (2.11) finish the proof. O

2.17)

Remark 2.1. We point out that, in the proof of the following estimate:
|S4®¢ = SEO || 141 1r(x0y) < C@DII| (A= B 12

in view of (2.13) and (2.14), we do not need that the two operators S4(¢) and Sp(¢) admit Strichartz estimates. Indeed,
it is sufficient to assume that only one of the involved operators admits Strichartz estimates and the other one to be
stable in L2(X).

2.2. Spaces and notations

In this section we introduce the spaces we will use along the paper. The computational mesh is hZ = {jh: j € Z}
for some 4 > 0 and the [” (hZ) spaces are defined as follows:

1P(hZ) = {¢:hZ— C: |llipnz) < 00}

where
lellirnz) = .
sup sz, [u(jh), p=oo.
On the Hilbert space 1% (hZ) we will consider the following scalar product
(u, V) = Re(h > u(jh)v(jh)).
JEZ
When necessary, to simplify the presentation, we will write (¢;) jez instead of (¢(jh)) jez.
For a discrete function {¢(jh)} jez we denote by ¢ its discrete Fourier transform:

PE) =hY e Eho(jh). (2.18)
JEZ
Fors >0and 1 < p < 0o, W% ?(R) denotes the Sobolev space
WSP(R) = {p e S R): (I — A)/?p e LP(R)}
with the norm
lolwsr@ = [((1+1€12)7%6)"]
and by H*(R) the Hilbert space W*2(R).

LP(R)’
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The homogenous spaces W*?(R), s >0 and 1 < p < 00, are given by
WP (R) = {p € S R): (—A)*/?p € LP(R)}
endowed with the semi-norm
lelyiso = [(16°9) " Lo ey-

If p =2 we denote H*(R) = W*2(R).
We will also use the Besov spaces both in the continuous and the discrete framework. It is convenient to consider
a function ng € C.(R) such that

[ i<,
"O@)‘{o if £ > 2.

and to define the sequence (17;);>1 € S(R) by

A 3
nj="no 2 — 1o 5i—1

in order to define the Littlewood—Paley decomposition. For any j > 0 we set the cut-off projectors, P;¢, as follows:

Pig=(n;p)". (2.19)
We point out that these projectors can be defined both for functions of continuous and discrete variables by means of
the classical and the semi-discrete Fourier transform.

Classical results on Fourier multipliers, namely Marcinkiewicz’s multiplier theorem, (see Theorem 7.1) show the
following uniform estimate on the projectors P;: For all p € (1, 00) there exists ¢(p) such that

1PjellLr@) < c(Pll@llLr®w), VYoe LP(R). (2.20)
We introduce the Besov spaces B;’Z(R) for 1 < p<ooby B;,z ={u e S [R): ||u||B; L(R) < oo} with

. 1/2
el 2 = I Poull o ey + (222” I pjuni,,(R)) .
j=1

Their discrete counterpart B;’Z(hZ) with 1 < p < 0o and s € R is given by

B, ,(hZ) = {u: lullgs ,nzy < 0o},

with

00 1/2
el g 2y = | Poullirnzy + (Zzzﬂ ||Pju||12p(hz)) : (2:21)
j=1
where Pju given as in (2.19) are now defined by means of the discrete Fourier transform of the discrete function
u:hzZ — C.
We will also adapt well-known results from harmonic analysis to the discrete framework. We recall now a result
which goes back to Plancherel and Polya [25] (see also [31], Theorem 17, p. 96, and the comments on p. 182).

Lemma 2.1. (See [25, p. 157].) For any p € (1, 00) there exist two positive constants A(p) and B(p) such that the
following holds for all functions f whose Fourier transform is supported on [—m, w]:

Ap) Y |Fm]” < /lf(x)|”dx <B(p) Y[ fm)]". (222)
R

meZ mez

This result permits to show, by scaling, that, for all 2 > 0,
AP flirazy < I f e < BMYP N Fllirnz) (2.23)

holds for all functions f with their Fourier transform supported in [—x/h, 7/ h].
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For the sake of completeness we state now the discrete version of the well-known uniform L?-estimate (2.20) for
the cut-off projectors P;.
Lemma 2.2. For any p € (1, 00) there exists a positive constant c(p) such that

1Pjollirnzy < c(P)@llir iz (2.24)
holds for all ¢ € 1P (hZ), j = 0, uniformly in h > 0.

Proof. For a given discrete function ¢ we consider its interpolator ¢ defined as follows:
w/h
b= [ eoeds.
—7/h
Thus, by (2.23) we obtain

IPj@llirnzy < c(p) | (Pjo)|| Lr@ = CPIP@llr® < cP@lLr®) < cp)ligliraz). O

We recall the following lemma which is a consequence of the Paley—Littlewood decomposition in the x variable
and Minkowski’s inequality in the time variable.

Lemma 2.3. (See [26, Chapter 5, p. 113, Lemma 5.2].) Let n € CZ°(R) and P; be defined as in (2.19). Then

W1 @@y S D NPV I a@ i@y #2<r<ocand2<g <o (2.25)
Jj=0
and
S NPV @ rr @y SV e@ @y f1<r<2and1<q<2 (2.26)
j=20

hold for all ¥ € LI(R, L" (R)).

Applying the above result and Lemma 2.1 to functions with their Fourier transform supported in [—7/h, 7w/ k], as
above, we can obtain a similar result in a discrete framework.

Lemma 2.4. Let n € C°(R) and P; defined as in (2.19). Then

W e rhzy S D NPV ITamirgz) F2<r<ooand2<q < oo (2.27)
Jj=0
and
Z ||Pj‘ﬂ||%q(]1§,1r(hz)) S ||W||%q(R,1r(hz)) fl<r<2and1<q<?2 (2.28)
j=0

hold for all € L1(R, " (hZ)), uniformly in h > 0.
2.3. Operators on IP (hZ)-spaces

In the following we apply the results of the previous section to the particular case X = hZ. We consider operators
Apwith symbol ap, : [—7/h, 7/ h] — C such that
w/h
(Anp)j = f hay©)pE)ds.  j e
—n/h
Also we will consider the operator |V|* acting on discrete spaces [>(hZ) whose symbol is given by |£|*.

The numerical schemes we shall consider, associated to regular meshes, will enter in this frame by means of the
Fourier representation formula of solutions.
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Theorem 2.2. Let Ay, By, : 12 (hZ) — lz(hZ) be two operators whose symbols are ay, and by, iby, being a real function,
such that the semigroups they generate, (Sa, (t)):>0 and (S, (t)):>0, satisfy assumptions (2.1) and (2.2) with some
constant C, independent of h. Finally, assume that for some functions {(k, h)}rer, with F a finite set, the following
holds for all &€ e |[—rm/h,/h]:

|an(®) = bu(®)| < Y ik, )& ", (2.29)
keF
For any s > 0, denoting
e(s,h) =" pik, hHymnts/kD, (2.30)
keF

the following hold for all (q,r), (q,F), a-admissible pairs:

(a) There exists a positive constant C(q) such that
1S4, 00 = S8, O] a1 1rhzyy < C@eCs, Wy max{1, 11}l 3,z (2.31)

holds for all ¢ € Biz(hZ) uniformly in h > 0.
(b) There exists a positive constant C(s, q, q) such that
t t
f Say(t —0) f (o) do — / Syt —0) f(0) do
0 0
< Clsoq, Pels, Wymax{ L 1T Nl a1 g, nzy) (2.32)

La(1,I" (hZ))

holds for all f € L9 (I, B, ,(hZ)).

Remark 2.2. The assumption that the semigroups (Sa, (t));>0 and (S, (t));>0, satisfy (2.1) and (2.2) with some
constant C, independent of /2, means that both of them are /% (hZ)-stable with constants that are independent of 4 and
that the corresponding numerical schemes are dispersive.

Taking into account that both operators, A, and Bj, commute in view that they are associated to their symbols,
the hypotheses of Theorem 2.1 are fulfilled. They also commute with |V| and P; which are also defined by a Fourier
symbol.

Assumption (2.29) on the operators Aj; and By, implies

[ An = B¢ oz S D atk. W[1VF0] -
keF

However, this assumption is not sufficient to obtain a similar estimate in /" (hZ)-norms, r # 2. As we will see this will
be a drawback in obtaining (2.32) as a consequence of (2.7).
The requirement that i by, is a real function is needed to assure that the semigroup generated by B, Sp,,, satisfies

SB;, (t - 0) = SB;, (I)SB;, (_O) = SBh (t)SBh (0)*7
identity which will be used in the proof.
In Section 3 we will give examples of operators Aj, and Bj, verifying these hypotheses. In all our estimates we will
choose by, (£) = i&2, which is the symbol of the continuous Schrédinger semigroup.

Proof of Theorem 2.2. We divide the proof in two steps corresponding to the proof of (2.31) and (2.32) respectively.

Step L. Proof of (2.31). We apply inequality (2.25) to the difference Sa, (1) — Sp, ()¢:

12
IS4, (¢ — Sp, (9| LA (hZy) S (Z“ PjSa, ()¢ — PjSp, (’)GOHiq([,V(hZ))) :
Jj=0
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Using that P; commutes with S4, () and Sg, (-) we get:

1/2
|S4, ¢ = S5, O¢] Lo 11z < (ZH (84, () — SB, (1)) ,w||Lq(,l,(hZ))) : (2.33)
j=0

In order to evaluate each term in the right-hand side of (2.33) we apply estimate (2.6) to the difference Sx, (-) —
S, (-) when acting on each projection Pj¢. Thus, using hypothesis (2.29) we obtain:

|S4, (1) Pjo — S, (t)PngHL‘I(I,[r(hZ)) < C(g) max{|/|, 1} min{]| P; Bh)Pj?"”ﬂ(hZ)}

< C(g)max{|/], 1} min{ 1Pl 2y Yk, b |V|kPj<p||lz(hZ)}
keF

< C(g) max{|1], 1} Zmin{ 1Pl nzys 1k, h)sz||P,-<o||lz(hz>}
keF

< C(g)max{[I], 1}[IPjoll 2wy Y min{l, u(k, h)2/*}. (2.34)
keF

Going back to estimate (2.33) we get

. 1/2
|84, @0 = S5, 0| L4117 2y < C (@) max{i1], 1}(2 1P @117 2z, Y min{1, u*(k, h)zzf"}> :
j=0 keF

We claim that for any j > 0O the following holds:

Z min{1, u?(k, 1)2%%} < Z w(k, h)min{2s/k.2}32]s (2.35)
keF keF

for all s > 0.
Assuming for the moment that the claim (2.35) is correct we deduce that

) ) 1/2
|54, 0@ = S8, 14107 7y < C @) max{I1], 1}(2 >tk mymints/ k’2}22"‘lle<0llfz<hz>)

keF j>0
12
_C(q)max 1], l (Z/’L(k h)mm {2s/k,2} 222j5||Pj(p||122(hZ)>
keF >0

< C(g, Fymax{[1], 1}e(s, )¢l 55 ,w)-
We now prove (2.35) by showing that
min{1, p2/k} < gmints/k g gs (2.36)

holds for all i > 0 and j > 1. It is obvious when p > 1. It remains to prove it in the case u < 1. For any [£] > 1 we
have the following inequalities:

min{ 1, ul& [} < min{1, plgF)™ 5D = minf1, pmints/ g Fmints k1
< Mmin{s/k,l}|g_.|kmin{s/k,1} < Mmin{s/k,l}las‘

Applying this inequality to & =2/, j >0, we get (2.36) and thus (2.35). The proof of the first step is now complete.

Step I1. Proof of (2.32). Let us denote by A, the following operator:

t t

Anf () = f Sa, (1 — 0) f(0) do — / S8, — o) f (o) do.

0 0
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As in the case of the homogenous estimate (2.31), we use a Paley—Littlewood decomposition of the function f.
Inequality (2.27) and the fact that A, commutes with each projection P; give us

2 2 2
AR F s iy < €@ DI Pi AR g rrinzyy = €@ DN A8 P D ot e iz (2.37)
j=0 =0
We claim that each term A(P; f) in the right-hand side of (2.37) satisfies:

”Ah(ij) || La(1,1"(hZ))

< (g, g)ymax{1,|1]} min{ 1P; £l o (1.7 iz Z,u(k, ] |V|/<ij||Lq/(1’l;/(hZ))}. (2.38)
keF

In view of (2.36), the above claim implies

~ . ik
| 40P D] oz rzyy < €@ @ max{1, |11} mm{ 1P a7 gy D 1k, B)27 ||ij||L4/(,J;/(hZ))}
keF

= c(q. ) max{L |11 P; fll a7 guzyy D min{1, ik, )27}
keF

<c(g,9) max{l, |I|}”P./'f”L‘?/(I,l;/(hZ)) Zﬂ(ka h)min{s/k,l}zjs
keF

<elq. max{1, [1}e@s. 2 1P fll a7 gy (2.39)
Estimates (2.37) and (2.39) give us
. 1/2
1A f Lo zyy < c(q, @) max{1, [T]}e(s, h)(Z22”||ij||§q,(,,l;/(hz))) : (2.40)
=0
Using that §’ < 2, we can use the reverse Minkowski’s inequality in L4 "12(I) to get

2js 2 _ 2js 2 _, 2js 2
22 ”PJf”Lz?’(l,zf’(hZ)) - ZHZ ||PJf”ﬁ’(hZ)) ”Lq Py S 22 ”PJlef/(hZ))
j=0 j=0 j=z0

1/2
> 22| Py £ /
7 Wi (hz)

j=0

L3'/2(1)

2
S

=1f1%. . . :
L7 () L7 (1,B ,(hZ)

By (2.40) we get
I AR fllza i hzy) < (g, §) max{1, |I|}8(S»h)||f||Lq’(1’B}§ )
which finishes the proof.
In the following we prove (2.38). Using that both operators S4, and Sp, fulfill uniform Strichartz estimates, it is
sufficient to prove that, under hypothesis (2.29), the following estimate holds for all functions f € LY (1,17 / (hZ)):
AR FlLacirzy < @ DU at DIV F] Lz 7wy (2.41)
keF

We point out that, in general, this estimate is not a direct consequence of (2.7) since, under assumption (2.29), we
cannot establish the following inequality (of course, in the particular case 7' = 2 this can be obtained by Plancherel’s
identity):

” (An — Bh)f” L3 (1,IF (hZ)) S Z“(k’ h)H |V|kf|| L3 (1,17 (hZ))
keF
Identity (2.15) gives us that

t

Apf(t) = / Sa,(t —s)A 1 (Ap — By) f(s)ds,

0
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where

1

Aung(t) = / S5, (1 — 0)g(o) do.
0

The inhomogeneous estimate (2.5) with (¢, 7") = (1, 2) shows that
I An fllLacrir iz < c(@) | An(An — Bh)fﬂLl(”z(hZ))- (2.42)

Using that By, satisfies Sp, (t — o) = S, (t)Sp,(—0) = Sp, (1)Sp, (0)* and that it commutes with A, we get

An(Ap — Bp) f(t) = Sp, (1) (Ap — Bh)/SBh (0)" f(o)do.
0

Thus, using the uniform stability property, with respect to £, of the operators Sp,,:
H S, () ||12(hZ)—>12(hZ) S

and hypothesis (2.29) we get

| A1n AR = B f | 112z <

t
(Ap — Bn) / Sp,(0)* f(o)do
0

L(1,12(hZ))
t
vt f S5,(0)" f(0)do

0

< Za(k, h)

keF

(2.43)

L(1,12(hZ))
Using that By, and |V | commute, estimate (2.4) with U(-) = Sp, (-) gives us that

t

f S, ($)*IVI* f(o)do

0

HAlh(Ah - Bh)f”Ll(I,lz(hZ)) < |I| Za(k’ h)
keF

L°(L,12(hZ))

<11 alk, h)sup
keF JclI

f Sg, (@)*IV|* f(o)do

J

<ec@ Y ate, WIVEF] Lo,
keF

Thus, by (2.42) we obtain (2.41) which finishes the proof. O

12(hZ)

3. Dispersive schemes for the linear Schrodinger equation

In this section we obtain error estimates for the numerical approximations of the linear Schrodinger equation. We
do this not only in the {?(hZ)-norm but also in the auxiliary spaces that are needed in the analysis of the nonlinear
Schrodinger equation.

3.1. A general result

The numerical schemes we shall consider can all be written in the abstract form

{ iul (1) + Apu" =0, 1>0,

u(0) = The. (3.1
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We assume that the operator Ay, is an approximation of the 1 — d Laplacian. On the other hand, Ty ¢ is an approxima-
tion of the initial data ¢, T} being a map from L?(R) into [2(hZ) defined as follows:

w/h

(Thp) (jh) = / e G(6) ds. (3.2)
—n/h
Observe that this operator acts by truncating the continuous Fourier transform of ¢ on the interval (—m/h, 7/ h) and
then considering the discrete inverse Fourier transform on the grid points AZ.

To estimate the error committed in the approximation of the LSE we assume that the operator Ay, approximating
the continuous Laplacian, has a symbol a;, which satisfies

lan®) — &2 < at. gl ge|-Z 2, (3.3)
h h
keF

for a finite set of indexes F. As we shall see, different approximation schemes enter in this class for different sets F'
and orders k.

This condition on the operator A, suffices to analyze the rate of convergence in the L™ (—T, T; 1>(hZ)) norm.
However, one of our main objectives in this paper is to analyze this error in the auxiliary norms LY (=T, T; 1" (hZ))
which is necessary for addressing the NSE with rough initial data. More precisely, we need to identify classes of
approximating operators Aj of the 1 — d Laplacian so that the semi-discrete semigroup exp(it A;) maps uniformly,
with respect to parameter /1, I%(hZ) into those spaces.

In the following we consider operators A, generating dispersive schemes which are > (hZ)-stable

lexp(itAn@ || 27y < Cllellizgzy, Vi >0 (3.4)

and satisfy the uniform /! (hZ) — [*°(hZ) dispersive property:
. C
lexp(ir An@| oo z) < i lelnon.  vi>0. 3.5

for all 4 > 0 and for all ¢ € L(hZ), where the above constant C is independent of 2. We point out that (3.4) is the
standard stability property while the second one, (3.5), holds only for well chosen numerical schemes.

Applying Theorem 2.2 to the operator B, whose symbol is —i&2 and to i Ay, A, being the approximation of the
Laplace operator with the symbol aj, (§), we obtain the following result.

Theorem 3.1. Let s > 0, Ay, satisfying (3.3), (3.4), (3.5), and (¢, r) and (g, 7) be two 1/2-admissible pairs. Denoting

e(s,h) =Y a(k,)y™"t/ED, (3.6)
keF

the following hold.:

(a) There exists a positive constant C(q) such that
|lexp(it Ap)The — Ty exp(itdl) e | L. rzyy < Max{L, TYC(@e(s, Wll@l s gy (3.7)

forallp e HS(R), T > 0and h > 0.
(b) There exists a positive constant C(q, q) such that
t t
/exp(i(t —0)Ap) Ty f(0)do —/Th exp(i(t — 0)37) f(0) do
0 0 L4(0,T;1" (hZ))
< C(CL é) max{l, T}S(S: h) ”f”L‘?,(O,T;Bf, 2(R))’ (38)

forall T >0, f € L7(0,T: BS ,(R)) and h > 0.
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Remark 3.1. In the particular case when (g, r) = (00, 2) and the set F of indices k entering in the definition (3.6) of
&(s, h) is reduced to a simple element, the statements in this theorem are proved in [28, Theorem 10.1.2, p. 201]:

lexp(it A The — Thexp(i137)¢ | ;oo o 7.2z < C@T el W@l s w)- (3.9)

Remark 3.2. Observe that for s > so = max{k: k € F} the function s — &(s, i) is independent of the s-variable:

(s, k) = e(s0, k) = Za(k, h).

keF

This means that imposing more than H* (R) regularity on the initial data does not improve the order of convergence
in (3.7) and (3.8).

Remark 3.3. In the case 0 < s < sg, with so as above, the estimate H* (R) — L*°(0, T'; [>(hZ)) in (3.7) and the one
given by the stability of the scheme L3(R) — L°°(0, T: I12(hZ)), allow to obtain, using an interpolation argument,
a weaker estimate:

lexp(t A The = Thexp(itd7)¢ o 7.2z < CDIEG0, D ll@l s ).
If the set F has an unique element then this estimate is equivalent to (3.7). However, the improved estimates (3.7) and
(3.8) cannot be proved without using Paley—Littlewood’s decomposition, as in the proof of Theorem 2.2.
3.2. Examples of operators Ay,
In this section we will analyze various operators A;, which approximate the 1 — d Laplace operator 8)%.
Example 1. The 3-point conservative approximation. The simplest example of approximation scheme for the
Laplace operator 8)% is given by the classical finite difference approximation Ay,
Wi +uj1—2u;
h2
It satisfies hypothesis (3.3) with F = {4} and a(4, h) = h?. Thus, we are dealing with an approximation scheme of
order two. Indeed, we have:
4 .2 éh 2 2 4 T T
—sin“| =— | — <h , VEe|——,—|.
= (2>5N g% vee| o

However, this operator does not satisfy (3.5) with a constant C independent of the mesh size % (see [16, Theorem 1.1]),
and Theorem 3.1 cannot be applied. This means that we cannot obtain the same estimate as for second order dispersive
schemes:

(Apu)j = (3.10)

h2, s €(0,4),

h?, s > 4. G.11)

lexp(it AwYThp = Thexp(itd3) | Lo o 1oz < €@ D@l {
However, using the ideas of Brenner on the order of convergence in the /" (hZ)-norm, r > 2 [3, Chapter 6,
Theorems 3.2, 3.3 and Chapter 3, Corollary 5.1], we can get the following estimates:

1 2
. . R2OTIHD s e 0.4+ 1= D),
lexp(r A Trp — T exp(it03) 0| oo 1.r ) <c<q,T)||so||B;m(R){h2 cmar1_2
) = —

1 2
R0 s € (0,441 2),
<Cg. Dlell 11 2’
H 2 V(R) hz, S>4+1_77

where we have used that H* (R) = B;’,(R) — B} o (R) whensg —1/2=s—1/r.
Observe that in the case s € (0, 4) the above estimate guarantees that
pretDp=1GTD . (3.12)

||eXp(itAh)Th§0 - Ty eXP(lt@%)ﬁO” L4(0,T;1" (hZ)) < C(q, T)||<P||H;+%_%(R)
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Moreover forany o € (1/2 —1/r,4+1/2—1/r) we can find s € (0,4) witho =s + 1/2 — 1/r and using (3.12) we
obtain

. . o _31_1
lexp(it A The = Thexp(i197)¢ | a0 7z < €@ D@l @hzh=2G77, (3.13)

In the case of an approximation of order two one could expect the error in the above estimate to be of order 1°/2 as
in the L>®(0, T; [>(hZ)) case. But, here we get an extra factor of order h=3/20/2=1/7) which diverges unless r = 2,
which corresponds to the classical energy estimate in L°°(0, T'; L?(R)). This does not happen in the case of a second
order dispersive approximation of the Schrodinger operator, where Theorem 3.1 gives us an order of error as in (3.11).

Note that, according to Theorem 3.1, this loss in the rate of convergence is due to the lack of dispersive properties
of the scheme.

Also we point out that to obtain an error of order h2 in (3.12) we need to consider initial data in H*t!=2/7(R). So
we need to impose an extra regularity condition of 1 — 2/r derivatives on the initial data ¢ to assure the same order
of convergence as the one in (3.11) for dispersive schemes.

Example 2. Fourier filtering of the 3-point conservative approximation. Another example is given by the spectral
filtering Ay, ,, defined by:

N 1
Anyp= Ah(l(fy,g)w)v, v <3 (3.14)

In other words, Ay, ,, is a discrete operator whose action is as follows:
yr/h
4 o (ERYN ingn ,
(Anye)j = f 5 Sln2<7)e”h§<p($)d$, JEL,
—ym/h

i.e. it has the symbol

4 h
ap,y (&) = w2 sin’ <%> Y—yx/hym/h)-

In this case

h’&t, |E|<my/h 254 T
any () — € <c<y>{ N Sce()h’e* forallg e |——. |
any | . Elzay/h h'h
Thus Ay, constitutes an approximation of the Laplace operator A of order two and the semigroup generated by i A ,,
has uniform dispersive properties (see [17]). Theorem 3.1, which exploits the dispersive character of the numerical
scheme, gives us

W2, s €(0,4),

lexp(r A Tre — T expGr )¢ oo 1.z < €@ D@l w) { ER

We note that using the same arguments based on [” (hZ)-error estimates (given in [3]), as in Example 1, we can obtain
the same result only if r =2 or assuming more regularity of the initial data ¢.

This scheme, however, has a serious drawback to be implemented in nonlinear problems since it requires the
Fourier filtering to be applied on the initial data and also on the nonlinearity, which is computationally expensive.

Example 3. Viscous approximation. To overcome the lack of uniform L4(I,!"(hZ)) estimates, in [17] and [14]
numerical schemes based in adding extra numerical viscosity have been introduced. The first possibility is to take
Ap = Ay + ia(h) Ay with a(h) = h2~ VM and a(h) — 1/2 such that a(h) — 0. In this case (3.3) is satisfied as

follows:
4 h 4 h
3 sin2<%) + ia(h)h—z sinz(%> — g2

This numerical approximation of the Schrodinger semigroup has been used in [17] and [19] to construct convergent
numerical schemes for the NSE. However, the special choice of the function a (/) that is required, shows that the error

<h2E* + a(h)g>. (3.15)
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in the right-hand side of (3.15) goes to zero slower that any polynomial function of / and thus, at least theoretically,
the convergence towards LSE, and, consequently to the NSE, will be very slow. Thus, we will not further analyze this
scheme.

Example 4. A higher order viscous approximation. A possibility to overcome the drawbacks of the previous
scheme, associated to the different behavior of the /! (hZ) — [®°(hZ) decay rate of the solutions, is to choose higher
order dissipative schemes as introduced in [14]:

Ap=Ap — ik D (=A™, m>2. (3.16)
In this case, hypothesis (3.3) reads:

4 h 4 A"
ﬁsin2<%>—I—ihz(m_l)(ﬁsinz(%)) —S2

Theorem 3.1 then guarantees that for any 0 < s < 4 the following estimate holds:

< h2ed 4 p2m—Dgm, (3.17)

lexp(it A The — Thexp(t Ao || 1o 7urzyy < Max{l, TR + A=) ]| s )
<max({1, T2l s w).-

Thus we obtain the same order of error as for the discrete Laplacian Ap = Aj, but this time not only in the
L (I;1?(hZ))-norm but in all the auxiliary L9(I, 1" (hZ))-norms. We thus get the same optimal results as for the
other dispersive scheme in Example 2 based on Fourier filtering.

4. A two-grid algorithm

In this section we analyze one further strategy introduced in [15,17] to recover the uniformity of the dispersive
properties. It is based on the two-grid algorithm that we now describe. We consider the standard conservative 3-point
approximation of the Laplacian: A, = Ay,. But, this time, in order to avoid the lack of dispersive properties associated
with the high frequency components, the scheme will be restricted to the class of slowly oscillatory data obtained by
a two-grid algorithm. The main advantage of this filtering method with respect to the Fourier one is that the filtering
can be realized in the physical space.

The method, inspired by [11], is roughly as follows. We consider two meshes: the coarse one of size 4k, h > 0,
4h7, and the finer one, the computational one, hZ, of size & > 0. The method relies basically on solving the finite-
difference semi-discretization on the fine mesh 4Z, but only for slowly oscillating data, interpolated from the coarse
grid 4h7Z. The 1/4 ratio between the two meshes is important to guarantee the dispersive properties of the method.
This particular structure of the data cancels the pathology of the discrete symbol at the points 7 /2h.

To be more precise we introduce the extension operator IT 2h which associates to any function ¢ :4hZ — C a new

function IT 2hz// :hZ — C obtained by an interpolation process:
('), = (Phv) Gl j €z,

where Pihw is the piecewise linear interpolator of .
The semi-discrete method we propose is the following:

:iu?(f)‘f‘Ah”h:O’ t>0, @.1)
u(0) = M} Tapgp. '
The Fourier transform of the two-grid initial datum can be characterized as follows (see [17, Lemma 5.2]):
4h Arey o T
(I " T4p0)" (§) = m(hE)Tapnp(§), € PRk 4.2)

where m(é ) is the extension by periodicity of the function "ﬂh\w, initially defined on [—m /4h, 7 /4h], to the interval
[—m/h, 7/ k], and

it 1\
m(f)z(m)’ p =2 4.3)
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The following result, proved in [15], guarantees that system (4.1) is dispersive in the sense that the discrete version
of the Strichartz inequalities hold, uniformly on 4 > 0.

Theorem 4.1. Let (q, 1), (G, 7) be two 1/2-admissible pairs. The following properties hold.:

(1) There exists a positive constant C(q) such that

[ | Lo ez < C@ I @ 21y o

uniformly on h > Q.
(ii) There exists a positive constant C(d, r, 7) such that

/ e"(’_sm’ll’[;‘lhf(s) ds

s<t

forall f € L9 (R, " (4hZ)), uniformly in h > 0.

<C@ DN 1 17 @ ) 45)
L4(R,I" (hZ))

In the following lemma we estimate the error introduced by the two-grid algorithm.
Theorem 4.2. Let s > 0 and (q, r), (¢, 7) be two admissible pairs.

(a) There exists a positive constant C(q, s) such that

lexpGt AT} Tang = Thexp(i192)¢ | Loy
< C(g, s) max{1, [1]}(R™™/22) 4 pmints DY ||| s ), (4.6)

holds for all ¢ € H*(R) and h > 0.
(b) There exists a positive constant C(q, g, s) such that

H /exp(i(t—s)Ah)Hﬁhnhf(s)ds—/Thexp(i(t—s)aﬁ)f(s)ds

s<t s<t

La(I;17 (hZ))

B o

Remark 4.1. There are two error terms in the above estimates: A™™$/2.2} and p™is:1} The first one comes from a
second order numerical scheme generated by the approximation of the Laplacian 8)% with Ay, and the second one from
the use of a two-grid interpolator. Observe that for initial data ¢ € H*(R), s € (0, 2) the results are the same as in the
case of the second order schemes. Also, imposing more than H>(R) regularity on the initial data does not improve
the order of convergence. This is a consequence of the fact that the two-grid interpolator appears. The multiplier
m(€) defined in (4.3) satisfies m(§) — 1 >~ & as £ ~ 0 and then the following estimate, which occurs in the proof of
Theorem 4.2,

7/4h
m(hg) = 11°16®) > d& S (hllolm @)’
—n/4h

cannot be improved by imposing more regularity on the function ¢.
Proof of Theorem 4.2.

Case 1. Proof of the homogenous estimate (4.6). Let us consider Al acting on discrete functions as follows:
w/h

(A"p). = / 2eh () de.

J
—n/h
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Note that A" differs from the finite-difference approximation A on the fact that, in A", &2 replaces the symbol
4/ h?sin®(Eh/2) of Ay,.
In view of the definition of A", we have

exp(itA") Ty = Tjexp(itd?)g.
Using the last identity, we write
exp(itAh)HihTMp —Ty exp(itag)q) = exp(itAh)HihTmp — exp(itAh)Th(p
=1(1)+ L(1)
where:
I (t) = exp(it AT} Tapg — exp(it A" Ty
and
L(t) = exp(itAh)HihTM,(p — exp(itAh)Th(p.

In the following we estimate each of them.
Applying Theorem 2.2 to operators A;, and A" we get

< jymin{s/2,2)

1l La,7:1m(nz)) < pmints/2.2} max{1, T}||HihT4h(ﬂ| By, () S max{l, T}H@”H‘V(R)-

In the case of I, we claim that for any s > 0

120l e 0. 7207 hzyy < B o)l s ). (4.8)

To prove this claim, we remark that the operator exp (i t A" satisfies (2.1) and (2.2). Thus Proposition 2.1 guarantees
that exp(itAh) has uniform Strichartz estimates and

I 2 a0, 7;1m (hz)) < HﬂﬁhT4h<p - Th§0||lz(hz)- (4.9)
It is then sufficient to prove that
HH#T“MP —The ||12(hZ) < pmints. 1) el is w) (4.10)

holds for any s > 0. Actually it suffices to prove it for 0 < s < 1. Also the cases s € (0, 1) follow by interpolation
between the cases s = 0 and s = 1. We will consider now these two cases.
The case s = 0 easily follows since

4h
||Hh T4h§0||12(hz) S ||T4h§0||12(4hZ) S ||§0||L2(R)
and
||Th§0||12(hz;) N ||(P||L2(R)-
We now prove (4.10) in the case s = 1:
|13 Tane = Thg| iz S BN 1 vy - (4.11)
Using that

12
nen 2
ITane — Thollzgzy < ( / 23] dé‘) S hllell g ),
&1 27 /4h

it is sufficient to prove the following estimate

|3 Tanp = Tang | 2 S 2U0 b1 - (4.12)
The representation formula (4.2) gives us that

7 /4h

2 20 nren)2 21 12
| 13 Tang = Tang |z < / Im(he) — 1]7|@&)|"d& + / [m(he)|" | Tang(®)|"dg.  (4.13)
—m/4h w/4h<|E|</h
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Using that [m (&) — 1| < |&]| for & € [—m /4, m /4] we obtain
7/4h
mhg) =171 d& < (hllel @)’ (4.14)
—1/4h

Previous results on the Fourier analysis of the two-grid method (see [18, Appendix B]) and the periodicity with period
7 /2h of the function T4;,¢ (&) give us that

. GAikh _
/ [m ()" Tang )| d = f ‘m

/4| /h /4 |EIST/h

fe—
| Tang(€)]

< / | — 1 Tanp (@)
w/4h<|EI<m/h

< f | 1" Tap@)]
/4 <E < /4h

< / & Tanp @ ds < (Bl )
/4 <E<m/4h

We obtain that (4.12) holds and, consequently, (4.11) too. Thus (4.8) is satisfied for any positive s.
Observe that the main term in the right-hand side of (4.13) is given by (4.14), and this estimate cannot be improved
by imposing more than H!(R) smoothness on ¢.

Case I1. Proof of the inhomogeneous estimate (4.7). We proceed as in the previous case by splitting the difference
we want to evaluate as

/ exp(i (t — ) Ap) )" Tap £ (5) ds — f Tyexp(i(t —$)32) f(s)ds =11 + I
s<t s<t

where

I = / (exp(i(t — 5)A) —exp(i(t — ) A")) I} Ty, £ (5) dis,

s<t

and

L= / exp(i (t — )AM) (I T £ (5) — Ty f(5)) ds.

s<t

In the case of /7, applying Theorem 2.2 to operators Aj, and A", we get
11 llza 0. 7:0mhzyy <A™/ 22 max{1, T} I} Tay f | L3 (0.T: B, ,(hZ)"
Applying Theorem 7.1 below to the multiplier m given by (4.3), for any s > 0 we obtain that
”Hihnhf” Lé/(o,T;B;,a(hZ)) S ”f”Lf?/(o,T;B;,AQ(R))
and then /; satisfies:
A R™ints/2.2} max (1, T}||f||Lq/(O’T;B;,2(R)). (4.15)
In the case of I, we claim that

I 21lLa 0, 750m (hz)) < hmm{s’l}||f||Lfi’(o,T;Bf, L(R)" (4.16)



498 L.I. Ignat, E. Zuazua / J. Math. Pures Appl. 98 (2012) 479-517

To prove this claim we consider the cases s =0 and s = 1. When s € (0, 1) we use interpolation between the previous
ones. Also the case s > 1 follows by using the embedding B‘rf, ,(R) — Bfl, ,(R).

The case s = 0 follows from Proposition 2.1 applied to the operators Uy (¢) = Ty exp(i ta)%).

We now consider the case s = 1. Using Strichartz estimates given by Proposition 2.1 to the operator exp(it A") we
get:

4h
120l e, 7507 hnzyy < |3 Tan f — T f | O.T:1 (hZy)*
Theorem 7.1 applied to the multiplier m gives us
4h
|3 Tan f = Tanf | v o, 77 zyy < 2N i 0.7 Bl ()

and

||T4hf Thf”Lq 0,717 (hZ)) h”f”Lq 0,T; BI, R)"

Thus (4.16) holds for s = 1, and in view of the above comments, for all s > 0.
Putting together (4.15) and (4.15) we obtain the inhomogeneous estimate (4.7).
The proof is now complete. O

5. Convergence of the dispersive method for the NSE

In this section we introduce numerical schemes for the NSE based on dispersive approximations of the LSE.
We first present some classical results on well-posedness and regularity of solutions of the NSE. Secondly we obtain
the order of convergence for the approximations of the NSE described above.

5.1. Classical facts on NSE

We consider the NSE with nonlinearity f(u#) = |u|’u and ¢ € H*(R). We are interested in the case of H®(R)
initial data with s < 1. The following well-posedness result is known.

Theorem 5.1. Let f(u) = |u|Pu with p € (0,4). Then

(i) (Global existence and uniqueness [5, Theorem 4.6.1, Chapter 4, p. 109]) For any ¢ € L*(R), there exists a unique
global solution u of (1.2) in the class

ueC(R,L*®R)NL]

loc

(R, L"(R))
for all 1/2-admissible pairs (q, r) such that
H”(I)”H(R) ”(p”LZ(R)’ VvVt e R.

(ii) (Stability [5, Theorem 4.6.1, Chapter 4, p. 109]) Let ¢ and ¥ be two L*(R) functions, and u and v the corre-
sponding solutions of the NSE. Then for any T > 0 there exists a positive constant C(T, [¢|l 2, ¥ [l L2®r))
such that the following holds:

lu = vl e o.7: 22y < C(Ts 9l 2y 1 1 2@) Il = ¥l 2wy (5.1)
(iii) (Regularity) Moreover if ¢ € H*(R), s € (0, 1/2) then [5, Theorem 5.1.1, Chapter 5, p. 147),
ueC(R, H ®)NLL (R, B, (R))

loc
for every admissible pairs (q, ).
Also if o € H'(R) then u € C(R, H'(R)) [5, Theorem 5.2.1, Chapter 5, p. 149].

Remark 5.1. The embedding B? 2(]R) — W“ (R), r =2 (see [5, Remark 1.4.3, p. 14]), guarantees that, in particular,
uell (R, Ws"(R)). Moreover, fu)e L! (R, Bs 2(R)) and for any 0 < s < 1 (see [5, formula (4.9.20), p. 128]),

loc loc

[T LA (5.2)

Sip- L4(1,B!,(R))

||f(”)||Lq (I.B}, ,(R)) ~
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The fixed point argument used to prove the existence and uniqueness result in Theorem 5.1 gives us also quantitative
information of the solutions of NSE in terms of the LZ(R)-norm of the initial data. The following holds:

Lemma 5.1. Let ¢ € L>(R) and u be the solution of the NSE with initial data ¢ and nonlinearity f(u) = |u|Pu,

“IPIA=P) cuch that for any 1/2-admissible

p €(0,4), as in Theorem 5.1. There exists c(p) > 0 and Ty = c(p)||(p||L2(R)

pairs (q,r), there exists a positive constant C(p, q) such that

Nl Lacr,r @y < Cp, Pllell 2wy (5.3)
holds for all intervals I with |1| < Tp.

Proof. Let us fix an admissible pair (g, r). The fixed point argument used in the proof of Theorem 5.1 (see [4,
Theorem 5.5.1, p. 15]) gives us the existence of a time Ty,
_4p
4-—p

To =c(p)ligll 2 g

such that
lull e, 10;:Lr ®) < C(Ps D@l L2(R)-
The same argument applied to the interval [(k — 1)Tp, kTol, k > 1, and the conservation of the L?(R)-norm of the
solution u of the NSE gives us that
lull Lo (1T kT L7 (®y) < C (P @) |u((k — DTo) | e =@ Dlell2w)-
This proves (5.3) and finishes the proof of Lemma 5.1. O

5.2. Approximation of the NSE by dispersive numerical schemes

In this section we consider a numerical scheme for the NSE based on approximations of the LSE that has uniform
dispersive properties of Strichartz type. Examples of such schemes have been given in Sections 3 and 4.
To be more precise, we deal with the following numerical schemes:

e Consider
{n;ﬁl + Ahuhh =f(u"), >0, (5.4)
u(0) =¢",
where Aj, is an approximation of A such that exp(if Aj) has uniform dispersive properties of Strichartz type. We
also assume that Ay, satisfies Re(i Ay ¢, ¢)n < 0, Re being the real part, and has a symbol aj, (§) which verifies

—&2| <Y atk, hE[* 2o 5.5
jan®) — €[ < ) _atkmigl", Ee|-1. (5.5)
keF
e The two-grid scheme. The two-grid scheme can be adapted to the nonlinear frame as follows. Consider the

equation
"+ Apu®t = I F ()0, 1> o0, 56
uO,h(O) — Hﬁh h’

where (IT ih)* :12(hZ) — I*(4hZ) is the adjoint of IT ih :1?(4hZ) — 1>(hZ) and ¢" is an approximation of ¢.
By [15, Theorem 4.1], for any p € (0, 4) there exists of a positive time To = To(ll¢ || .2(r)) and a unique solution
ul0 e C(0, To; 1>(hZ%Y)) N LI(0, To; 172 (hZ1)), g = 4(p + 2)/ p, of the system (5.6). Moreover, u"* satisfies
h 4h
H” HLOO(R,[Z(th)) < HHh 2 Hﬂ(hzd) 5.7
and
h 4h_h
”“ H L4(0,Ty;IP+2(hZ4)) < e(To) ”Hh 4 ||12(th)’ (5.8)

where the above constant is independent of h.
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With Ty obtained above, for any k > 1 we consider ukh kT, (k + 1)Ty] — C the solution of the following

system:
iuf,h + Apukh = H;hf((nih)*uk,h), te [kTO, (k + l)To], (5.9)
ubh (kTo) = I uk =11 (K Ty).
Once u®" are computed the approximation u” of NSE is defined as
ul (1) =u* (1), 1 e[kTy, (k+ DTp). (5.10)

We point out that systems (5.6) and (5.9) have always a global solution in the class C (R, 12(hZ)) (use the em-
bedding 12(hZ) C I°(hZ), a classical fix point argument and the conservation of the [2(hZ)-norm). However,
estimates in the L9(0, T;!” (hZ))-norm, uniformly with respect to the mesh-size parameter 47 > 0, cannot be
proved without using Strichartz estimates given by Theorem 4.1. Thus we need to take initial data obtained
through a two-grid process. Since the two-grid class of functions is not invariant under the flow of system (5.6)
we need to update the solution at some time-step 7y which depends only on L?(R)-norm of the initial data ¢.

The following theorems give us the existence and uniqueness of solutions for the above systems as well as quanti-
tative dispersive estimates of solutions u”, similar to those obtained in Lemma 5.1 for the continuous NSE, uniformly
on the mesh-size parameter i > 0.

Theorem 5.2. Let p € (0,4), f(u) = |ulPu and Aj, be such that Re(i Ap, ) <0 and (3.5) holds. Then for every
goh € I?(hZ), there exists a unique global solution ul e C(R, I>(hZ)) of (5.4) which satisfies

h h
H” ||L°°(R,12(hZ)) < ||‘P ||12(hZ)' (5.11)
Moreover, there exist c(p) > 0 and C(p, q) > 0 such that for any finite interval I with |I| < Ty = c(p)||<ph HIZ?ZZ/)(AFP)
h h
| HLq(I,zr(hZ)) <Cp. e ||12(hZ)’ (5.12)

where (q,r) is a 1/2-admissible pair and the above constant is independent of h.

Proof. Condition Re(iAj¢, @), < 0 implies the [*(hZ) stability property (3.4). Then local existence is obtained by
using Strichartz estimates given by Proposition 2.1 applied to the operator exp(it Aj) and a classical fix point argument
in a suitable Banach space (see [17] and [19] for more details). The global existence of solutions and estimate (5.11)
are guaranteed by the properties Re(i A, ¢)n <0, Re(if (up), up)n = 0 and the energy identity:

d
- |u" @) |y = 2Re(i Anu" u"), +2Re(if (u"), u"), <O, (5.13)

Once the global existence is proved, estimate (5.12) is obtained in a similar manner as Lemma 5.1 and we will omit
its proof. O

Theorem 5.3. Let p € (0,4) and g = 4(p +2)/p. Then for all h > 0 and for every ¢" € 1>(4h7Z), there exists a unique
global solution u" € C(R,1*(hZ)) N L (R, IP**(hZ%)) of (5.6)~(5.10) which satisfies

h 4h _h
H” HLOO(R,lZ(hZ)) < th @ Hﬂ(hZ)' (5.14)
Moreover, there exist c(p) > 0 and C(p, q) > 0 such that for any finite interval I with |I| < Ty = c(p)|l¢" ”1_2‘(‘52/;4_17)
h 4h h
| ||Lq<1,1ﬂ+2(h2)) <Cp.g)|my'e ||12(hZ)’ (.15

where (q,r) is a 1/2-admissible pair and the above constant is independent of h.

Proof. The existence in the interval (0, Tp), Tp = To(||<ph l2nz)) for system (5.4) is obtained by using the Strichartz
estimates given by Theorem 4.1 and a classical fix point argument in a suitable Banach space (see [17] and [19] for
more details).
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For any k£ > 1 the same arguments guarantee the local existence for systems (5.9). To prove that each system has
solutions on an interval of length Ty we have to prove a priori that the />(hZ)-norm of u" does not increase. The
particular approximation we have introduced of the nonlinear term in (5.6)—(5.9) gives us (after multiplying these
equations by u*” and taking the /2 (hZ)-norm) that for any ¢ € [kTp, (k + 1)To]

[ Oz = 1" CTD iy < [ G iz

and then
[ O iy < 1O |y = [T |2y

This proves (5.14) and the fact that for any k£ > 1 system (5.9) has a solution on the whole interval [k T, (k + 1) Tp].
Estimate (5.15) is obtained locally on each interval [k Ty, (k 4+ 1) Tp] together with the local existence result. O

Let us consider u” the solution of the semi-discrete problem (5.4) and u of the continuous one (1.2). In the following
theorem we evaluate the difference between u” and Tju.

Theorem 5.4. Let p € (0,4), s € (0,1/2), f(u) = |u|’u and Ay be as in Theorem 5.2 satisfying (5.5). For any
¢ € H*(R), we consider ul and u € L (R, H*(R)) N qugc(R, B;+272(R)), qo = 4(p + 2)/p solutions of problems
(5.4) and (1.2), respectively. Then for any T > 0 there exists a positive constant C(T, ||l¢|| ;2 ®)) such that

[ = Thsel Lo, atm 2y + 10" = Tt 0.7 42
<C(T ¢l p) a6, Mlulieo.rme@y + (0 + e W)l oo g )] 10

holds for all h > 0.

In the case of the two-grid method, the solution u” of system (5.6) approximates the solution « of the NSE (1.2)
and the error committed is given by the following theorem.

Theorem 5.5. Let p € (0,4), s € (0,1/2), f@u) = |u|’u. For any ¢ € H*(R), we consider u" and
ue LR, H*(R)) N LiJOOC(R, B;+2,2(R))’ qo = 4(p + 2)/p, solutions of problems (5.6)—(5.10) and (1.2), respec-
tively. Then for any T > 0 there exists a positive constant C(T, ¢l 2(r)) such that

Ju" —Thu ||qu(0,T;zp+2(hZ)) + [ = Thu L(0,T;1%(hZ))
< C(T. @l 2wy P)[P* NullLo.7: 15 @) + (B° + 1*/?) “””%1(01:3‘}]% 2<R))] G-I

holds for all h > 0.

Remark 5.2. Using classical results on the solutions of the NSE (see for example [4, Theorem 5.1.1, Chapter 5,
p. 147]) we can state the above result in a more compact way: For any 7 > 0 there exists a positive constant
C(T, |l¢llas®)) such that

H“h - Th”” L90(0.T: 10 2(hZ)) T ””h - Th”” Lo0(0,T;12(hZ)) S C(T’ ”‘/’”H-‘(IR))hS/2 (5.18)
holds for all & > 0.

Theorem 5.4 shows that if #* < e(s, h) then the error committed to approximate the nonlinear problem is the same
as for the linear problem with the same initial data. As we proved in Section 3.2, for the higher order dissipative
scheme Ay = Ay, — ih*™=D(=A,)™, m > 2, and for the two-grid method, (s, h) = h*/2 > h’. So these schemes
enter in this framework. It is also remarkable that the use of dispersive schemes allows to prove the convergence for
the NSE and to obtain the convergence rate for H*(R) initial data with 0 < s < 1/2. We point out that the energy
method does not provide any error estimate in this case, the minimal smoothing required for the energy method being
H*(R), with s > 1/2 (see Section 6 for all the details).
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In the following we prove Theorem 5.4, the proof of Theorem 5.5 being similar since the estimates in any interval
(0, T) are obtained reiterating the argument in each interval (kTp, (k + 1)Tp), k > 0, for some To = To (|||l ;2 (R)) in
view of the structure of the scheme.

Proof of Theorem 5.4. The idea of the proof is that there exists a time 77 depending on the L?(R)-norm of the initial
data:

—4p/(4—p)}
L2(R) ’

such that the error in the approximation of the nonlinear problem
erry (1) = u" (1) = Thu (1),

when considered in the L0, T1; [PT2(hZ)) N L0, Ty; I2(hZ))-norm is controlled by the error produced in the
linear part

Ti ~min{1, [l¢|

lin

erry, (1) =exp(itAp)Thep — T}, exp(itaf)gp.
In the following we denote by (g, r) one of the admissible pairs (oo, 2) or (qo, p + 2). We now write the two
solutions in the semigroup formulation given by systems (5.4) and (1.2):

t

ul(t) = exp(it Ap)Tho + i/exp(i(t —$)Ap) f(u"(5)) ds,
0
and, respectively,
t

Thu(t) = Tyexp(itd?)g +i/Th exp(i(t — 5)37) f (u(s)) ds.
0

Thus

I
lernllao.rirmzy < e[| oo 7 zyy + 1€ | oo, 730r ) (5.19)
where, by definition,
t t

err; (1) = / exp(i(t — s)Ah)f(uh(s)) ds — / T, exp(i(t — s)af)f(u(s)) ds.
0 0
For the linear part the error is estimated in Theorem 3.1:
lerti™| Lo o7y < C@e(s, Hymax{T, Bl ms - (5.20)
In the following we will estimate err,®". We write err,*" () = 12h @)+ I3h (1), where

t

1) = /exp(i(t — $)AR) (f (4" ($)) = Tp f (u(s))) ds
0
and
t
e = /(exp(i(t — $)AR)Th f (u(s)) — Thexp(i(t — 5)37) f (u(s))) ds.

0

Step 1. Estimate of I;’. For the last term, the inhomogeneous estimate (3.8) in Theorem 3.1 and estimate (5.2) give
us that
h
175 O o 0. hzyy < €@l By max{ 1, TH| £ @) ”L%(o,r;Bfﬁzy,z(R»
4—p(

1-25) 1
< C(@)e(s,h)ymax{l, T}T 4 ||“||fq+<o,T;B;+22<R>>- (5.21)
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Step II. Estimate of I{’. We now prove the existence of a time Ty such that for all 7 < Tp, Izh satisfies

-z spl-1% +1
|20 oo 70 hzyy < EPIT Hllemmill o, rar2izpy 19172 + BT Ml oo rops (522
The inhomogeneous Strichartz’s estimate (2.5) applied to the operators (exp(itAy));>0 shows that
h h
12O o070 2y < C@[ (") = Tuf @)
h
<C(@)| f(u") - f(Thu)HLq(g(o’T;l(pﬂ)/(hZ))

+ C(@) | f(Thu) = Tp f )|

L9.0, 731+ (hZ))

Lq(/) (0,T;l<[’+2)/(hZ)) ' (523)

We evaluate each term in the right-hand side of (2.31). In the case of the first one, applying Holder’s inequality in
time we get

| £ @) = £ (T

ST |u =Ty Hqu(O,T;lP+2(hZ)) (" oo ©.13r2mzy ”TWHWO T; 11’”0@))

L"(/) O,T:1r+2 (h7))

Let us now set Tj as it is given by Lemma 5.1 and Theorem 5.2:

4p

T() — ”(’OHLZ(]R)

Thus, by Theorem 5.1, Lemma 5.1 and Theorem 5.3 both u" and Tju have their L7(0, T; I" (hZ))-norm controlled
by the L2-norm of the initial data:

” u” ” L900.70:0+2 0z S CPIell 2 )

and

||Thu||Lq0(o To;1P+2(hZ) S < CP)lull a0 (0,Tp; LP2(R)) S C(P)”(P”LZ(]R)

These estimates show that for any 7' < T the following holds:

[ £ = £ O] g sy gy < COT 8" =T oo 715202 191722 (5.24)

It remains to estimate the second term in the right-hand side of (5.23). We will use now the following result which
will be proved in Section 7.

Lemma 5.2. Let s € [0, 1], p > 0 and f(u) = |u|Pu. Then there exists a positive constant c(p, s) such that
+1
|f (Tnte) =T f @ o2y iy < € RN o (5.25)

holds for all u € WSP+2(R) and h > 0.

Using this lemma, Holder inequality in time and the embedding B? b2, ,(R) — W* P+2(R) [5, Remark 1.4.3], we
obtain:

1-2 p+1
S e ORT =5 ull g o 7, were2my)

| £ (Tpu) = Th £ (w)||

’
L90(0,T:1(r+2" (7))

_r +1
<cp O T Nl iio 1 sy (526)

Both (5.24) and (5.26) show that I, (¢) satisfies (5.22).

Step III. Estimate of err;. Collecting estimates (5.20), (5.21) and (5.22) for both (g,r) = (qo, p + 2) and
(g, r) = (00, 2) we obtain that for any T < Ty the error erry, satisfies:
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lertn |l Lao 0, 7:10+2(nzy) + TRl Loo 0, 7.2 (h7Z)

< C(pymax{1, TYe(s, W@l @ + CPetnll oo, 7:02mz) T 10125,

P 4—p(1-2s) P+1

sl—7 p+1
+h'T 4IIMIILqO(O,T;BMZ(R))+e(s,h)max{1,T}T 7 ||u||Lq0(0,T;B;+2’2(R>).

(5.27)

Now, let us set 77 < min{1, Ty} such that

1-p/4 1
Ty el < 5-

Then the error term erry, in the right-hand side of (5.27) is absorbed in the left-hand side:

lertnll Lao o, 7350742z + €Ttn 1l Lo 0,722
+1
S CPes Wl @ + CPNul ag7:p @y +esh).

We now obtain the same estimate in any interval (0, 7). Using that the L2(R)-norm of the solution u is conserved
in time we can apply the same argument in the interval [kT7, (k + 1)T1]:

lertnll Lo ery, e+ 1y7y50002hz9) + N€Tnll oo ey et 1y 135212
s p+l1
< C(Prels: W |k T)| oy + CPIE + o6 )l Lao e, es1y7,: 85, B0
Let us choose T > 0 and N > 1 an integer such that (N — 1)71 < T < NT;. Thus

lerrn |l Lao 0, 7:10+2(nzy) + TTRl Loo 0, 7:12(n2Z)

N-—1
< D lermnll oo ery esnymsir2mzy + 1ethl o ery eanym2iizy)
k=0
N-1 N—-1
s p+1
< C(pets, h) kZO |k T o gy + C) (I + (s, ) ng el o ey k17385, o)

Using that (p + 1)/go < 1 we have by the discrete Holder’s inequality that

N—-1 Lt

ptl —z
) el a0 @y, e 1yry: B oy SN2 Moo 0,7:85
k=0

Thus the error satisfies:

|lerry, ||L‘10(0,T;1P+2(hz)) + |lerry ||L00(0,T;12(hz))

=25 pt
SNe(s. lullxo.r: @) + (0 + el DN lullfao 7,55 )

+1
< N[e(s, llull Lo, 7: 15 ®) + (A + £, h))||“||Z40(0,T;B;+22(R)>]

p+1
SC(T. Nell) (e Wluleo.rsms @y + (0 + e M)l a0 7.5, 0 )

This finishes the proof of Theorem 5.4. O
6. Non-dispersive methods

In this section we will consider a numerical scheme for which the operator Aj; has no uniform (with respect to
the mesh size &) dispersive properties of Strichartz type. Accordingly we may not use L L', estimates for the linear
semigroup exp(itAj) and all the possible convergence estimates need to be based on the fact that the solution u of the
continuous problem is uniformly bounded in space and time: u € L°((0, T); L*°(R)). Thus, the only estimates we
can use are those that the L?-theory may yield. When working with H* (R)-data with s > 1/2, using L>®(R; H* (R))
estimates on solutions and Sobolev’s embedding we can get L?-estimates.
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There is a classical argument that works whenever the nonlinearity f satisfies
| f@) = F@] < C(lul? + [v]?)lu = v]. (6.1)

Standard error estimates (see Theorem 3.1 with the particular case (g, r) = (00, 2) or [28, Theorem 10.1.2, p. 201])
and Gronwall’s inequality yield when 0 <t < T':

h 2 +1
“M (t) - Thu(t) “12(/12) g hl/ C(T)(”‘P”HI(R) + ||u||£oo(0’T: HI(R))) exp(T”M||§oo<0’T;H1(R)))’ (62)

for the conservative semi-discrete finite-difference scheme. For the sake of completeness we will prove this estimate
in Section 6.1.

We emphasize that in order to obtain estimate (6.2) we need to use that the solution «#, which we want to approxi-
mate, belongs to the space L°°(R), condition which is guaranteed by assuming that the initial data is smooth enough.
However, obviously, in general, solutions of the NSE do not belong to L°°(R) and therefore these estimates cannot
be applied. One can overcome this drawback assuming that the initial data belong to H'!(R) or even to H*(R) with
s > 1/2 since in this case H®(R) < L*®(R). Using H!-energy estimates and Sobolev’s embedding we can deduce
L*°-bounds on solutions allowing to apply (6.2). We emphasize that this standard approach fails to provide any error
estimate for initial data in H*(R) with s < 1/2.

However, this type of error estimate can also be used for H*(R)-initial data with s < 1/2 (or even for L?(R)-initial
data), by a density argument. Indeed, given ¢ € H*(R) with 0 < s < 1/2, for any § > 0 we may choose ¢s € H'(R)
such that

lo — @sllHs @) < 6.
Let us be the solution of NSE corresponding to ¢s. Obviously, ¢5 being H ' (R)-smooth, we can apply standard results
as (6.2) to us. On the other hand, stability results for NSE allow us to prove the proximity of u and us in H*(R). This
allows showing the convergence of numerical approximations of us, that we may denote by us ;, towards the solution
u associated to ¢ as both 6 — 0 and /& — 0. But for this to be true /# needs to be exponentially small of the order of
exp(—1/8) which is much smaller than the typical mesh-size needed to apply the results of the previous sections on
dispersive schemes that required / to be of the order of §%/%.

6.1. A classical argument for smooth initial data

In this section we present the technical details of the error estimates in the case of H!(R)-initial data. In this
case we do not require the numerical scheme to be dispersive, the only ingredient being the Sobolev’s embedding
H'(R) < L®(R).

Theorem 6.1. Let f(u) = |u|Pu with p € (0,4) and u € C(R, H(R)) be solution of (1.2) with initial data ¢ €
H'(R). Also assume that Ay, is an approximation of order two of the Laplace operator 8)% and u" is the solution of
the following system

iiu?+Ahuh=f(uh), >0, ©63)

u(0) = Ty,

satisfying ||u" || oo (0.7)xhz) < C(T, @]l g1 ))-
Then forall T >0and h >0

[ @ = Thu )] 12y < 1P max{ T T2} (U0 1y + 15,7 1) PN oo g1 ) (69

We now give an example where the hypotheses of the above theorem are verified. We consider the following NSE:

. 2, _ p
{zu;—i-axu [ulPu, xeR,t>0, 6.5)
u0,x)=9¢x), xeR,
and its numerical approximation
o h h _ |, h|P, K
{lb:lt+AhL;l—|u‘u, t>0, 66)
u"(0) = ¢".
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In the case of the continuous problem we have the following conservation laws (see [5, Corollary 4.3.4, p. 93]):

|u®] 2@ = 101l 2m)s

d Uy (£, %) dx+— u(t, x)|Pdx ) =o.
4 (5 [l oP flue
]R

The same identities apply in the semi-discrete case (it suffices to multiply Eq. (6.6) by ", respectively u , to sum
over the integers and to take the real part of the resulting identity):

and

" (t)Hﬂ(hZ) lo" ”12(;12)’

and
wh (@0 =l (1) |2
h

>

JEZ

h hop2)
+p+22{uj<z)| )_o.

JEZ

In view of the above identities, the hypotheses of Theorem 6.1 are verified.

Proof of Theorem 6.1. Using the variations of constants formula we get

t

Tyu(t) = Tpexp(itdl)p + / Ty exp(i(t — 0)3%) f (u(0)) do
0

and
u (1) =exp(itAh)Th¢+/ p(i(t —0)Ap) f (u"(0)) do
0

Then
erry (1) := ||uh(t) — Thu(?) ||12(hZ)

< |exp(itAp)The — Ty eXP(ita)%)(p”lz(hZ)

+ f [exp(ic = o) An) (f (4" (@) = T f (4(0))) do | 125, do
0

t
- / lexp(i(t = 0)AR) T f (u(@)) = Trexp((t = 0)35) f (1(0)) ] 124z D (6.7)
0
Now, applying the error estimates for the linear terms as in (3.9) with e(1, ) = h'/?, we get
|exp(it A The — T exp(it67) e 12z < THY 2191l 11 ) - 6.8)

Also, using that f(u) = |u|”u we have that || f (u)[| 1 gy < Cllull? and then by (3.9) we get

H(R)

f”exp(i (t =) Ap) Ty f (@) = Thexp(i(t — 0)37) f (u(©@))]| 247 do
0

SCTR2| F @) 1o 711 )

211/2 +1
< CT h / ||u||€°°(O,T;HI(R))' (69)
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Using the lZ(hZ)—stability of exp(itAp), (6.7), (6.8) and (6.9) we obtain
t
€Iry (t) < Thl/Z”‘P”Hl(R) + CTzhl/z”u“i—:ol(o’T;HI(R)) + f || f(uh(a)) - Thf(l/t(O')) ||12(hZ)'
0

Now we write f(u"(s)) — Th f(u(s)) = I['(s) + I3 (s) where
') = f(u" () = f(Thu(s)), 1) = f(Thu(s)) — Tn f(u(s)).

In the case of Ilh we use that f satisfies (6.1) to get
” I?(S)Hmm < C(”uh(s)”lpoo(hZ) + HTh“(s)”fw(hZ)) ”“h(s) - Th”(s)”ﬂ(hZ)

< C(”“h ”i""((O,T)th) + ”ulliw((O,T)xR)) ””h(s) — Thu(s) ||12(hZ)
<

p
C”M ”Loo(O,T;Hl(R))errh (S)

Using the same arguments as in Lemma 5.2 we obtain that

”Izh(s)”ﬂ(hZ) < hfjucs) ||II;T(1R)'

Putting together all the above estimates, for any 0 < ¢ < 7 we obtain:

t

erry (1) < h1/2T||€0||H1(]R) + ||u||€oo(0,T;H1(R))/errh(a)do*

0
p+1 27172y, 1P+l
+hT”u”Loo(()’T;H1(R)) + T h ”u“LOO(O,T: Hl(R))
t
1/2 2 p+l1 p
< h / max{T, T }(||¢”H1(R) + ”u“LOC(O,T: HI(R))) + “u”Loo(O’T;Hl(R))/enh(s)ds-
0

Applying Gronwall’s Lemma we obtain

+1
errh(t) 5 h1/2 maX{Ts TZ}(”(P”H‘(R) + ”u“ZOO(O’T: HI(R))) eXp(T”ullioo«)’T;Hl(R)))' (610)

The proof is now finished. O
6.2. Approximating H* (R), s < 1/2, solutions by smooth ones

Given ¢ € H*(R) we choose an approximation ¢ € H!(R) such that || — @|| gs (R) 1s small (a similar analysis can
be done by considering @5 € H®! with s; > 1/2). For ¢ we consider the following approximation of i solution of the
NSE (1.2) with initial data ¢:

{ia,ﬁh(z)JrAhﬁh:f(ﬁh), 1>0, (6.11)

up(0) =The,
where the operator Ay, is a second order approximation of the Laplace operator. We do not require the linear scheme
associated to the operator Ay to satisfy uniform dispersive estimates.
Solving (6.11) we obtain an approximation #;, of the solutions # of NSE with initial datum ¢, which itself is an
approximation of the solution u of the NSE with initial datum ¢.
In the following theorem we give an explicit estimate of the distance between i, and u.

Theorem 6.2. Let 0 < s < 1/2, ¢ € H*(R), and u € C(R; H*(R)) be the solution of NSE with initial datum ¢ given
by Theorem 5.1. For any T > 0 there exists a positive constant C(T, |||l 2(r)) such that the following holds

IThte = iinl oo, r:20z9) < C(T- P @l 2@) 10 = @l +h' 2 exp(Thill g i) (6:12)
forallh >0 and$ > 0.
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In the following we show that the above method of regularizing the initial data ¢ € H*(R) and then applying
the H'(R) theory for that approximation does not give the same rate of convergence 4*/? obtained in the case of a
dispersive method of order two (see (5.18)). This occurs since for [[¢ — @2, to be small, [|@] ;1) needs to be
large and ||| Loo (o, 7: g1 (R)) tOO-

To simplify the presentation we will consider the case p = 2.

Theorem 6.3. Let p=2,0<s < 1/2, o € H*(R) and u € C(R, H*(R)) be solution of NSE with initial data ¢ given
by Theorem 5.1 and uj, be the best approximation with H L(R)-initial data as given by (6.11) with the conservative
approximation A, = Ay,. Then for any time T, there exists a constant C(||¢||gs®), T, ) such that

||Thl/t - MZ H L0, T;12(hZ)) < C(”‘P”H%]R)’ T, S)|10gh|_m . (613)
To prove this result we will use in an essential manner the following lemma.

Lemma 6.1. Let 0 < s < 1 and h € (0, 1). Then for any ¢ € H*(R) the functional J, , defined by

1 h
Ing(@) =5l = &lizag + 5 exp(Igl ) (6.14)
satisfies:
min_ Jy () < C(l@ll a5 ). s)llogh| /07, (6.15)
geH (R)

Moreover, the above estimate is optimal in the sense that the power of the |logh| term cannot be improved: for any
0 <€ <1 —s there exists 9. € H*(R) such that

min, g1y Jh.o. (&)
.. geH! (R) h,0:\8
11}1111)1(r)1f lTog h|~G+97(1—5=2) > 0. (6.16)

Remark 6.1. We point out that, to obtain (6.15) and (6.16), we will use in an essential manner that s < 1. In fact in
the case s = 1 the minimum of Jj, over H'(R) is of order /. This can be seen by choosing g = ¢ and observing that
Jn(@) = hexp(ll¢ll g1 (r))- This choice cannot be done if ¢ € HS (R)\H1 (R).

Proof of Theorem 6.3. Let us choose ¢ € H!(R) which approximates ¢ in H*(R). Then by Theorem 6.2 we get

IThie = @1} o 0,722 zy) < C(T5 10l 2 19 = @l 72y + R exXPRT 19171 )
< C(T. Nl 2@) Iy, a7, (V 2T, (6.17)

where i, is the solution of (6.11) with initial data Ty, ¢.

For each £ fixed, in order to obtain the best approximation uj of T,u, we have to choose in the right-hand side of
the above inequality the function ¢* which minimizes the functional J h/2T (-) defined by (6.14) over H'(R). Using
estimate (6.15) from Lemma 6.1 we obtain the desired result:

”Th” — uj, H L0, T:2(hZ)) S C(”‘P”H"(R)’ T, s) ¢€I2%I(1R) Jh,ﬁ(p(v 2T</3)

< C(ll@las @y, T, s)llogh| 1=,

where uj, is the solution of (6.11) with initial data T,¢*. O

Proof of Lemma 6.1. The functional Jj , is convex and its minimizer, g, is unique. The function g, satisfies the
following equation:
—¢ 4 gn + hexp(llgnll 3 @) (—Agn + gn) =0, (6.18)

and so

[7+ hexp(llgnlli @) — A)]gn = .
(R)
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Thus ¢, = |lgnll g 1(R) is the unique solution of

ch= H - A)l/z[l + hexp(c;zl)(l -0 (6.19)

1
4 H L2(R)

Step I. A useful auxiliary function. Let us consider the function gy, (x) = hx? exp(x) — ¢ for some positive constants
B and c. We prove that there exist two constants a;(c) and a>(c) such that the solution xj, of the equation g;(x) =0
satisfies

|logh| — Blogllogh| 4 ai(c) < x;, < |logh| — Blog|logh| + ax(c). (6.20)

Let us choose a real number a. Using that 7 = exp(—|logh|) we get:
gn((llogh| — Blogl|logh| +a)) = (llogh| — Blog|logh| +a)ﬁexp(—ﬂlogllogh| +a)—c

log|log A a \*
=(1-8 + exp(a) —c
|logh| |logh|

}:6 exp(a) — c.

Choosing now two constants a; and a» such that exp(a;) < ¢ < exp(az) and using that the function g, is increasing
we obtain that, for 2 small enough, xj,, solution of g (x) = 0, satisfies (6.20).

Step I1. Upper bounds on cj,. Using that ¢ € H*(R), identity (6.19) gives us

en= (1 = 21+ hexp(c) I = M)] 0] 2y
= (1 = &)1+ hexp(ci) (I = &)] 71T = 8| 1o,
= (he®) V2 [neh 1 = )] VP[4 e = 2] = 8P
< (hexp(ci)" "ol e,
since, when s € [0, 1], the symbol in the Fourier variable of the operator
[hei (1 — M)]"2[1 + e (1 — )]

is less than one.
Then cﬁ (h exp(cﬁ))l_s < ||(p||%{_g(R) and

1/(1— 2 2/(1—s
()" et < ol 621)
Applying the result of StepIto §=1/(1 —s) and c = ||go||12q/§(lﬂg)s) we obtain that ¢, satisfies:
¢ < llogh| — — logllogh| +a», 6.22)
-5

for some constant ap = a2(||(p||§{/s((lﬂg)s) ). In particular, when s < 1,

— S

2y _ 2 1
hexp(ch) = exp(ch - |logh|) <exp ~1 logllogh| +a> )| — 0,

as h — 0.

Step IIL. Estimates on Jj,(gp). Using that the minimizer g satisfies Eq. (6.18) and ¢, = [|gn || g1 (g)> We get

. _ _ _ 2
denf}ll?R) In(®) =2Jn(gn) = llp — gnll L2y + hexp(llgnll )

= (h exp(c/%))zﬂ (I = A)gn ”i%R) + heXp(Cﬁ)
= (hexp(ci)* (1 = D[ +hexp(ci) (I = A)] 025, + hexp(c)
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= (heh)" |[neh (1 — M)]' ™ [1 + heh (= M) 7' = AY Pz + heth
(he®)" Nl sy +heh < (heD)" (Il gy + (he®)' ™)
c(s. el @) (hexp(c}))’,

where in the last inequality we used that s < 1 and & exp(c,zl) —0ash—0.
Thus, by (6.22) we obtain that

<
<

min_ J;(g) < (s, llollas@®) (hexp(cq))’ < (s, ||(P||HS(R))|1Ogh|_ﬁ- (6.23)
geH! (R)

Step IV. A particular function ¢. Let us choose ¢ > 0 and ¢, be defined by means of its Fourier transform
1

1+ 52)s+%+5 ’
Thus, for any ¢ > 0, ¢, € H*(R). We will prove that, in this case, the solution ¢, j, of (6.19) satisfies

G2(E) =

1
¢t > llogh| = ~———log|logh| +ar. (6.24)

and

min_ Jjg, (8) = (hexp(c2,))" ™ > |logh|~C+0/0=s=e), (6.25)
geH (R)

for some constant a; .
To prove (6.24) and (6.25) we claim that for any y € (—1/2, 2) and x large enough the following holds:

(1427 c(y)
(x+1+&2)2 % > x3/2-v"

(6.26)

Using that c¢ 5, is solution of (6.19) and estimate (6.26) with y =1/2 —s — ¢ and x = (hexp cg’h)_l we obtain

2 (1+&)§2) 1 (1+£)2

Cen = 2 22d= 2 2 2 \£\—1 2112
J (it hexp(el (1 +£%) (hexp(c2 )2 ] ((hexp(@? )"+ (1+82)

> : :
(hexp(cZ ,))'—s

dg§

and
hCXP(Cg,h)(Cg,h)l/(FS?S) —120.

Applying Step I to the function g;, = hx'/(17578) exp(x) — 1 we find that
1
¢z > llogh| — ———logllogh| +ai, (6.27)
’ —s5—¢

for some constant a;.
This concludes the proof of (6.24).
We now prove (6.25). In view of (6.18) the minimizer g, j satisfies

—@e + gen + hexp(lgen 1 ) (—Agesn + 8en) =0, (6.28)
and
-1
gen=[I+hexp(cZ,)I — D] ¢, (6.29)

where c¢ j = ||ge,h||H1(R)~
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Thus

2Jh,0. (8en) = 10 — 8ol 2y + hexp(llgenll i gy)
= (hexp(c2,))* (1 = A)gen|F2m +hexp(c2,)

= (hexp(c2,))* | (1 = M1 +hexp(c2 ) — A)] 7 e 72 +hexp(c2,).
(R)

Writing the last term in Fourier variable we get

(14697, ©)
) —(h 2 2 &,h

eXP(Cg,h)

(1 +;§2)%—.v—s )
J ((h exp(cgvh))—l + 14 £2)2 §+ eXP(Cs,h)

The same arguments as in Step II give us that A exp(ci ») — 0 as h — 0. Then for small enough £, x), defined by
xp = (h exp(cgv h))_1 is sufficiently large to apply inequality (6.26) with y =3/2 — s — ¢. We get

2 m1n In,e.(8) = (h exp(cg’h))ﬁs + hexp(cg’h) > (h exp(cgyh))ﬁs.
geHI(R)
Using now (6.27) we obtain
min Jp o, (g) 2 [logh|™ T
geH!I(R)

which proves (6.16).
To finish the proof it remains to prove (6.26). For |x| — oo, using changes of variables we get

(1+827 [a+gy 1
/<x+1+52)2 5 2 /x2+<1+52>2d“0(x_2)
7

o0

2y 1
0 I
— du+ o[ =
s:(u2—1)1/2/x2+u4 (n? —11/? wt (xz)
2
o
2y 1
I
Z/xz—i—/x“du—i_o(x_Q)
2

= : / £ dé+ 0 1
p=x1/2g x3/2=Y 1+¢&4 x2

s>x—1/2

which proves (6.26). O
Proof of Theorem 6.2. Using the stability result (5.1) for the NSE we obtain

”I/l — ﬁ”Loo(()’T;LZ(]R)) C(T’ P, ||¢||L2(R)v ||¢||L2(]R))”¢ - ¢”L2(R)
C

<
<C(T, p, 19l 2wy) lg — @l 2Ry
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Now using the classical results for smooth initial data presented in Section 6.1, by (6.10) we get

| Ty < Ch'Pexp(TNa|? ).

~
—Up ||L°°(O,T;12(hZ)) L®(0,T; H(R))

Thus

IThu = tinll oo 0, 7:2hzy) < N Tt = Thitll pooo,7:2zy) + 1 Tnit — i ll oo 0, 7:12 (12
|

<
< lu — IZHLOO(O,T;Lz(R)) + ||Th1:i - lzh”LOC(O,T;lz(hZ))

~ 1 2 ~
<C(T, pllell2@) e = @l 2@y + 2 exp(TIEN ] o . 1 )

This yields (6.12). O
7. Technical lemmas

In this section we prove some technical results that have been used along the paper. The main aim of this section is
to obtain estimates on the difference f(Tpu) — Ty f (1) in auxiliary norms LY (1, 1" (hZ)).
In the case of smooth enough functions u, the pointwise projection operator

Epu)(jh) =u(jh) (7.1)

makes sense. More precisely it is well defined in H*(R), s > 1/2. In these cases the use of the operator E; has the
advantage of commuting with the nonlinearity f(Eju) =Ej f (u).
The key ingredient is the following theorem:

Theorem 7.1 (Marcinkiewicz multiplier theorem). (See [12, Theorem 5.2.2, p. 356].) Let m:R — R be a bounded
function which is C' in every dyadic set (27,27 U (=2/%1, =27 for j € Z. Assume that the derivative m' of m
satisfies

—2J 2J+1
§u§|: / |m'(&)| d& + f |m/(§)|d§} <A <co. (7.2)
Je . .
_Dj+1 2

Then there exists a positive constant C such that for all 1 < g < oo the following holds:

| )Y [ Loy < Cmax{q. (@ — D7} (A + Imll Lo @) | £l Loy

Remark 7.1. Using a change of variables in the Fourier space the above dyadic intervals can be replaced by any other
one of the form (¢/, ¢/ +1) U (—c¢/ T, —c’), j € Z and ¢ > 1. In the following applications, the constant ¢ will be
chosentobe c =m.

For any function u € L*>(R) we define the new function ii;, by truncating the Fourier transform as follows:

(&) = AE (o hr /iy (&) (1.3)

For h =1, Theorem 7.1, applied with m(§) = 1(_5 ) which is C Uin every dyadic interval, shows that for any
1 < g < oo, the LY(R)-norm of &1 can be controlled by the one of u:

laillLaw < C@)llullLaw)- (7.4)

A scaling argument shows us that the above inequality also holds for all # > 0 with a constant C(g) independent of /.
Using Theorem 7.1 we can refine this estimate as follows:

Lemma 7.1. Forany s > 0 and g € (1, 00) the following hold:

(a) There exists a positive constant c(s, q) such that
ot = iinll ey < (. B [l s ey (1.5)
forallu e W54 (R) and h > 0.



L.I. Ignat, E. Zuazua / J. Math. Pures Appl. 98 (2012) 479-517 513

(b) Assuming s € [0, 1], there exists a positive constant c(s, q) such that
Il o gy < €Csy B il g, (7.6)
forallu € W4 (R) and h > 0.

Proof. We divide the proof in two steps corresponding to (7.5) and (7.6).

Step 1. Proof of (7.5). Let us consider the following operator
Muu:=u—i, = (1{|§|2ﬂ/h}f£)v.

A change of variables gives us that

(Myu)(x) = M, (u(h-)) (%)

Using this property the following identities hold:

| Mpull Loy = h"4 | My (u(h-)) ”L‘I(R)’

and
H”(h')HWs-q(R) = H |V|S[”(h')] HLq(R) =h’ H (|V|S”)(h‘)”Lq(R) = h*h'/ ” |V|SMHL‘I(R)'

Thus, it is sufficient to consider the case & = 1 and to prove that
IMivlla) < (s, D IVIV] g, (1.7)

holds for all v € W54 (R).
With the notation
mg(§) == &1 Ljg1>m) (5),
estimate (7.7) holds if m (&) satisfies the hypothesis of Theorem 7.1. Using that m (&) € L°°(R) and that
c(s)
|%— |s+1

Im(&)] < Lig>n (), &€R,

by Theorem 7.1 we obtain (7.7).

Step I1. Proof of (7.6). A similar argument as in the previous case reduces estimate (7.6) to the case 7 = 1:
A~ \2 A~ \4
| (@)L —r,181) ”Lq(R) <cls @) (@@lgr) ”Lq(R)'
Denoting v = (i (£)|£]%)Y, it remains to prove that
| (B ) 1E1') ] Loy S €655 DIV L0 - (7.8)
In other words, it is sufficient to apply Theorem 7.1 to the multiplier m (£) given by
my(§) = &' 1oz ) (§)
Using that mg(§) € L°°(R) satisfies
Im (&) < c(®)E] L nm)(E). &R\ {0},

we fit in the hypothesis of Theorem 7.1 and then (7.8) holds. This finishes the proof. O

In the following we obtain error estimates for the difference between the two interpolators Tj, and E;, when applied
to functions u and f(u), where T, and Ej, are defined by (3.2) and (7.1) respectively.
Lemma 7.2. Let s > 1/2 and q € (1, 00). Then there exists a positive constant c(s, q) such that

IThu — Epullianzy < c(s, Q)" ullypsa g (7.9)
holds for all u € W54 (R) and h > 0.
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Remark 7.2. This lemma generalizes Theorem 10.1.3 of [28, p. 205], which addresses the case g =2, s > 1/2. In
this case using Plancherel’s identity in the discrete setting it is easy to obtain

IThu = Eptell2gnzy < c()h* el s . (7.10)

Remark 7.3. Using the above results, we will be able to obtain estimates of the difference Ty, f(u) — f(Thu),
f W) =|ulPu, p >0, given by Lemma 5.2.

Proof of Lemma 7.2. Es@imate (7.10) provides the desired estimate W“’Z(R) — [2(hZ) in the case qg = 2. We will
also prove the estimate W¥9 — [9(hZ) in the case s > 1. Using these two estimates the general case will be a
consequence of an interpolation argument.

Case 1: s > 1, g € (1, 00). We claim that
IThue = Enullirhzy < c(py R [1V1°u] Ly - (7.11)

By rescaling all the above quantities we can assume 4 = 1.
We have the following:

/g
(Tiu —Equ)(j) = / 5 = / & Zﬁ(s +271).
§1>m - 70
Denoting by v the function whose Fourier transform is given by
0E) =1(am Y 0 +270), (7.12)
170
we get
T
(M= () = [ o) ds.
-7

Classical results on band-limited functions (see Plancherel and P6lya [25]) give us that
Tiu — Equllirz) < lvllLemw),

provided that the right-hand side term of the above inequality makes sense. It is then sufficient to prove that the
function v defined by (7.12) satisfies:

Wiz < cp ) [IVFu] - (7.13)
Using the properties of the Fourier transform we get:
v(Ex) =Y - rnmi)”
170

It is sufficient to prove that

> T Ao i ymi)”

| <9l
10 LP(R)

or equivalently

< lullLew)-
LP(R)

. 3 A\ V
> T (ET @y i)
120

Minkowski’s inequality gives us

. B A\ V
Zez’”“‘(lél "L@i-nm,@+1m i)
10

< (1€~ 1 @i— 1y, @41y ) | oy
L'® 120
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We claim that for any / # 0:

c(s)
I

Thus, summing all the above inequalities for / # 0 we obtain the desired estimate.
A translation in (7.14) reduces its proof to show that m; ;, defined by

my1(§) =16 = 2Un| 7 L—am)(§), [ #0,
verify the hypothesis of Theorem 7.1. Observe that

H(ISI_sl((zlq)n,(zzﬂ)n)ﬁ)v||Lp < ——lullLrw)- (7.14)

Ims,1(8)] < Cll(lss), £eR, [ #0,
and
NG]ES 1 nm (&), E€R\{0}, [ #£0.

Ill ISI
Applying Theorem 7.1 to each multiplier m, ; we get (7.14) and the proof of this case is finished.

Case 2: s > 1/2, g € (1, 00). We set U, = Tj, — E;. Using the estimates of the previous case we deduce that the
operator Uy, satisfies:

Up: WS (R) — 19 (hZ), s1>1, 1 <qi < o0,
and by (7.10):
Up: W22(R) — 12(hZ), s> 1/2.
Then for any 6 € (0, 1),

Up: [WSH 9 (R), W22 (R)],,, — [19'(hZ), 1*(hZ)]

[0] [0]

with a norm that satisfies:

VU an ey, w22y . 2z < NS00 ey 101 iy 100 Do gy p
Classical results on interpolation theory [2, Theorem 6.4.5, p. 153] give us that

[Wor D (R), W22(R)] ), = W9 (R),

and

[19(hZ), 1> (hD)),,, = 19 (hZ),

(01
where s and ¢ are given by

= fo(s1,52) =510 +52(1 — 0),

1 0 1-6 7.15
—=g(q) =—+——. (7.15)
q q1 2

Using that the ranks of functions fy and gg satisfy

146 1—6 140
Im( fy) = (% oo>, Im(gg) = (T %)

we obtain that for any s > 1/2 and 0 < g < 1 we can find s; > 1, s > 1/2, g1 > 1 and 6 € (0, 1) such that (7.15)
holds and

AR yis.a ()19 nz) < < p0=0 < s, (7.16)

The proof is now finished. O
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Proof of Lemma 5.2. We first recall that the following inequality holds for all u, v € LPT2(R):
|f @) = FO| 2 @y < COI Ml iz + T0I i)l = VIl Lps2 - (7.17)
We set i), defined by zf;,(s) = (&) —x/nx/n (). The difference Ty, f (u) — f(Thu) in (5.25) satisfies:
ITo f @) = (Tn) |,y gy < TS @) =T f @) | sy uzy + 1T @) = f Tni) |y ps2y -
Using (7.17), (7.4) and Lemma 7.1, the first term in the right-hand side satisfies:

|Tn f () = T f (i) |

1P+ (h7) <c(p) ” S ) — fan) ||L(p+2)/(R)

< ePY(Mull] praggey + MRl poa )l = inll L2 )

. +1
<P o o sy < IR Il

For the second term, using that on the grid 2Z, T,u = Epuj, by Lemma 7.2 we get:

[T f GEn) = £ Tni) | sy uzy = [T f @) = f Eniin) | sy 1z
=T f GEn) = Bn f @] yipsor 1z
< th(f‘h) ”W1»<P+2>/(R) < hHﬁZaxﬁh HL<p+2>/(R)' (7.18)
Using that s € [0, 1] we apply Young’s inequality and (7.6) to obtain:

(p+1)/(p+2)
|2k o iin HLW)/(M(RF( / |ﬂh|"<”+2>/<”+”|axﬁh|<"+2>/<"+”)
R

< (H i |P(p+2)/(p+1) ” (1) || ENT |(p+2)/(p+l) ||p+1)(P+1)/(p+2)

~ p ~ p ~
= 117 1y N 2y < D g N v

- - +1
Sl 2 Hlall s poa gy < 1 1||u||€vs$p+z(R)- (7.19)

Thus by (7.18) and (7.19) we obtain

~ +1
ITn f Gin) = f Cn) [y zy < BN

which finishes the proof. O
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