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1. Introduction

Let us consider the nonlinear Schrodinger equation (NSE):

du ) d
E:lAu—i-lMalu, xeRY, t#£0,

ux,0) =px), xeRY.

(11)

For any 0 < p <4/d, » €R and ¢ € L2(RY), Eq. (1.1) has a unique global solution u € C(R, L2(R%)) N
L?OC(R, L"(R%)) for some suitable pairs (g, r). This has been proved by Tsutsumi in [16] by using a fix
point argument and the so-called Strichartz estimates [15]. These estimates show that the semigroup
generated by the linear Schrodinger equation (LSE), S(t) = exp(itA), satisfies
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ISO@ 0@ 1r@ey < CE DIl 2ge, forallp e L? (RY), (1.2)

for the so-called admissible pairs (q,r) (cf. [10]): 2<q,r < o0, (q,1,d) # (2,00,2) and

1 d/1 1

In addition, in [16] the stability of solutions under perturbation of the initial data has been proved.
In fact there exists a time T, depending on the L2(R%)-norm of the initial data, such that on the in-
terval (0, T) the difference between two solutions of Eq. (1.1) is controlled by the error made in
the linear part S(t)(¢1 —¢2) in a certain L9(0, T, L"(R%))-norm. Thus, Strichartz’s estimate (1.2) shows
that, locally, the error between two solutions u; and u; can be estimated in terms of the L2(R%)-norm
of the difference of the initial data ¢1 — ¢. Using the global well-posedness of system (1.1) the same
procedure can be extended to any bounded time interval. We will adapt this idea to the numerical
context in order to estimate the error committed when approximating the solutions of (1.1) by a
splitting method.

A splitting method consists in decomposing the flow (1.1) in two flows, which in principle should
be computed easily. To be more precise, we define the flow N(t) for the differential equation:

du irulPu, xeRY t>0
- = ) ) > U,
dt (1.4)

u(x,0)=g@(x), xeR?,

ie.

N(t)¢ = exp(itilp|P) . (1.5)

The idea of splitting methods is to approximate the solutions of (1.1) by combining the two flows S(t)
and N(t). For a fixed time interval [0, T] we can choose a small positive time step T and consider
either the Lie approximation:

Z(nt) = (S(I)N(r))n(p, o<nt <T, (1.6)

or Strang approximation

Z(nt) = (S(t/2)N(T)S(x/2))"p, 0<nt <T. (1.7)

In the two-dimensional case, Besse et al. [1] have analyzed the convergence of the above meth-
ods for globally Lipschitz-continuous nonlinearities. Also Lubich [11] analyzed the Strang method for
the Schrédinger-Poisson equation and the cubic NSE in the case of H*#(R3)-initial data. There, the
H4(R3)-regularity was imposed to guarantee that the approximate solution Z remains bounded in
the H?(R3)-norm.

In this paper we introduce a splitting method for the NSE with 1 < p < 4/d and prove the
convergence in the LZ(RY)-norm for HZ(RY)-initial data. The scheme we analyse is based on an ap-
proximation S;(t) of the linear semigroup S(t) which admits Strichartz-like estimates in some time
discrete spaces. We make use of these new estimates to establish uniform bounds on the numerical
solution in the auxiliary spaces I (tZ, L"(R%)) without assuming more than L?(R%)-regularity on the
initial data. Once these bounds are obtained we will need the H2(RY) regularity in order to obtain
the order of error.

The idea behind the numerical schemes for the LSE which admit uniform (with respect to dis-
cretization parameters) estimates of Strichartz type is that when they are applied in the context of
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NSE, the error committed is controlled by the error committed in approximating the LSE. The appli-
cation of these numerical schemes for NSE has been previously used in the case of semidiscrete space
approximations [7-9] and in the fully discrete case in [6].

In this paper we will concentrate on Lie’s approximation method. We remark that Z defined
by (1.6) satisfies

n—1
Zt) =S¢ +1 Y St —kr)WZ(kr), n>1. (1.8)
k=0

Since Z is defined on a discrete set of points we need to evaluate Z in some discrete time norms
19(tZ, L' (R%)). We emphasize that for (q,r) # (c0,2) even the linear part S(nt)¢ does not satisfy
Strichartz-like estimates:

|SMO@] e 1r@ey < CA DIl ga, forall g e L*(RY),
where

1/q
ullazz,1r rey) = (T ZH”(kf)Hzr(Rd))

nez

Indeed, in contrast with the classical estimate (1.2), the above inequality implies that

T S@@ | gay < CE D@l 2Ray,

inequality which does not hold for all ¢ € L2(R%) (choose ¢ = S(—7)y with ¥ € LZ(R)\L"(RY) for
r £ 2). This implies that we have to choose an approximation S (t) of the linear semigroup S(t) such
that S;(t) admits Strichartz-like estimates which are discrete in time and moreover, these estimates
are uniform with respect to the time parameter t:

HST(”TWqu(rZ,Lf(Rd)) S Cllell2gey. Yo e L? (Rd)-

One of the possible choices is the filtered operator

St(O¢ =S5O1Ir¢

where [1; filters the high frequencies as follows

M0 = PE) g2 E), € €RY (1.9)

For other possible choices of the operator S; we refer to the previous work on dispersive methods for
LSE [7-9]. Also as initial data we have to choose a filtration of ¢, I1;¢, since otherwise Z;(0)p = ¢
does not belong to L"(RY) and we cannot evaluate the 19(0 < nt < T, L"(R%))-norm of the approxi-
mation Z;.

The splitting scheme we propose is the following one:

Z:(n7) = (S: (ONT)) ' M, n>0. (1.10)

Observe that in this scheme only the linear equation is filtered while the nonlinear one is solved
exactly.
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In the following, for any interval I with |I| > T, the space l9(nt € I, L"(R%)) contains all functions
defined on tZ NI with values in L"(R?) and the norm on this space is defined by

1/q
”u”lq(nrel,Lr(Rd)) = (T ZHU(kT) ||(l],r(Rd)>

nez

Along the paper we always assume that t is a small parameter, in the sense that there exists
To = To(l¢ |l 2(re)) such that all the results hold for T < 7o.
The main results of this paper are the following.

Theorem 1.1 (Stability). Let 0 < p < 4/d. For any ¢ € L*>(RY) the approximation Z, introduced in (1.10)
satisfies:

(i) a uniform L*(R%)-bound

max| Z: (10) | 2 ey < 191112 @): (111)

4
(ii) there exists Ty ~ ||<p||_ﬁ such that for any interval I with |I| < Ty and for any admissible pair (q, 1)
the following

H ZT (n‘[) ”lq(nrel,Lr(Rd)) g C(d’ J 2 q)”gD”LZ(]Rd) (112)

holds for some constant C(d, p, q) independent of the time step T,
(iii) forany T > 0 and (q, r) admissible-pair the following

HZT (TI‘L') ||lq(0<nt<T;Lr(Rd)) < C(Ts d’ D, q)”gDHLZ(Rd) (113)
holds for some constant C(T, d, p, q) independent of the time step t.

Theorem 1.2 (Convergence). Letd < 3, p € [1,4/d) and ¢ € H2Z(RY). The numerical solution Z, has a first-
order error bound in L?(R%):

og'??’ér” Zr(nT) —uM7)| 5 pa) < TC(T, d, P, 19l 2 )

We point out that Theorem 1.2 works in the case d < 3 which is quite restrictive. The restriction
p > 1 comes from the fact that in our proof we need to guarantee that u solution of (1.1) belongs to
C(0, T, H2(R%)) (see [2, Chapter 5.3]).

We now comment on the possible analysis of the order of error in the case of less regularity or
other nonlinearities. It is convenient to write u in the semigroup formulation:

t
u(t):S(t)go+iAfS(t—s)|u|pu(s)ds, t>0. (1.14)
0

Looking at (1.8), we observe that Z (or Z;) defined by (1.6) (or (1.10)), differs from u in two important
facts: the integral in (1.14) is replaced by a sum in (1.8) and the nonlinear term f(u) = A|u|Pu is
replaced by T~ '(N(t) — Z)Z. In view of this, it seems to be reasonable that Z better approximates
the solution of the following NSE:
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. exp(irt|v|P) —1 d
— =iAv v, xeR" t>0,
dt + T > (115)

v(x,0) = ¢(x), xeRY,

whose solution satisfies

t

(7)

N(t)—-1
v(t):S(t)(p+/5(t—s)fv(s)ds, t>0. (1.16)

0

When 0< p <4/d and ¢ € H'(RY), Eq. (1.15) has a global H!(R%)-solution (see [2, Theorem 5.2.1]).
We conjecture that in this case similar results to those obtained in this paper could be obtained once
the results of Lemma 4.6 are obtained with less regularity assumptions.

In what concerns the range 4/d <p <4/(d—2),d >3 (4/d < p < oo if d € {1, 2}) Eq. (1.1) entries
in the subcritical H'-case and there are instances where the solution is global (see [2, Chapter 6] for
a precise statement) since we have the following conservation of energy:

1 A
E(u):—/|Vu|2——/|u|P+1.
2 p+1
Rd R4

However, in this range of p’s we cannot guarantee that system (1.15) has a global H!-solution since it
is not obvious what is the energy which is preserved. This suggests that the H!(R%)-stability for large
time intervals for the splitting methods (1.6)-(1.7) will be very difficult to prove, or even impossible,
even though the solutions of (1.1) are global and belong to H!(RY) at any positive time. It has been
proved in [11] that the H!(R3)-stability of the numerical scheme can be established assuming more
regularity on the initial data, for example H3(R3) in the case p = 2.

Since in the case 4/d <p <4/(d—2),d >3 (4/d < p < if d € {1, 2}) the global existence of an
H'-solution for (1.15) is not an easy task we can only guarantee the existence of a local solution v in
some time interval [0, To] with To = To(l|¢ |l y1(re))- In what concerns the splitting method we con-
jecture that there exists a positive time Tq1 > Tq such that the solution {Z(n7)}o<nr<t, is uniformly
bounded with respect to the time parameter 7 in the H!(R%)-norm. This smallness on the time inter-
val has been also previously imposed by Frohlich in [4] where the order of error has been obtained in
the case of the Schroédinger-Poisson equation. The error analysis for small intervals of time remains
to be analysed in a future work.

The paper is organised as follows. In Section 2 we obtain discrete in time Strichartz estimates
which are similar to the classical ones in [10]. Once these estimates are obtained we prove Theo-
rem 1.1. Section 3 is devoted to presenting some classical results about the NSE and to estimating the
error between u, solution of system (1.1), and v solution of system (1.15). In Section 5 we first mea-
sure the error between Z; and v and then apply it to prove Theorem 1.2. The last section contains
some auxiliary results that are used throughout the paper.

The analysis in this paper can be extended to splitting methods in fully discrete framework by
using the schemes introduced and analyzed in [6]. This will be the object of a future work.

2. Discrete time Strichartz estimates and stability

In this section we prove discrete in time Strichartz-like estimates for the operator S; introduced
in previous section. Similar estimates for space semidiscretizations and fully discrete schemes have
been obtained in [7,8,6]. Once the Strichartz estimates are obtained we apply them to obtain uniform
bounds on the discrete solution Z;.
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Theorem 2.1. The semigroup {S (t)}tcr satisfies
HST(t)QDHLZ(Rd) < “(p”LZ(Rd)v Vt € ]R, (2])

and

C(d)

Hsr (t)QDHLm(Rd) < W”@”U(Rdy vt € R. (2.2)

Moreover, for any admissible pairs (q, r) and (q, ) the following hold:
(i) Continuous in time estimates:
1S O@] o rayy < C@ DI 2y, (2.3)

< C(, a)”f”]ﬁ’ (R, LV (R%))> (2.4)
L2(R%)

HfSr(s)*f(s)ds
R

and

H f S:(t—9)f(s)ds

s<t

<(C{d,q, E])”f”]ﬁ’ (R,LF (RY))* (2.5)
L9(R,L"(RY))

(ii) Discrete in time estimates:

1S: O] ez 1rayy < €@ DIl ey (2.6)
7Y S:(nt)*f(nr) <C DI (.17 @y (2.7)
nez L2(RY)
and
n—1
T Y Si(n=kT)fke) <C 4, DIl (27,17 (mey) - (2.8)
k=—o00 19(TZ,L"(RY))

Remark 2.1. A useful consequence of (2.8) is given by the following estimate

n—1

T Z Se((n—k)t)gkt)

k=0

< C(, a, 67) ”g”[f?’ O<nt<Nt, L7 (R))> (29)
19(z <nt<(N+1) 7, L7 (RY))

which holds for any positive integer N. It is a consequence of (2.8) applied to the function f(nt) =
gt)lognr <N} (NT).

Remark 2.2. Inequalities (2.1) and (2.2) give us estimates for S; in norms which are discrete in time.
When considering continuous in time norms LY(R, L"(R%)) we obtain similar results since (2.2) im-
plies that
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C
HST(t)ST(s)*(p”Lw(Rd) < t_—sld/z”(PHLl(Rd), Vt #s,

and we apply the results of Keel and Tao [10, Theorem 1.2].

Proof of Theorem 2.1. A scaling argument reduces all the estimates to the case T =1 since

(S: (@) () = (S1(t/T)p(x"/2)) (x~/2x).

Inequality (2.1) is obvious. In the case of (2.2) observe that S satisfies S1(t)¢p = K; * ¢ where K;
is given by

Ke(x) = / eiXé o its? ge
[E1<1

We obviously have

IKel e gty < €(d).

Using the stationary phase method (see [13, Theorem 1.1.4, p. 45]) we also obtain

1K e oo ey < c(@)]E] ™42,
Both inequalities prove that for some constant C(d) the kernel K; satisfies

C(d)

K¢l oo <———.
“ t”L (Rd) ]—|—|t|d/2

Applying Young’s inequality we prove (2.2). Observe that (2.2) implies

C
|St®S2 ()| oo g, < g P, Ve#s.

Applying the classical results of Keel and Tao [10, Theorem 1.2] we obtain estimates (2.3)-(2.5).
Let us now concentrate on the discrete estimates (2.6)-(2.8). We first point out that the argument
of Christ and Kiselev (see [3, Theorem 1.1]) reduces estimate (2.8) to the following one

ee]

> Ssin=kfk

k=—o00

<C.q. DI f i g1 @) (2.10)
19(Z,L" (RY))

The TT* argument shows that (2.6), (2.7) and (2.10) are equivalent. In the following we prove (2.7).
By duality (2.7) is equivalent with the bilinear estimate:

K Y simfm). Y sl<n)*g(n>>‘ < CADIF i .17 ey 181 .17 gy

nez nez
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where (,) is the L2(R%) inner product. In fact we prove the stronger inequality:

DD ls1m* ), s1amy*gm)| < Cd, DI fllg 417 @y 1€l 217 @y

neZ mez

Observe that

|(S1()* f (), S1(m)*g(m))| = |(f (n), S1()S1(m)*g(m))| = |(f (), S1(n —m)g(m))|

“g(m)”Lr’(Rd)
RN+ |n—m|2/a°

< | fm

L (RY) ” Sl (n - m)gH L' (RY) < ” f(n) || Lr’(

It implies that

Y lsim* fm), simy*gm)| <1 flly g1 gay)

neZ mez

‘Z ”g(m)”Lr’(Rd) .
o LI —ml2/ )

At this point we make use of the following lemma (see [12,14]) which is a discrete version of the
well-known Hardy-Litlewood-Sobolev inequality:

Lemma 2.1. Let 0 < « < 1 and k be a sequence such that

k()| < # vn eZ.
1+

Then the operator T defined by T(f) = f % k maps continuously 1P (Z) into 19(Z) for any p and q satisfying
1 1
l<p<q<oo and —-=-——-1+a.
qa p
Applying this lemma we obtain that

DY S1m* fm), Sty gm)| < 1 fllw .1 @y 1€l .1 ey

neZ meZ

which finishes the proof. O

We now prove that Z; introduced in (1.10) is uniformly bounded in the auxiliary norms
(TN, L' (RY)).

Throughout the paper we will denote by (qg, rg) the admissible pair with rg = p + 2. The relevance
of this pair comes from the fact that f(u) = |u|Pu maps L (R%) to Lo (RY). In order to simplify the
presentation we consider in what follows we consider the case A = 1.

q
lloc

Proof of Theorem 1.1. The uniform boundedness of the L2(R%)-norm follows from the following prop-
erties of the two operators S; and N(7):

|St (@@ 2@y < N9l 12Ra)
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and
HN(T)(‘OHLZ(Rd) = HeXp(iTW|p)¢||L2(Rd) = @l 2ga)-
The definition of Z,
Z:(nT) = (S¢ (1) + S¢(0)(N(x) = 7)) Mrp, n>0,
gives us that
Ze(nt) =S (1) + ¥ (Z;)(nt), n=0, (2.11)

where

n=20,

0
‘”Zr)(””:{ s ST —kT)(N(T) = D) Zo (kT), n>1.

Estimate (2.6) of Theorem 2.1 applied to (qg, rp) shows that

ISz TP llo (z7; 7o rey)
<0

C(d,p)=sup sup
>0 pel2(RY) ||§0||L2(]Rd)

We consider the following set of integers:

1/q0
A= {N €Z, N >0, (T Z” Zt (kf)HLrO(Rd)> <20, Pllell 2w
First we show that the set A is not empty by showing that 0 € A:

7!/ |Z2 (0)‘PHU0(Rd) = 7!/ | S (OWHLro(Rd) |Sz(z- )‘PHHO(TZ L70 (RY))
< CWd, Pll@ll2ga)-

If sup A = oo then (1.13) holds for the admissible pair (qg, rg). Otherwise, let N, be the largest
element of A, i.e. N, +1 ¢ A. Using representation (2.11) and estimate (2.6) given by Theorem 2.1,
we obtain that

Ny+1 1/q0
(r 5 nzanwuzm(m)

n=0

< HSf(nt)(pHlqO(O<nt<(N*+1)t;Lr0(Rd)) + Hq’(zf)(nf)quo(ognrg(N*H)r;LrO(Rd))

<O, el ey + rZSr (n—kr) () Zr(lr)

190 (7 <t (N +-1)T; L70 (RY))

Applying estimate (2.9) with g(nt) =t~ (N(t) — Z)Z; (nT) we obtain
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Nyt1 1/40
(r 5 HZT(“T)”(Z%(R%)

n=0

/

N(t)—T1
< Cd, plelzge + C1(d, p)Hizf(nr) .
T 19 (0<nt <N, 7:L"0(RY))

We now use that the operator N(t) — Z satisfies

N(t)-1 exp(it|y|P) —1
'7:#‘: vl < ylPt
T T
We introduce this inequality in (2.12) to obtain
[ Ze ) [0 0 <17 170 ety

p+1 H

< Cd. p)l@ll2 e + C1(d, p)|||Z: (nD)| o (0<nT <NL 3L (RY))

Using that N, € A and Hoélder’s inequality in time variable (see Lemma 4.1) we get

H Z¢(n7) quO (0T <(N4+1)T;L70 (RY))

_d +1
< C(d7 p)“(p”l_z(Rd) + CZ(d, p)(N*T)1 4 ” Z‘L'('T) HZO(OgnrgN*r;LTO(Rd))

d|
< C@d PPl 2@ + C2(d. YN =% (C. Pl 20) "

<2C3d, P lel 2

as long as

_dp 1
Co(d, p)(N.D)' 7 (Cd. Pl za)” < Cd. @ p2)-

This means that if the following inequality holds

9

(Cd, Plill2ge) P i|4/(4—dp)

Net < To ::[ &, p)

3031

(212)

(2.13)

(2.14)

then N, 4+ 1 € A, which contradicts the assumption on the maximality of N,. Thus (2.14) is false and

Thus (1.13) holds for T = Ty and the admissible pair (qo, o).

Let us choose (q1,r1) another admissible pair. Using representation formula (2.11) and a similar

argument as the one above we obtain the following estimate:
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H Z(nT) H 191 (0<nT < Tp; L™ (RY))

1-4 +1
< C(d7 Q)||§0||L2(Rd) + C(d, q, p)TO 4 HZT (nt) ”11310 0L<nTt<Ty;L0 (Rd))

1-% 1
<, Q)||§0||L2(Rd) + TO “c(d, p.q) (C(d’ p)||(P||L2(Rd))p+

< Cd, g, P el 2ra)-

This proves estimates (1.13) for T = Tp.
Let us now choose any integer N with Nt < Tg. Definition (1.10) gives us that Z; satisfies

n—1
N(t)—7T
Z:(NT +n7t) = S;(nt)Z; (NT) + T Zs,(nr — kr)%z, (NT + k), n>1.
k=0

With the same argument as above we obtain

” Z:() ||Iq(N‘E<n‘E§Nt+T1,Lr(Rd)) <C(d,q,p) HZ‘L' (NT) ” L2 (Rd) < C(d, q, p)“‘P”LZ(Rd),

where

T, — [(C(d, p)IIZ(Nr)||L2(Rd))—p]4/(4—dp)
e C2(d. p) -

Taking into account that the L2(R%)-norm of Z; does not increase we get

IZIND) | o ey < 10112 o)

and Tq > Tg. This proves (1.13) for the interval [0, 2Tg].

The proof is now finished by iterating the same argument on any interval [0, kTo] with k > 1.

3. Nonlinear Schrodinger equations

In this section we present some classical results on NSE and use them to estimate the difference
between u and v solutions of Egs. (1.1) and (1.15). In the sequel 9(z) denotes the real part of the

complex number z.
We first state the global existence result for NSE, cf. [2, Theorem 4.6.1, p. 109].

Theorem 3.1. Let 0 < p < 4/d and f : C — C such that f(0) =0 and

|f(z1) = f(z2)| < C(1+ 1211 + |1221)7 |21 — 221

Also assume that

m( f f(2(0)z(x) dx) <0, vzel*(RY)nLPTI(RY).
Rd
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For every ¢ € L*(R), the equation

d
d—Ltl:iAu-l—f(u), xeRd, t>0, (33)

u(x0)=px),  xeR%

has a unique global solution u € C(R, L2(R%) N L1 (R, L™ (RY)).
Moreover, the following properties hold:

(i) ue L?OC(R, Lr(Rd)) for every admissible pair (q, ).

(i) Nu® 2wy < @l forallt>0.
(iii) For any admissible pair (q,r) there exists To = To(d, p, q, l¢ |l ;2(re)) Such that for any interval I with
1] < To,

lullfaq 1rray < Cd, P, DIl 2 (Ra)-

(iv) (Regularity [2, Theorem 5.3.4, p. 154])If p > 1 and ¢ € H?(RY) then

ueC(R H*RY))NL]

loc

(B, w2 () A WA (R, 1 (24))

loc

and
Ml o= 1l o 0,7, 2 ety + 16l 30 0,7 w20 ey, + el oo 7,70 ey
< C(T.d, p, 1912 ra))-

Remark 3.1. The H!(RY)-regularity of the solutions holds for any p € (0, 4/d), see [2, Theorem 5.2.1,
p. 149]. However, we cannot exploit this fact since in the proof of Theorem 5.1 when we apply
Lemma 4.6 we need to assume HZ(RY)-regularity on the initial data.

We now apply this theorem to prove the existence of a global solution v of Eq. (1.15).

Theorem 3.2. [et 1 < p <4/d and ¢ € H2(RY). There exists a unique global solution of Eq. (1.15) which
satisfies properties (i)-(iv) of Theorem 3.1.

Proof. In order to apply Theorem 3.1 it is sufficient to check that

exp(it|z|P) — 1 ,

f@)=

satisfies hypotheses (3.1) and (3.2). The first one is a consequence of Lemma 4.2 and the second one
holds since for any function z € L2(R%) N LPT2(RY) the following holds

i Py — Py —
m(/f(z)m>=m</e’(p(”|:| ) 1|z|2dx):f—cos(”i| )1 pax<o.
Rd Rd

Rd

The proof is now complete. O

With the above theorem we are able to estimate the distance between u and v.
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Theorem 3.3. Let 0 < p <4/d, p € L2(RY) aqd u and v solutions of (1.1) and (1.15). Assume the existence of
an admissible pair (G, ¥) such that u € Ll(st’l)q (R, L@P+DT (RA)),
Forany T > 0 there exists C = C(T, p, q, @l 2 gay) such that

2p+1
”u — v”LOO(O’T:LZ(Rd)) < CT ||u||L(2p+l)Z7/(O,T, L(ZP'H);/(]Rd)). (34)

Moreover, if 1 < p < 4/d and ¢ € H?(RY) then

2p+1
U — Vil 1:02Ry) C‘I"Hu”Loo(O’T’ H2(RA))" (3.5)

Remark 3.2. For any p <2/d and ¢ € L*>(R% we can find a pair (g,7) such that u € LI(OZCPH)Q/(R,
L@P+DF (R)). Indeed, we can find (q,r) an admissible pair with 2p + 1)¥ =r and q < 2p + 1)§’

and use that u e L?OC(]R, L"(R%)). Also for any ¢ € H(R%), s > 0, we can find a range of exponents p

such that the norm of u in the right-hand side of (3.4) is finite.

Proof of Theorem 3.3. In the following, the constants C’s occurring in the proof could change from
line to line.

Let us choose an admissible pair (q,1) € {(o0, 2), (qo,T0)}. Writing u and v in the semigroup for-
mulation

t
u(t):S(t)(p—l—i/S(t—s)|u|pu(s)ds, t>0
0

and

t

(T)

v(t):S(t)<p+/5(t—s)¥v(s)ds, t>0,

0

we obtain that

t

/ S(t—s)(g1(u(s), v(s)) + g2(u(s)))ds

0

I = Vi, r,rarey S

’

L9(0,T,L" (RY))

where

_exp(it|v|P) —exp(it|ulP) v exp(it|ulP) — 1
N T

g1(u,v) (v —1u)

and

i Py _
g = (exD(lﬂ:l )1 —i|u|p>u.

Applying classical Strichartz’s estimates (see [10, Theorem 1.2]) with (G, 7) an admissible pair we get

”u -V ”LQ(O,T,LT(]Rd)) < C(da q, p) Hgl (u’ V) ” + C(d’ q, a) ||g2 (U) ” La/(O,T,LF/ (Rd))'

190,7,L0 (RY))
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Using that g1 and gy satisfy

g1, )| <|IVIP = [ulP|IvI+ [ulPlv —ul <c(p)lv —ul(IvIP + [ulP)

and

|g2(v)| < Te(p)|uf*PH!

we obtain by Lemma 4.1 that

It = VliLao, 1,17 Re)

— p
<Cd.q. p)T "/ lu = Vil 00,7170 ety (1l 190 0.7 70 ety + 11Vl 90 0.7 170 ety )

2p+1

+ TC(d, q, 69 p) ||U ”L(zp_;,_l)[)/ (O,T,L(ZP'H);/ (]Rd))‘

For any T < Tg with Tg given by Theorem 3.1 and Theorem 3.2 we get

1—dp/4 p
||Ll - V”Lq(()’]"’Lr(Rd)) < C(d, q, p)T P/ ||u - V”LCIO(O,T,LP-FZ(Rd)) “gD”LZ(]Rd)

2p+1

+ ‘L'C(d, q, q’ p) “u”L(2p+1)q/ (O’T’L(2p+l)F/(Rd))'

Choosing T; < Tp but still depending on the L2(R%)-norm of ¢ we obtain

~ 2p+1
”u -V ”LQ(O’Tl,Lr(]Rd)) < ":C(d’ q’ q’ p) ”u ||L(2p+1),j/ (O,T],L(ZPJFU':/(Rd))’ (36)

which proves estimate (3.4) for the interval (0, T1).
Applying the same argument on the interval (T1,2T1) we obtain

~ 2p+1
lu = Vligar, 21y 17wy <€, q) Hu(Tl) - V(Tl)HLz(Rd) +1C(d,q.q, p)”u||L(2P+1>@’(T1,2T1,L(2P+1>7’)'

Using estimate (3.6) with (q,r) = (o0, 2) we obtain

~ 2p+1
”u - V”LCI(TLZTLLT(Rd)) g ZC(d7 q’ Q» p)t ||u||L(2p+])a/(0,2T1,L(ZP‘H)F/)'

An induction step allows us to prove the same inequality on any interval (kTq, (k + 1)T7) and then
for any interval (0, T)

~ 2p+1
||u - V”LQ(O,T,LT(]Rd)) < C(Ta d7 pa qa q)r”u”LQPH)"I’(O,T,L(ZP“)F’)'

The proof of estimate (3.4) is now finished.
In the particular case of ¢ € H%(RY) Theorem 3.1 shows that u € C(R, H2(RY)). Thus, using the
embedding H2(R%) — L*°(RY), d < 3, and estimate (3.4) with (g, 7) = (oo, 2) we obtain estimate (3.5).
The proof is now complete. O
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4. Preliminary estimates

In this section we prove some results that will be used in the proof of the main result.

Lemmad4.l.Let 0 < p <4/dand f : C — C satisfying f(0) =0 and

|f(z1) = f(22)| < Clz1 — 22|(|z1 1P + |22|P).

Then

@ 1
<O F P o e (4.1)

| Fal 4

190 (1,170 (Rdy)

and

|f@ — fw||

19 (1,170 (RY))
<CEIN™ % ju - Vilao, Lro<Rd>)(||“”quu 1o rey) T V112 (I,L'0 (Rd»)' (4.2)

Also, for any interval I with |I| > t similar inequalities hold in the discrete time spaces:

__ 1
<COU™FulB e, (43)

RO P

0 (1,10 (Rd))

and

| fw) = fw

% (1,170 (Rd))

_dp
LI flu = vl (I,LrO(Rd))(”u”ll‘;O(l,LrO(Rd)) + ”V”Zou,Lm(Rd»)‘ (44)

Proof. Let us first consider the case of continuous in time norms. Using that rj = (p +2)/(p + 1) we
get

p+
I

If@| <c(p) | lulPt| <c(p)lu

/ / 7 /
L9 (1,170 (RY)) L% (1,170 (Rd)) <P+”"o (1,LP V70 (Rdy)

p+1
=C u '
(p)lull LPHD% (1 170 (Rd))

Holder’s inequality shows that for any 1 < a < b < oo the following holds

1Vllzaqy < 1Vl pogp 117

Thus

1

1
g, 40 p+1 1— p+1
< C(p)|1|(p+ )qo 0 ||u||Lq0(1,Lr0(Rd)) _C(p)|1| ”u”qu(l’Lro(Rd))

[f@l

/ /
L% (1,L'0 (RY))

The second inequality can be treated in a similar way and we leave it to the reader.
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The case of discrete norms can be treated similarly once we observe that

o=
o=

1
7\ 1_
||V||la(nte1) < ”V”lb(nfel) (t[? g ”v”lb(ntel)”la
where [-] is the floor function. O

Lemma 4.2. For any p > 0 there exists a positive constant c(p) such that

‘N(t) -7 _Nm-T

_ p p
- - V‘<C(p)|u v(lul? + [vI?) (4.5)

holds for all complex numbers u and v. Moreover if p < 4/d and |I| > T then

H N(t)—Z N(1)—1
u-— 1%
T T

19 (1,170 (RY))

<O P U = vllao g, 170 ety (1115 1 7o ey 1V o 1 170 zey)- (4.6)
Proof. Using the definition of the nonlinear operator N(7) we get

exp(it|ulP — 1) exp(it|u|P) — exp(it|v|P)
(u—v)+ - v

‘N(t)—I N(t)—T '
u— V=
T T

L JulPlu— v+ [[ul? — [vIP|Iv] < c(p)lu — vI(julP + v|P).
The second inequality is obtained by applying Lemma 4.1. O

Lemma4.3. letd < 3 and 1 < p < 4/d. Then the function

fay=NO-1,
satisfies
9 (F QD) 175ty < T 4001 g0 ey (4.7)
and
o (£ @) 0y 1 15y, < V1P 41000t ) v gy (T T g o). (48)

Proof. The first inequality follows from Holder’s inequality in time variable and the following inequal-
ity

¢ (f )| < ClulP|dgul.

For the second one, after an elementary calculus we get
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| (f W) | < Cluxxl[ul? + fux*ulP~" + 7 luyl*ul?P~D)

< C(luellul? + fux*JulP™") + Tl g ] 0.
Thus
1—dp/4 p+1 Pt
OO B (AP ruunm,w)n oty o gady)

1—dp/4y,,  P+1
<P lt g ey, (14 T

LOO(I HZ(Rd)))
since HZ(R?) — [®(RY) ford <3. O

Lemmad44. lets > 0andr € (1, 0o). Then

v = Vil ey < T2 (=22 s gy

and
| TTe vl R X < vl (Rd)- (4.10)

Proof. Using that

(ITrv)(x) = (M (v(t /%)) (r7/%x)
the proof is reduced to the case 7 =1. To prove (4.9) it is sufficient to show that the operator T de-
fined by Tv(&) =mg(£)V(§) with ms(&) = |£]751(¢=1)(€) is continuous from L"(RY) to L"(RY). Since

1 <1 < o0, inequality (4.9) follows from [5, Theorem 5.2.2, p. 356]. In the case of inequality (4.10) we
apply the same argument to the multiplier m(§) = 1qg<1;(§). O

Lemma 4.5. For any admissible pairs (q,r) and (q, 7) the operator A defined by

Af(nt) = f Sr(nt —s) f(s)dt,

s<nt

satisfies

”Af”lLI('L'Z L' (RY)) X C(d q, q)”f”Lq (R, L7 (Rd))* (4]1)

Remark 4.1. Choosing in (4.11) functions f supported in some interval I we get

”Af(nr)qu(n‘L'el Lr(Rd)) |Af||IQ(-(Z L" ]Rd)) C(d q, q)”f”Lq a, Lr/(Rd)) (412)

Proof of Lemma 4.5. We consider the linear operator A defined by

o0

Afnr) = / Sr(ﬂT—S)f(S)dS—Sr(nf)/ST(S) f(s)ds.

—00
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We now use the argument of Christ and Kiselev (see [3, Theorem 1.1]) which reduces esti-
mate (4.11) on A to the one on the operator A:

LA S liaez,1r ey < C@ @ DI 7 (27,17 ey)- (413)
Using the discrete-time estimate (2.6) on the operator S; we obtain

(@]

/ SO f(©)dt

—0o0

| A |27 1 @y, < €@, D) (4.14)

L2(Rd)
Applying the continuous in time estimate (2.4) we get

(@]

/ St f ()

—o0

SCA DI la @ 17 ray
L2(R9)

which proves (4.13) and finishes the proof. O

Lemma 4.6. Let T be defined by

n—1
Tnnt, ) = f Sc(nt —s)n(s)—t Z Sc(nt —kt)nckr).

s<nt k=—00

For any (q,r) and (q, 7) admissible pairs the following holds

ITnlazrw)y < 7€M, q, (j)(||nxx||La/(R,LF’(Rd)) + ||nt||Lé’(R,L?’(Rd)))~

Remark 4.2. In particular, for any admissible pair (q,r) we obtain that

ITNlla(nir<T,LrRY) < TC, q, F])T(”77||L00(|n|f<T,H2(Rd)) + “nt||L°°(|n|r<T,L2(Rd)))-
This is a consequence of the previous estimate with (G, ) = (00, 2).
Proof of Lemma 4.6. We write Tn as follows

1 k+1t
Tn(nt) = Z / [Sz(nT —$)n(s) — S¢(nT —kT)n(kT)]ds

k=—0c0
n—1 &+DT s
=) / /d (Sz(nt —t)n(t)) de ds
k=—00 pr gkt
n—1 &+DT s
-y f f [—iS2 (T — O1ae(0) + S (17 — One(D)] deds
== kr  kt
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n—1 (k+1D)T (k+1)T

= Z f [—iS:(nT — ON(t) + Sz (nT — O ()] dsdt
k=—00 7 t
n—1 k+Drt
= > f [(k+ DT —t]Sc(nT — t) (—inu(t) + ne(t)) dt
k=—00 7
n—1 k+Drt
= > f St — O (k+ 1T — t](—in(®) + ne () dt.
k=—00 7

With A as in Lemma 4.5 we write

Tn=A(=in) + A(n2)

where

m®) =Y [+ DT = t]na®Lr,@+1)r) O
keZ

and

m2(0) =Y _[(k+ DT = t]neO Ve, s 1y (©).-
keZ

Using Lemma 4.5 we obtain
1Tz, 1rwey) < C(d,q, é)(llm “L@/(R, ¥ ®dy T ||n2||L51/(R, LF/(Rd)))
< C(d’ a, C])t(” nXX“Lﬁ/ R, L7 (Rd)) + | Ne ”L&/ R, L7 (Rd)))’
which finishes the proof. O

Lemmad4.7. Let s > 0,0 < p < 4/d and (q, r) an admissible pair. Then

nt
N(t)—T N(t)—T
R:(nt)= | S¢(nt —5) fﬂfv(s)—fv(s) ds
0
satisfies
_ 1
IReVllaqr oy < Cd @ YT PAVITEG o ey (4.15)
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Proof. We use estimate (4.12) and Lemma 4.2 to obtain

IRz Va1 mey

N(t) -1 N(t) -1
<C(d,q,p)H<LHIV—LV> S
T T 1% (1,170 (RY))
1—dp/4 p p
< C(d7 q’ p)”l p/ (”HIVHLqO(I,LrO(Rd)) + ”v”LqO(l,LrO(Rd)))”Htv - v”L‘IO(I,LTO(]Rd))'

Estimates (4.9) and (4.10) give us

2 1—dp/4 p 2
IR Vilaq, i@y < T2C@ @ DT PIVITG ¢ oy | A2V a1 110 ey

) 1—dp/4 +1
<t%%c(d, q, p)|1|' 9/ ||V“ft¥0(1,wsvr0(Rd))’

which finishes the proof. O
5. Error estimates
In this section we prove the main result of this paper, namely Theorem 1.2. Using Theorem 3.3

it is sufficient to estimate the difference between Z, and v in the L%(R%)-norm. This is done in the
following theorem.

Theorem 5.1. Let p € [1,4/d) and ¢ € HZ(RY). Then for any T > 0 the following holds

1Z = Vil o.1 12y < TC(T,d, p, lIVIIT). (5.1)

Proof. Using that

v — HTVHIOO(O,T,LZ(Rd)) <|v— HTV”LOO(O,T,LZ(Rd)) < T|||V|||L00(0,T,H2(Rd)) <tlvillr

it is sufficient to estimate the difference between Z and I7;v in the L%(R%)-norm.
We write Z and I1;v as follows

(7)

n—1
N(t)—1
Z:(nT) =S (1) + T Y _ S (nT — kt)———Zc(kr), n>1

k=0
and

t

N(t)—1
I v(t) =S (o + / Sc(t —s)fv(s)ds
0
t
(T)

=S:(p+ / Sc(t— s)?ﬂ,v(s) ds + R, v(t)

0
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where

t
R.v(t) = / Se(t— s)(%ﬂ,v(s) — %v(s)) ds. (5.2)

0

In order to proceed we need the following estimate on I7;v which we will prove later.

Lemma 5.1. Let (q, ) be an admissible pair. There exist Ty = T1(d, q, p, |¢ll;2rq)) and a constant C(q, p)
such that

”H‘Ev”lq(I,Lr(Rd)) < C(q, p)HQDHLZ(Rd)

holds for all intervals |1| < T.

To simplify the presentation we get rid of all the constants which depend by p, g and d.

Step 1. Local error estimate. Let T > 0 and (q, 1) € {(qo, o), (00, 2)}. We make use of the Strichartz
estimate (2.8), Lemma 4.6 and Lemma 4.7 to obtain

12z = Tz Vo, 117 (RYY)

n—1

N(t)—1 N(t)—1
<t Zsf(nr — kr)(sz kt) — Lﬂfv(kr))
k=0 t t 1900, T:Lr (R))
n-l N(t) =1 : N(t) -1
+ IZST(nr—kt)iﬂfv(kr)—/Sf(t—s)iﬂfv(s)ds
k=0 T 0 v 19(0,T;L"(R9))
+ ||RtV||1q(o,T;Lr(Rd))
N(t)—1 N(t)—1
SELEELEE
T T 1%(0,T;L'0 (RY))
N(t)—1 N(t)—1
tHLva r‘Lﬂfv‘
L90 (0, T, W70 (R4)) w40 (0,T,L70 (RY))

p+1
+ C(I)T || v ”qu (0,T; W2,r0 (Rd)) .

We now estimate the first two terms in the last inequality. Lemma 4.2 gives us that

HN(‘L’) —IZT N@) -1 i
T T

1% (0,T:L'0 (RY))

1—dp/4 p p
< T p/ ||ZT - H‘[V“l(]o (O,T;UO (Rd))(”ZT ||lQ0 (O,T;LrO (Rd)) + ”HTVIllqO(O,T,LTO(Rd)))'

The estimates on Z; and [T, v obtained in Theorem 1.1 and Lemma 5.1 give us the existence of a time
To=To(ll¢ll2(re)) such that for all intervals I with |I| < To the following hold

||Zr||1qoa;Lr0(Rd)) < ||(P||L2(Rd), ||HTV||lq6(I;Lr6(Rd)) < ||(P||L2(Rd)- (5.3)
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Thus

HN(‘E) _IZT _ N(r)_lﬂfv
T T

1% (0,T:L'0 (RY))

< Tl_dp/4||zr — I V|90 (0,T;L70 (R4Y) ||(P||122(Rd)- (5.4)
Applying Lemma 4.3 and estimate (4.10) of Lemma 4.4 we obtain

N(t)—1

Il v H
190 (0, T, W20 (R4Y) T

H N()—1

HTVH <C(T.livilr). (5.5
w40 (0,T,L70 (R%))

Using estimates (5.4) and (5.5) we get

1—dp/4 p
Z: — HrV”lq(o,T;Lr(Rd)) <T P/ |Z7 — HTVHIQO(O,T;LTO(Rd))||(P||L2(Rd)
+ (T, Ivllr)- (5.6)
We now choose T1 < Tg with Tq € TZ such that Tll_dp/4||<p||f2(Rd) < 1/4. We emphasize that T

depends only on the size of the L2(R%)-norm of ¢ and is independent of the size of T.
Using inequality (5.6) with (q,r) € {(c0, 2), (qo, 7o)} we obtain that

|Z7 — HIVHIOO(O,TULZ(]Rd)) +1Z: — HTV||ILI0(0,T1;U0(RL1)) < TC(TL |||V|||T1)

Step 1. Global error estimate. Using that v satisfies (1.15) we have for any positive T and ¢ that v
verifies the following integral equation

: exp(it|v|P) — 1
HTV(T—H):Sf(t)v(T)-i—/ST(t—s) - IT:v(T +5)ds + R (T +t).

0

Also, for any positive integers N and n, Z; satisfies

Z:((N+m)7) = (s,(r)N(r))N+”Z(Nr)
and consequently
-l N(t)—1
Z:(NT +n7) =S:(nT)Z:(NT) + T ) _ S (nT — kr)fz, (NT +kt), n>1.
k=0

We apply the same argument as in Step I on any interval on I, = [kTq, (k + 1)T1] with the same
admissible pairs (g, 1) € {(c0, 2), (qo, T0)}:

Z7 — HTVqu([k;Lr(]Rd))

N(t)—1I N(@) -1
qu(o,Tl;L’(le))Jr o T

N

< |8+ (2o (kT1) — My v (kTo)) v

% (1;: L0 (RY))

N(t)—1

N(t)—1
+T fﬂfv —_

B

LA(Iy, W2 (RY)) WL4(I, L' (R))



3044 LI Ignat /]. Differential Equations 250 (2011) 3022-3046

Let us denote

errg = || Z¢ — HIVHIOO(],(,LZ(Rd)) +1Z: — HrV”l%([k,LrO(Rd))-

Using estimates (2.6) and (5.6) we obtain

127 = I Vil e
< ||ZkT1) — M v(KT1) | 2 oy + TC(T1, IVIIIE)

+ Tl dp/4

b p
”Z - HTVHIqO(Ik;LrO(Rd))(||Z||lq0(1k;Ll‘0(Rd)) + ||HTV||lq0(1k;Lr0(Rd)))
<errg_q +T1~ dp/4||<ﬂ||L2(Rd)||Z — IV o 1. 170 (meyy + TC (T, VIl )

1Z = ITz V| jgo (1., 170 (ReY)
4

(T1, vl )-

<errg_1+ + TC(T1. lIvillr,)

L errg_

Summing the above inequality for the two pairs (q, 1) € {(c0, 2), (g0, T9)} we obtain that

erry < 4(errg_1 +7C(T1, lIvily,)), k=1

Moreover, by Step I, errg < 7. These imply that

erry < Tc(kTq, [Ivlkr,), forallk>1

This means that for any interval (0, T) the following holds

| Z — HIVHIOO(O,T,LZ(Rd)) < ‘L'C(T, |||V|”T)
The proof is now finished. O

Proof of Lemma 5.1. By Theorem 3.2 we know the existence of a To = To(d, p, q, [|¢ll;2(gey) Such that

”V”LQ(I,U(RC’)) g C(q7 p)”(p“LZ(Rd)

holds for all intervals I with |I| <T
We use that for any T and t positive [T, v satisfies

t

N(t)—1
I v(T+6)=S;:Ov(T)+ [ S{(t — s)fv(T +s)ds.
0
We apply Theorem 2.1 and Lemma 4.5 to obtain
N(t) — I

”H‘Ev”lq(T T+T; LN (R)) S C(d CI) H V(T) HLZ(]Rd) + C(d Db, CI) H , o .
LqO(T,T+T1,L 0 (R%))
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Lemma 4.1 and Lemma 4.2 give now

1-dp/4 ., p+1
I v r < c(, cd,p,qT V|7 , .
I Vla(r, 141,07 Rey) < €@, @l 2Ry +c(d, p, DT, | ||Lq0(T,T+T1,Lr0(Rd))
Thus, for any interval I = (T, T + Tq) with T; < Tg we get
1—dp/4

+1
I T2V lljar 1rwayy < €, D@l 2 gay + cd,p, T, (C(d, Q)||§0||L2(Rd))p

< 2c(d, Pl 2 ra)

provided that

_ 1
cd.p.9T; P*(C. Dllpgs)” <cd Dlgllp g

The lemma is now proved. O
We now prove Theorem 1.2.

Proof of Theorem 1.2. Using the previous results of Theorem 5.1 and Theorem 3.3 we obtain

Ogl}l-?éTHZT (nf) — V(n‘[)”LZ(Rd) < tC(T’ ”lvl”T)

and

Ognga;léTHu(nf) — V()| 2 e, < TC(T, llullir).

This implies that

J x| Ze(n) ~u@0)| oy < TC(T, WV ) < TC(T, 92 gy

The proof is now finished. O
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