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NUMERICAL DISPERSIVE SCHEMES FOR THE NONLINEAR
SCHRODINGER EQUATION*

LIVIU I. IGNATT AND ENRIQUE ZUAZUA?

Abstract. We consider semidiscrete approximation schemes for the linear Schrodinger equation
and analyze whether the classical dispersive properties of the continuous model hold for these ap-
proximations. For the conservative finite difference semidiscretization scheme we show that, as the
mesh size tends to zero, the semidiscrete approximate solutions lose the dispersion property. This
fact is proved by constructing solutions concentrated at the points of the spectrum where the second
order derivatives of the symbol of the discrete Laplacian vanish. Therefore this phenomenon is due
to the presence of numerical spurious high frequencies. To recover the dispersive properties of the
solutions at the discrete level, we introduce two numerical remedies: Fourier filtering and a two-grid
preconditioner. For each of them we prove Strichartz-like estimates and a local space smoothing ef-
fect, uniform in the mesh size. The methods we employ are based on classical estimates for oscillatory
integrals. These estimates allow us to treat nonlinear problems with L2-initial data, without addi-
tional regularity hypotheses. We prove the convergence of the two-grid method for nonlinearities that
cannot be handled by energy arguments and which, even in the continuous case, require Strichartz
estimates.
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1. Introduction. Let us consider the linear (LSE) and the nonlinear (NSE)
Schrédinger equations:

iug +Au=0, xzeR? t#£0,

(1.1) uw(0,z) = ¢(x), z€RY

and

(1.2) iug + Au= F(u), xR t#£0,
' uw(0,z) = o(z), z€R%
respectively.

The linear equation (1.1) is solved by u(t, z) = S(t)¢(x), where S(t) = ™ is the
free Schrodinger operator. The linear semigroup has two important properties. First,
we have the conservation of the L2-norm

(1.3) [u@®)llz2@e) = lloll 2 ey
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NUMERICAL DISPERSIVE SCHEMES FOR NSE 1367

and then a dispersive estimate of the form

1
7z lelliee, @ €RY 0.

(1.4) u(t, )| = [S()e(z)| < (@ t)a?

The space-time estimate

(1.5) ISC)pll La+aram, L2+aramay) < Cllell L2 @ays

due to Strichartz [27], is deeper. It guarantees that the solutions decay as ¢t becomes
large and that they gain some spatial integrability.

Inequality (1.5) was generalized by Ginibre and Velo [8]. They proved the mixed
space-time estimate, well known as Strichartz’s estimate:

(1.6) 1Sl Laqr, Lr@ayy < Clg, 7)ol L2 ey

for the so-called d/2-admissible pairs (g, 7). We recall that the exponent pair (g, ) is
a-admissible (cf. [14]) if 2 < ¢, r < 00, (¢, 7, ) # (2,00,1), and

(17) é:a<%—%).

The Strichartz estimates play an important role in the proof of the well-posedness
of the NSE. Typically they are used when the energy methods fail to provide well-
posedness results.

The nonlinear problem (1.2) with nonlinearity F(u) = |u[Pu, p < 4/d and initial
data in L?(R?) was first analyzed by Tsutsumi [30]. The author proved that, in this
case, the NSE is globally well posed in L>=(R, L%(R¢))N L} (R, L"(R?)), where (g,7)
is a d/2-admissible pair depending on the nonlinearity F.

The Schrédinger equation has another remarkable property guaranteeing the gain
of one half space derivative in L2 ; (cf. [5] and [15]):

1 *° i
(1.8) sup = / / |(—2) 2 o Pdtde < Cll] 2 ga.
20,k B JB(20,R) /=0

It has played a crucial role in the study of the NSE with nonlinearities involving
derivatives (see [16]). In particular, it is extremely useful when deriving compactness
properties.

For other properties on the Schrédinger equation we refer the reader to [3] and [28].

In this paper we analyze whether semidiscrete schemes for the LSE have dispersive
properties similar to (1.4), (1.6), and (1.8), uniform with respect to the mesh sizes.
The study of these dispersion properties for these approximation schemes is relevant
for introducing convergent schemes in the nonlinear context. Indeed, as mentioned
above, the proof of the well-posedness of the NSE requires a fine use of the dispersion
properties, and, consequently, it seems unlikely that the convergence of the numerical
schemes could be proved if these dispersion properties are not verified at the numerical
level.

Estimates similar to (1.6) for numerical solutions will allow proving uniform (on
the mesh-size parameter) bounds on discrete versions of the space L>(R, L?(R%)) N
L (R,L"(R%)). On the other hand, estimates similar to (1.8) on discrete solutions
will give sufficient conditions to guarantee their compactness and thus the convergence
towards the solution of the NSE (1.2).
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1368 LIVIU I. IGNAT AND ENRIQUE ZUAZUA

However, as we shall see, standard numerical approximation schemes often fail
to satisfy these dispersive estimates, uniformly in the mesh-size parameter, and im-
portant work needs to be done to develop numerical schemes that do fulfill these
estimates uniformly.
To better illustrate the problems we shall address, let us first consider the con-
servative semidiscrete numerical scheme
du

— + At =0, t>0,
(1.9) g e

ul(0) = .

Here u” stands for the infinite unknown vector {ugl}jezd, uj(t) being the approxima-
tion of the solution at the node x; = jh, and A} the classical second order finite
difference approximation of A:

d
(110) (Ahuh)j = h72 Z(’U’?—i—ek + “;L—ek - 2“’.?)
k=1

In the one-dimensional (1-d) case, the lack of uniform dispersive estimates for
the solutions of (1.9) has been observed by the authors in [12, 13]. The symbol
of the Laplacian, 2, in the numerical scheme (1.9) is replaced by 4/h?sin?(¢h/2)
for the discrete Laplacian (1.10). The first and second derivatives of the latter vanish
at the points +x/h and £7/2h of the spectrum. By building wave packets concen-
trated at the pathological spectral points +m/2h, it is possible to prove the lack of
any uniform estimate of the type (1.4) or (1.6). Similar negative results can be shown
to hold concerning (1.8) by building wave packets concentrated at = /h.

The paper is organized as follows. In section 2 we analyze the conservative ap-
proximation scheme (1.9). We extend the 1-d results mentioned above and prove that
this scheme does not ensure the gain of any uniform integrability or local smoothing
property of the solutions with respect to the initial data. The behavior of the Fourier
symbol of the numerical scheme provides a good insight to this pathological behavior.
We then propose a Fourier filtering method allowing recovery of both the integrability
and the local smoothing properties of the continuous model. The lack of dispersion
properties for the linear scheme makes it of little use to approximate nonlinear prob-
lems. In fact, in subsection 2.5, by an explicit construction we see that the solutions
of a cubic semidiscrete Schrédinger equation do not satisfy the dispersion property of
the continuous one, uniformly in the mesh-size parameter.

We then introduce a numerical scheme for which the dispersion estimates are
uniform. The proposed scheme involves a two-grid algorithm to precondition the initial
data. Based on this numerical scheme for the LSE we build a convergent numerical
scheme for the NSE in the class of L?(R¢)-initial data.

Section 3 is dedicated to the analysis of the method based on the two-grid precon-
ditioning of the initial data. We analyze the action of the linear semigroup exp(itAy,)
on the subspace of I2(hZ?) consisting of the slowly oscillating sequences generated by
the two-grid method. Once we obtain Strichartz-like estimates in this subspace we
apply them to approximate the NSE. The nonlinear term is approximated in such a
way that it belongs to the class of slowly oscillating data which permits the use of the
uniform Strichartz estimates.

The results in this paper should be compared to those in [25]. In that paper the
authors analyze the Schrédinger equation on the lattice Z? without analyzing the
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NUMERICAL DISPERSIVE SCHEMES FOR NSE 1369

dependence on the mesh-size parameter h. They obtain Strichartz-like estimates in a
class of exponents ¢ and r larger than in the continuous one. But none of these results
is uniform when working on the scaled lattice hZ¢ and letting h — 0 as our results in
section 2 show.

In the context of equations on lattices we also mention [6, 19]. In these papers the
authors analyze the dynamics of infinite harmonic lattices in the limit of the lattice
distance e tending to zero.

The analysis in this paper can be adapted to address fully discrete schemes. In
[10] necessary and sufficient conditions are given guaranteeing uniform dispersion
estimates for fully discrete schemes. The work of Nixon [20] is also worth mentioning.
There the 1-d KdV equation is considered and space-time estimates are proved for
the implicit Euler scheme.

2. A conservative scheme. In this section we analyze the conservative scheme
(1.9). This scheme satisfies the classical properties of consistency and stability which
imply L2-convergence. We construct pathological explicit solutions for (1.9) for which
neither (1.6) nor (1.8) holds uniformly with respect to the mesh-size parameter h.

In our analysis we make use of the semidiscrete Fourier transform (SDFT) (we
refer the reader to [29] for the main properties of the SDFT). For any v € 12(hZ%)
we define its SDFT at the scale h by

(2.11) 0M(E) = (Fav") (&) = h? D eIl e [—m/h,m/h]"

jezd

We will use the notation A < B to report the inequality A < constant x B, where
the multiplicative constant is independent of h. The statement A ~ B is equivalent
to A< Band B < A.

Taking the SDFT in (1.9) we obtain that u”(t) = S” ()" which is the solution
of (1.9) satisfies

(2.12) iy (t,€) + pu(€)u"(t,€) =0, teR, &€ [-n/hm/h]*,

where the function py, : [~7/h,7/h]¢ — R is defined by

d
(2.13) pn(€) = % > sin? <%) .
k=1

Solving the ODE (2.12) we obtain that the Fourier transform of u” is given by
(2.14) at(t,6) = e P EOGME), €€ [-m/h,m/h]".

Observe that the new symbol pj, (€) is different from the continuous one, |¢[2. In the
1-d case (see Figure 1), the symbol p,(€) changes convexity at the points £ = +7/2h
and has critical points also at £ = 4 /h, two properties that the continuous symbol
does not have. Using that

inf Y|+ |pi (6] > 0,
el Py ()] + [pr ()]

in [13] (see also [25] for h = 1) it has been proved that

(2.15) Huh(t)||l°°(hZ) S ||80h”ll(h2) (|75|71/2 + (|’5|h)71/3)7 t#0.
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1370 LIVIU I. IGNAT AND ENRIQUE ZUAZUA

continuous
- - - semidiscrete

n/2h n/h

FiG. 1. The two symbols in dimension one.

1
Ol

R )

—— -2

F1G. 2. Log-log plot of the time evolution of the 1°°(Z)-norm of the fundamental solution u' for
(1.9).

Note that estimate (2.15) blows up as h — 0. Therefore it does not yield uniform
Strichartz estimates.

Figure 2 shows that (2.15) could not be improved for large time ¢. In fact when
h =1 and ¢! = §y (dp is the discrete Dirac function, where (Jp)o is one and zero
otherwise) the solution u'(t) behaves as t~1/3 for large time ¢ instead of t~/2 in the
case of the LSE.

In dimension d, similar results can be obtained in terms of the number of nonvan-
ishing principal curvatures of the symbol and its gradient. Observe that, at the points
& = (£nm/2h,...,£7/2h), all the eigenvalues of the Hessian matrix Hp, = (0i;pn)ij
vanish. Moreover, if k-components of the vector ¢ coincide with 4 /2h, the rank of
Hp, at this point is d — k instead of d, as in the continuous case. This will imply that
the solutions of (1.9), concentrated at these points of the spectrum, will behave as
t=(d=k)/2(th)~*/3 instead of t~%/2 as t — co. This shows that there are no uniform
estimates similar to (1.4) or (1.6) at the discrete level. But these inequalities are nec-
essary to prove the uniform boundedness of the semidiscrete solutions in the nonlinear
setting.

On the other hand, at the points € = (7 /h,...,+m/h), the gradient of the sym-
bol pr(€) vanishes. As we will see, these pathologies affect the dispersive properties
of the semidiscrete scheme (1.9) and its solutions do not fulfill the regularizing prop-
erty (1.8), uniformly in A > 0, which is needed to guarantee the compactness of the
semidiscrete solutions. This constitutes an obstacle when passing to the limit as h — 0
in the nonlinear semidiscrete models.

This section is organized as follows. Section 2.1 deals with the analysis of proper-
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NUMERICAL DISPERSIVE SCHEMES FOR NSE 1371

ties (1.4) and (1.6) for the solutions of (1.9). The local smoothing property is analyzed
in section 2.2. In section 2.3 we prove uniform estimates similar to (1.4) and (1.8),
uniformly with respect to the parameter h, in the class of initial data whose Fourier
spectrum has been filtered conveniently. Strichartz-like estimates for filtered solutions
are given in section 2.4.

In section 2.5 we analyze a numerical scheme for the 1-d cubic NSE based on the
conservative approximation of the linear Schrédinger semigroup. We prove that its

solutions do not remain uniformly bounded in any auxiliary space L} (R, L"(hZ)).

2.1. Lack of uniform dispersive estimates. First, we construct explicit ex-
amples of solutions of (1.9) for which all the classical estimates of the continuous case
(1.6) blow up.

THEOREM 2.1. Let T >0, ro > 1, and r > rq. Then

HSh(T)SDthT(th) .
=0

2.16
( ) h>0, phelmo (hZd) H<Ph||lro(hzd)
and
Sh(Nh .
(217) sup H ()90 ||L1((0,T))l (hZ4)) ~ s

h>0, phclro (hzd) ||<Ph|\zro(hzd)

Remark 2.1. A finer analysis can be done. The same result holds if we take the
supremum in (2.16) and (2.17) over the set of functions ¢ € ["(hZ%) such that the
support of their Fourier transform (2.11) contains at least one of the points of the set

(2.18) Mh = {g = (&1,...,64) € {— % %}d :3i € {1,...,d}such that & = 21}
Observe that at the above points the rank of the Hessian matrix H,, is at most d —1.

Remark 2.2. Let P" be an interpolator, piecewise constant or linear. In view of
Theorem 2.1, for any fixed T > 0, the uniform boundedness principle guarantees the
existence of a function ¢ € L?(R?) and a sequence ¢ such that P"o" — ¢ in L2(R?)
and the corresponding solutions u" of (1.9) satisfy ||PhuhHL1((O’T)) Lr(Rd)) — OO.

Proof of Theorem 2.1. First, observe that it is sufficient to deal with the 1-d case.
Indeed, for any sequence {4} jez set @} = ¢l .. I where j = (j1,j2,...,74). We
are thus considering discrete functions in separated variables. Then, for any ¢ the
following holds:

(S™()e"); = (ST (Bw");, SV ()Y, - - (SHM(BOW" )0,

where S (t) is the linear semigroup generated by (1.9) in the 1-d case. Thus it is
obvious that (2.16) and (2.17) hold in dimension d > 2, once we prove them in the
1-d case d = 1.

In the following we will consider the 1-d case d = 1 and prove (2.16), the other
estimate (2.17) being similar. Using the properties of the SDFT it is easy to see that
(Sh(t)ph); = (ST(t/h?)pl);, where @} = cp?, j € Z. A scaling argument in (2.16)
shows that

[1S"(T) o™ 14z _pien ST /0*) " |1z

(2.19) o
" 1140 (nz) l© 1490 (z)
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1372 LIVIU I. IGNAT AND ENRIQUE ZUAZUA

Let us introduce the operator S;(t) defined by

(220) 500 = [ Ocepe)ds,

which is the extension of the semigroup generated by (1.9) for h =1 to all z € R.
We point out that for any sequence {¢}};ez, S1(t)¢" as in (2.20), which is defined

for all z € R, is in fact the band-limited interpolator of the semidiscrete function

St(t)p!. The results of Magyar, Stein, and Wainger [18] (see also Plancherel and

Pélya [21]) on band-limited functions show that the following inequalities hold for

any ¢ > 1 and for all continuous functions @ supported in [—, 7]:

c(@)lleliazy < llellLamy < C(@)llelliaz).-

Thus for any ¢ > ¢o > 1 the following holds for all functions ¢! whose Fourier
transform is supported in [—, 7]:

1" ) liscz)

151 ()0 1o
1 ]190 (z)

(2.21)
ol oo ()

> c(q, qo)

In view of this property it is sufficient to deal with the operator Sy (t).
Denoting 7 = T'/h?, by (2.19) the proof of (2.16) is reduced to the proof of the
following fact about the new operator S (t):
(1 1 S
(2.22) im 2 (H8) g ISOClew
T—o0 supp(@)C[—m,7] ||‘P||LGO(R)

The following lemma is the key point in the proof of the last estimate.
LEMMA 2.1. There exists a positive constant ¢ such that for all T sufficiently
large, there exists a function o, such that ||¢-| Lr®) ~ T30 for all p > 1 and

1
(2.23) (Si0r) @) = 5
for all |t| < et and |z — tp)(n/2)] < er'/3.
Remark 2.3. Lemma 2.1 shows a lack of dispersion in the semidiscrete setting
when compared with the continuous one. In the latter, for any initial data ¢, such
that ||, |21 ®) = 71/, the solution S(t)¢, of the LSE satisfies

< T1/3 < 1
||S(t)‘ﬁr||L°°(]R) SR 176

for all ¢ ~ 7, which is incompatible with (2.23).

The proof of Lemma 2.1 will be given later.

Assuming for the moment that Lemma 2.1 holds, we now prove (2.22). In view of
Lemma 2.1, given g > go > 1, for sufficiently large 7 the following holds:

151l -t
supp(@) C[—m,7] el oo w)

Thus (2.22) holds and the proof is done. O
Proof of Lemma 2.1. The techniques used below are similar to those used in [7]
to get lower bounds on oscillatory integrals.
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We define the relevant initial data through its Fourier transform. Let us first fix
a positive function @ supported on (—1, 1) such that ffﬂ @ = 1. For all positive 7, we
set

Pr(6) = THPR(rV(E — 7 /2)).

We define @, as the inverse Fourier transform of @,. Observe that @, is supported
in the interval (7/2 — 7713, 7/2 4 771/%) and ["_@. = 1. Also using that ¢, (z) =
o1 (17132) we get ||@r | Low) = TV/3P for any p > 1.

The mean value theorem applied to the integral occurring in the right-hand side
of (2.20) shows that

224)  |Sit)pr(a)] > (1—271/3 sup )|x—tpa<5>|> / " Ga©e.

&€ supp( —7

Using that the second derivative of p; vanishes at £ = /2 we obtain the existence of
a positive constant c¢; such that

o — tph ()] < o — tp (n/2)] +ter|€ —m/2°, E=m/2.
In particular for all ¢ € [r/2 — 771/3,7/2 + 771/3] the following holds:
& — tpi ()] < & — tpl (w/2)] + terT /2.

Thus there exists a (small enough) positive constant ¢ such that for all z and ¢
satisfying | — tp)(7/2)| < ¢r™/3 and t < cr

_ 1
or—1/3 sup |z —tp)(&)] < 7
&€ supp(®+)

In view of (2.24) this yields (2.23) and finishes the proof. O

2.2. Lack of uniform local smoothing effect. In order to analyze the local
smoothing effect at the discrete level we introduce the discrete fractional derivatives
on the lattice hZ?. We define, for any s > 0, the fractional derivative (—Ap)*/?u” at
the scale h as

) (A= [ QSO A@, jen

where pp(-) is as in (2.13) and Fj(u") is the SDFT of the sequence {uf}jczs at the
scale h .

Concerning the local smoothing effect we have the following result.

THEOREM 2.2. Let T >0 and s > 0. Then

hd . —Ap S/2ShT hy.|2
(2.26) sup thgl [(( h2 ) (T)e")s —
h>0,0"m €12 (hZd) e ”12(th)

and

(2.27) sup WS et Jo 1((—AR)* 728 (t)ph ) 2dt _

0.
h>0,p"m €12 (hZd) ”‘PhHl%(hzd)
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1374 LIVIU I. IGNAT AND ENRIQUE ZUAZUA

Remark 2.4. The same result holds if we take the supremum in (2.26) and (2.27)
over the set of functions " € 1?(hZ?) such that the support of ©" contains at least
one of the points of the set

1 momyd T
(2.28) M = {g_ (E1y... E0) € [ - h} L G==T 1_1,...,d}.
Observe that at the above points the gradient of p; vanishes.

In contrast with the proof of Theorem 2.1 we cannot reduce it to the 1-d case.
This is due to the extra factor pz/ 2(f) which does not allow us to use separation of
variables. The proof consists in reducing (2.26) and (2.27) to the case h = 1 and then
using the following lemma.

LEMMA 2.2. Let s > 0. There is a positive constant ¢ such that for oll T sufficiently

large there exists a function o} with ||} |2z = 742 and
(2.29) (—A1)* 28 (8)e})s] > 1/2

for all |t] < er?, |j| < er.
We postpone the proof of Lemma 2.2 and proceed with the proof of Theorem 2.2.
Proof of Theorem 2.2. We prove (2.26), the other estimate (2.27) being similar.
As in the previous section we reduce the proof to the case h = 1. By the definition of
(—Ap)%/? for any j € Z¢ we have that

(=AR)725" (1)p"); = h=*((-A1)* /28" (t/h)");, GeZf,
where <pJfL = <pj1, j €74 Thus

WS i (AR 2SMT)M1P B2 305 21 (= A1) 2SH(T/R2) )52
™17 () M 172 (za) '

With ¢ and ¢, given by Lemma 2.2 and 7 such that ¢r? = T/h?, i.e., 7 = (T/c)"/?h~ 1,
we have [[¢7(|7 ;) = 7% and

h7282\j|§1/h [((=A1)*2SH(T/h?)e} )51 I
2 lim —
T—00 T

lim

T—00

= OQ.
EE.

This finishes the proof. ad

Proof of Lemma 2.2. We choose a positive function @ supported in the unit ball
with [y, @ = 1. Set for all 7 > 1 $L(¢) = 793 (7(¢ — 7q)) , where mg = (..., 7). We
define ! as the inverse Fourier transform at scale h = 1 of $L. Thus @! is supported in
{€:1€—mq4| <771}, it has mass one, and ||} ||;2(ze) = 7%/2. Applying the mean value
theorem to the oscillatory integral occurring in the definition of (—A;)%/25(t)p! and
using that p; (&) behaves as a positive constant in the support of ! we obtain that
for some positive constant cg

|<<—A1>S/251<t>wi>j|>(1—27—1 sup |j—tvp1<s>|> | s

£€supp(pl)

> oy (1—271 sup |j—tvp1<s>|) /[ L BHOE

&€ supp(pl)
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Using that Vp; vanishes at £ = m4; we obtain the existence of a positive constant
c1 such that

i —tVp1(&)| < i +ter|§ — mal, & ~ ma.

Then there exists a positive constant ¢ such that for all j and ¢ satisfying |j| < e and
t < cr? the following holds:

N =

2771 sup  [j—tVpi(§)] <
&€ supp(pr)

Thus for all ¢ and j as above (2.29) holds. This finishes the proof. O

2.3. Filtering of the initial data. As we have seen in the previous section
the conservative scheme (1.9) does not reproduce the dispersive properties of the
continuous LSE. In this section we prove that a suitable filtering of the initial data
in the Fourier space provides uniform dispersive properties and a local smoothing
effect. The key point to recover the decay rates (1.4) at the discrete level is to choose
initial data with their SDFT supported away from the pathological points M in
(2.18). Similarly, the local smoothing property holds uniformly on A if the SDFT of
the initial data is supported away from the points M% in (2.28).

For any positive ¢ < 7/2 we define Q", the set of all the points in the cube
[~7/h,7/h]? whose distance is at least ¢/h from the set in which some of the second
order derivatives of p,(£) vanish:

T 7T:|d

Q?,dZ{fZ(fl,---,fd)G {_E’E

™ €
<G —>—,.:1,..., }
6 35| 2 o a
Let us define the class of functions Ieh)d C 12(hZ%), whose SDFT is supported on di:
(2.30) Ieh,d = {(ph € l2(th) : supp(@h) C de}.

We can view this subspace of initial data as a subclass of filtered data in the sense
that the Fourier components corresponding to £ such that |¢; £7/2h| < €/h have been
cut off or filtered out.

The following theorem shows that for initial data in this class the semigroup S"(t)
has the same long time behavior as the continuous one, independently of i in what
concerns the 17 (hZ?) — I?(hZ?) decay property.

THEOREM 2.3. Let 0 < € < 7/2 and p > 2. There exists a positive constant
C(e,p,d) such that

_d(1_2
(2.31) 15" (1) s nzay < Clesp, ) EE) QP s gy, £,

holds for all o € I (hZ4) ﬂIZd, uniformly on h > 0.
Proof. A scaling argument reduces the proof to the case h = 1. For any ¢! € Iel, d
the solution of (1.9) is given by S'(t)p' = K! ;% ¢, where

(2.32) K;d(t,j)z/ et @ eidtqe ezl
QL 4

As a consequence of Young’s inequality it remains to prove that

(2.33) KL 4(O)llip(za) < Cle,p,d)|t| =420/
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for any p > 2 and for all ¢t # 0. Observe that it is then sufficient to prove (2.33) in
the 1-d case. Using that the second derivative of the function sin?(£/2) is positive on
Q! | we obtain by the Van der Corput lemma (see [26, Prop. 2, Chap. 8, p. 332]) that
KL ()]l (z) < c(€)|t|~'/? which finishes the proof. O

A similar result can be stated for the local smoothing effect. For a positive ¢, let
us define the set Q? 4 of all points located at a distance of at least e/h from the points

(£m/h)%:
e[ 53]

Observe that on QZd the symbol pp(€) has no critical points other than £ = 0. A

similar argument as in [15] shows that the linear semigroup S"(¢) gains one half space
derivative in L7, with respect to the initial datum filtered as above. More precisely,

if P? denotes the band-limited interpolator (cf. [31, Chap. II])

&F %‘ %,izl,...,d}.

(2.34) (Phuh) () = /[ e e

the following holds.
THEOREM 2.4. Let € > 0. There exists a positive constant C(e,d) such that for
any R >0

/ / A)VAPh AR oY) 2 dtda < C(e,d)R||<Ph||z22(th)
|z|>R

holds for all " € 1?(hZ%) with supp(@") C ﬁ?)d, uniformly on h > 0.

To prove this result we make use of the following theorem.

THEOREM 2.5 (see [15, Theorem 4.1]). Let O be an open set in R? and 1 be a
CY(O) function such that Vi (€) # 0 for any € € O. Assume that there is N € N such
that for any (&1,...,64-1) € R4 and r € R the equations

w(gla'"7§k7§7€k+17"'7§d71) =T, kzoa"'ad_17

have at most N solutions £ € R. For a € L®(R? x R) and f € S(R?) define

W(0)f(x) = / EHE+E) o (2 (€)) F (€.

o
Then for any R >0

Gk
(2.35) /z<R/ z)|?dtdz < cRN ; |V¢(§)|d§’

where ¢ is independent of R and N and f.
Remark 2.5. The result remains true for domains O where |V| has zeros, pro-
vided that the right-hand side of (2.35) is finite.

Proof of Theorem 2.4. Observe that for any " € 1?(hZ?) with supp(@") C Q
we have

Pl @) = [ O, o e R

h
Qed
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Applying Theorem 2.5 with O = th, Y = pp(€), and a = 1 and using that
|Vpn(€)] > c(e,d)|€] for all € € (NZZd we obtain that

1/4Ph itAp 2 < | ( )l |§| < h12
o 2dtda / de < 110" % a-
/.QM/ &, V(@] P (nz)

This finishes the proof. a

2.4. Strichartz estimates for filtered data. In this section we are interested
in deriving Strichartz-like estimates for the operator S"(¢) when it acts on functions
belonging to ZZ 4» the class of functions defined in (2.30).

The main ingredient in obtaining Strichartz estimates is the following result due
to Keel and Tao [14].

THEOREM 2.6 (see [14, Theorem 1.2]). Let H be a Hilbert space, (X,dx) be a
measure space, and U(t) : H — L*(X) be a one parameter family of mappings, which
obey the energy estimate

(2.36) IU@) flleex) < Clfllm
and the decay estimate
(2.37) IU@®U(s) gllL=(x) < Clt = s|7llgllLr(x)
for some o > 0. Then
NIU@) fllLa, rx)) < Clflla ¥ f€H,

(2.38)

/U )ds

/O U)U ()" (s, )ds

SCOIF|l Lo @, 1 x)y ¥V EFe€LT(R, L™ (X)),
H

SCINFllpo @ 1 x)y YFE LY(R, L™ (X))
La(R, L™ (X))

for any o-admissible pairs (q,7) and (G, 7).
Remark 2.6. With the same arguments as in [14], the following also holds for all
(g,r) and (g,7), o-admissible pairs:

S COIF| Lo w, 17 x))-

(2.40) ‘
L9(R, L (X))

/t Ult — 5)F(s, )ds
0

In the case of the Schrédinger semigroup, S(t —s) = S(¢)S(s)*, so (2.40) and (2.39)
coincide. However, in our applications we will often deal with operators that do not
satisfy S(t —s) = S(¢)S(s)*.

Let us choose 0 < € < 7/2, K as in (2.32) and U(t)p' = Ky “*p'. We apply the
above theorem to U(t), with X = Z9, dz being the counting measure, and H = [?(Z%).
In this way we obtain Strichartz estimates for the semigroup S!(¢) when acting on
! 4 1.e., when h = 1. Then, by scaling, we obtain the following result in the class of

€,

filtered 1n1tlal data.
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THEOREM 2.7. Let 0 < € < w/2 and (q,r), (¢,7) be two d/2-admissible pairs.
(i) There exists a positive constant C(d,r,€) such that

(2.41) 15" ()" || Lagw, ir (nzayy < C(d, 7, €)1 12 nzay
holds for all functions o" € ng and for all h > 0.
(ii) There exists a positive constant C(d,r,7,€) such that

(2.42) ‘ < O, r M a7 ey

/O "5t 5)f(s)ds

La(R, ™ (hZ4))

holds for all functions f* € LY (R, I” (hZ%)) with f(t) € Ieh)d for a.e. t € R and for
all h > 0.

2.5. On the cubic NSE. In the previous sections we have seen that the linear
semidiscrete scheme (1.9) does not satisfy uniform (with respect to h) dispersive
estimates. Accordingly we cannot use it to get numerical approximations for the NSE
with uniform bounds on spaces of the form L?((0,T),1"(hZ?)). However, one could
agree that, even if a perturbation argument based on the variation of constants formula
and the dispersive properties of the linear scheme does not provide uniform bounds
for the nonlinear problem, these estimates could still be true.

In this section we give an explicit example showing that a numerical scheme for the
cubic NSE based on the conservative scheme (1.9) does not satisfy uniform bounds in
L4((0,T),1"(hZ%)). This shows that the conservative scheme (1.9) can be used neither
for the LSE nor for the NSE within the L4((0,T),1"(hZ%))-setting.

We consider an approximation scheme to the 1-d NSE with nonlinearity 2|u|?u:

(2.43) iOpul + (Apu), = [ulP(ul, +ul_)).

In what follows we shall refer to it as the Ablowitz—Ladik approximation [1] for the
NSE.

As we shall see, this scheme possesses explicit solutions which blow up in any
L} (R, I"(hZ))-norm with r > 2 and ¢ > 1. We point out that this is compatible with
the L%-convergence of the numerical scheme (2.43) for smooth initial data [1, 2].

Let us consider ¢ € L%*(R) as initial data for (1.2) with F(u) = 2u|ul?. As
initial condition for (2.43) we take u"(0) = ¢", " being an approximation of ¢.
Let us assume the existence of a positive T such that for any h > 0, there exists
u € L>=([0,T), 12(hZ)) a solution of (2.43). The uniform boundedness of {u”}~¢ in
L°°([0,T], I?>(hZ)) does not suffice to prove its convergence to the solution of (1.2).
One needs to analyze whether the solutions of (2.43) are uniformly bounded, with
respect to h, in one of the auxiliary spaces L}, (R, I"(hZ)), a property that will guar-
antee that any possible limit point of {u"};~0 belongs to L?((0,T), L"(R)). We are
going to show that these uniform estimates do not hold in general.

To do that we look for explicit travelling wave solutions of (2.43). By scaling, the
problem can be reduced to the case h = 1. Indeed, u" is a solution of (2.43) if the

scaled function
ul(t) = hul(th?), ne€Z, t>0,

solves (2.43) for h = 1. In this case, h = 1, there are explicit solutions of (2.43) of the
form

(2.44) ul (t) = Aexp(i(an — bt))sech(cn — dt)
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for suitable constants A, a,b,c,d (for the explicit values we refer the reader to [2,
p. 84]).

In view of the structure of u it is easy to see that the solutions of (2.43), obtained
from u! by scaling, are not uniformly bounded as h — 0 in any auxiliary space
L1((0,T), I"(hZ)) with r > 2. Indeed, a scaling argument shows that

HuhHLq((O,T),lT(hZ)) _ %_,_%_% Hu1||Lq((0,T/hz),p~(Z))
[[u"(0)[li2(nz) [t (0)]]i2(z)

Observe that, for any ¢ > 0, the {"(Z)-norm behaves as a constant:

1/r 1/r
[u () lir(zy = (/R sech” (cx — dt)da:) = </R sechr(ca:)da:> .

Thus, for all T > 0 and h > 0 the solution u' satisfies
Hul ||Lq((0)T/h2), 1r(z)) ~ (Th_Q)l/q.
Consequently for any r > 2 the solution u” on the lattice hZ satisfies

”uh”Lq((QT)JT(hZ)) ~ it s
[[u”(0) |12 (hz) ’

1
-

h — 0.

This example shows that, in order to deal with the nonlinear problem, the linear
approximation scheme needs to be modified. In the following section we present a
method that preserves the dispersion properties and that can be used successfully at
the nonlinear level.

3. A two-grid algorithm. In this section we present a conservative scheme
that preserves the dispersive properties we discuss in the previous sections. In fact,
the scheme we shall consider is the standard one (1.9). But, this time, in order to avoid
the lack of dispersive properties associated with the high frequency components, the
scheme (1.9) will be restricted to the class of filtered data obtained by a two-grid
algorithm. The advantage of this filtering method with respect to the Fourier one is
that the filtering can be realized in the physical space.

The method, inspired by [9], that extends to several space variables the one intro-
duced in [11], is roughly as follows. We consider two meshes: the coarse one of size 4h,
4hZ?, and the finer one, the computational one hZ?, of size h > 0. The method relies
basically on solving the finite difference semidiscretization (1.9) on the fine mesh hZ?,
but only for slowly oscillating data, interpolated from the coarse grid 4hZ?. As we shall
see, the 1/4 ratio between the two meshes is important to guarantee the convergence
of the method. This particular structure of the data cancels the two pathologies of
the discrete symbol mentioned in section 2. Indeed, a careful Fourier analysis of those
initial data shows that their discrete Fourier transform vanishes quadratically in each
variable at the points ¢ = (+7/2h)% and ¢ = (£7/h)%. As we shall see, this suffices
to recover at the discrete level the dispersive properties of the continuous model.

Once the discrete version of the dispersive properties has been proved, we explain
how this method can be applied to a semidiscretization of the NSE with nonlinearity
f(u) = |u|Pu. To do this, the nonlinearity has to be approximated in such a way that
the approximate discrete nonlinearities belong to the subspace of filtered data as well.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



1380 LIVIU I. IGNAT AND ENRIQUE ZUAZUA

4h
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F1G. 3. The action of the operator I between the grids 4hZ.

3.1. The two-grid algorithm in the linear framework. To be more precise
we introduce the following space of the slowly oscillating sequences. These sequences
on the fine one hZ<¢ are those which are obtained from the coarse grid 4hZ¢ by an
interpolation process. Note that, by scaling, any function defined on the lattice hZ¢
can be viewed as a function on the lattice Z®. Thus it suffices to define this space for
h=1.

Let us consider the piecewise and continuous interpolator P% acting on the coarse
grid 474, We define the extension operator II : 12(4Z4) — [2(Z%) (see Figure 3) by

(3.45) (If); = (Pif);, jezd, f:4z2° —C.

We then define the space of the slowly oscillating sequences, ﬁ(4th), as the image

of the operator II acting on functions defined on 4h74. We will also make use of
II* : 12(hZ?) — 12(4hZ%), the adjoint of II, defined by

(346) (ﬁg%hagg)ﬁ(hld) = (gilhvﬁ*gg)lz(élhld) vgilh € 12(4th)a 93 € lz(th)v

where (+,);2(pz4) and (-, -);2(apza) are the inner products on [?(hZ?) and [*(4hZ?),
respectively. _ _
In the 1-d case, the explicit expressions of II and II* are given by

~ 4—r r
h h h .
(Hg4 )4j+r = ngllj + Zg:llj+47 AS Z7 e {07 17273}7
and
S 4—p r
T h — T oh h .
(IT*g")aj = Z Tg4j+r + Zg4j—4+r7 Jj € Z.
r=0
As we will see, S (t) has appropriate decay properties when it acts on the subspace
[1(4hZ%), uniformly on h > 0. The main results concerning the gain of integrability
are given in the following theorem.

THEOREM 3.1. Let p > 2 and (q,r), (¢,7) be two d/2-admissible pairs. The
following hold:

(i) There exists a positive constant C(d,p) such that
- 1~
(3.47) IS™ O™ (1 nzey < C(d, p)[E] ™49 | o™ 1 120

for all g** € 1P (4hZ%), h > 0, and t # 0.
(ii) There exists a positive constant C(d,r) such that

(3.48) |7 (4)TIp*" | La(r, i (hzay)y < C(d,7) [ TLp*" li2(nz)
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FIG. 4. Log-log plot of the time evolution of the 1°°(Z)-norm of S1(t)[16g, where 8g is one in
zero and vanishes otherwise.

for all o*" € 12(4hZ%) and h > 0.
(iii) There exists a positive constant C(d,r) such that

(3.49) H [ O:o Sh()TLF (s)ds

< C(d, T)||Hf4h||Lq/ (R,I7' (hZ4))
12 (hz)
for all f* € LY (R, I” (4hZ%)) and h > 0.
(iv) There exists a positive constant C(d,r,7) such that

<C(d,r, 7’~)||Hf4h||m’ (R, 17 (hZ))

(3.50) ‘
La(R, I"(hZ4))

/ "5t s)TLf (s)ds
0

for all f* € LT (R, I” (4hZ%)) and h > 0.

Remark 3.1. In the particular case p = 0o, estimate (3.47) shows that the solution
of (1.9) with initial data in II(4hZ?) decays as t~%/2 when t becomes large which agrees
with the LSE. This can be seen in Figure 4, where the initial data has been chosen
as I1dy (do being the discrete Dirac function defined on the coarse grid 4hZ). The
solution behaves as t~1/2 in contrast with the case presented in section 2, Figure 2,
where the initial data was dg (the discrete Dirac function defined on the fine grid hZ)
and the decay was as t—1/3.

The following lemma gives a Fourier characterization of the data that are obtained
by this two-grid algorithm involving the meshes 4hZ? and hZ<. Its proof uses only
the definition of the discrete Fourier transform and we omit it.

LEMMA 3.1. Let *" € 12(4hZ%). Then for all € € [—7/h,n/h]?

—

d
(3.51) Iyin(€) = 4T () [ cos® (€xh) cos’ (%) :
k=1
where (IIp*h); = wjlh if j € 474 and vanishes elsewhere.

Remark 3.2. Observe that the right-hand side product in (3.51) vanishes (see the
right of Figure 5 for the 1-d case) on the sets M? and M% defined in sections 2.1
and 2.2, respectively. This will allow us to recover the dispersive properties of the
numerical scheme introduced in this section.

Remark 3.3. A simpler two-grid construction could be done by interpolating 2hZ¢
sequences. We would get for all ¢?" € [2(2hZ%) and ¢ € [—7/h, w/h)¢

—_— 4 &rh
i) =20 T cos? (547,
k=1
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Fic. 5. Multiplicative factors introduced by the two-grid algorithm in dimension one in the case
of mesh ratio 1/2 and 1/4.

where (H¢2h)j = z/JJ?h if j € 2Z% and vanishes elsewhere. In the 1-d case the multiplier
introduced by this method is plotted in the left of Figure 5. This procedure would
cancel the spurious numerical solutions at the frequencies M# but not at M%. In this
case, as we proved in section 2, the Strichartz estimates would fail to be uniform on h.
Thus we rather choose 1/4 as the ratio between the grids for the two-grid algorithm.
We also point out that 4 is the smallest quotient of the grids for which the decay
1Y (hZ?) — 1°°(hZ?) holds uniformly in the mesh parameter.

Proof of Theorem 3.1. Let us define the weighted operators A%(t) : I>(hZ%) —

12(hZ%) by

—

(3.52) (AB () (€) = e P @ |g(¢h)|Pyh(€), € € [~n/h,/h),
where

d
916 = ] costereos ().

k=1
We will prove that for any 8 > 1/4, Ag(t) satisfies the hypotheses of Theorem 2.6.
Then, according to Lemma 3.1, observing that S"(¢)[Ip*h = 49 AL (#)IIp*", we obtain
(3.48), (3.49), and (3.50).
It is easy to see that ||Ag' V" iz nzay < 19" [|12(nza)- According to this, it remains
to prove that for any 8 > 1/4 and ¢ # s the following holds:

(3.53) 1AS (@) A% () 0" 1o nzty < (B, )t — |~ [[ 4" 12 nza)-

A scaling argument reduces the proof to the case h = 1. We claim that (3.53) holds
once

(3.54) 1AL @)% [0 zay < e, DIt 11 2y

is satisfied for all v > 1/2. Indeed, using that the operator Al (¢) satisfies Al (¢)* =
Al (—t) we obtain

| AG () A5 (5)* % |10 zay = |AB ()AL (=)t 100 zay = [|A35(t — )1 10 (29
St =72l ey

for all t # s and ' € 1*(Z9).
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In the following we prove (3.54). We write Al(t) as a convolution Al(t)y' =

Kfiﬁ * 1)1, where Ef;(f) = e 18 |g(€)7. By Young’s inequality it is sufficient to
prove that for any v > 1/2 and ¢ # 0 the following holds:

(3.55) 1K oo zay < (v, d)[t] =42,

We observe that K can be written by separation of variables as

i ($)

It remains to prove that (3.55) holds in one space dimension. We make use of the
following lemma.

LEMMA 3.2 (see [15, Corollary 2.9]). Let (a,b) C R and ¢ € C3(a,b) be such that
" changes monotonicity at finitely many points in the interval (a,b). Then

d
P 7isin25—k
K (&) = [[e st
k=1

vy d
11 &8,

Jj=1

b
/ e OO 1y (€)1 () de

b
< eylt|? {|¢||Loo(a,b) +/ |¢'(€)|d€}

holds for all real numbers x and t.
Applying the above lemma with ¢(&) = |cos&[Y~1/2|cos(£/2)|7, v > 1/2, and
(&) = —4sin?(£/2), we obtain (3.55) for d = 1, which finishes the proof. O

3.2. A conservative approximation of the NSE. We now build a convergent
numerical scheme for the semilinear NSE equation in R¢:

tug + Au = |ul|Pu, t#0,
50 t . £
u(0,2) = p(x), =z €R%
Our analysis applies for the nonlinearity f(u) = —|ulPu as well. In fact, the key point

for the proof of the global existence of the solutions is that the L2-scalar product
(f(u),u) is a real number. All the results extend to more general nonlinearities f(u)
satisfying this condition under natural growth assumptions for L?-solutions (see [3,
Chap. 4.6, p. 109]).

The first existence and uniqueness result for (3.56) with L?(R%)-initial data is as
follows.

THEOREM 3.2 (global existence in L?(R?); see Tsutsumi [30]). For 0 < p < 4/d
and ¢ € L%(RY), there exists a unique solution u in C(R, L*(R%))NL{ (R, LPT2(R))
with ¢ = 4(p + 1)/pd that satisfies the L?-norm conservation property and depends
continuously on the initial condition in L?(R?).

The proof uses standard arguments, the key ingredient being to work in the space
C(R, L2(RY)) N L} (R, LP*2(R%)). This can only be done using Strichartz estimates.
Local existence is proved by applying a fixed point argument to the integral formula-
tion of (3.56) in that space. Global existence holds because of the L?(IR?)-conservation
property which excludes finite-time blow-up.

In order to introduce a numerical approximation of (3.56) it is convenient to give
the definition of the weak solution of (3.56).

DEFINITION 3.1. We say that u is a weak solution of (3.56) if the following hold:

(i) u e C(R, L3(RY)) N LL (R, LPH2(RY)).

loc
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(ii) u(0) = ¢ a.e. and

(3.57) /R /R ity + D)t = /R /R fulPupdzar

for all ¢» € D(R, H?(R?)), where p and q are as in the statement of Theorem 3.2.
In this section we consider the following numerical approximation scheme for
(3.56):

h
(3.58) z‘ddit + Apul = TfAT), teR;  u/(0) = Hp*",
with f(u) = |u|Pu.

In order to prove the global existence of solutions of (3.58), we will need to guar-
antee the conservation of the [?(hZ%)-norm of solutions, a property that the solutions
of the NSE satisfy. The choice Il f (ﬁ*uh) as an approximation of the nonlinear term
f(u) is motivated by the fact that

(3.59) (ﬁf(ﬁ*uh)’ Uh)ﬂ(hzd) = (f(ﬁ*uh)a ﬁ*uh)z2(4hzd) €R,

that, as mentioned above, guarantees the conservation of the [2(hZ?)-norm.

The following holds.

THEOREM 3.3. Let p € (0,4/d) and ¢ = 4(p + 2)/dp. Then for all h > 0 and
for every p*h € 12(4hZ), there exists a unique global solution u" € C(R, I2(hZ%)) N
LY (R, IPT2(hZ%)) of (3.58). Moreover, u" satisfies

(3.60) 6| Lo, 2 (nzty) < ITI0*™ |12z
and for all finite interval I

(3.61) 6"l acr, w+2nzay) < (DT 12 (za),

where the above constants are independent of h.

Proof of Theorem 3.3. The local existence and uniqueness can be proved, as in the
continuous case, by a combination of the Strichartz-like estimates in Theorem 3.1 and
of a fixed point argument in the space L>=((—T,T),12(hZ*))NLI((=T,T), IP*2(hZ4)),
T being chosen small enough, depending on the initial data, but independent of h.
Identity (3.59) guarantees the conservation of the I>-norm of the solutions, and, con-
sequently, the lack of blow-up and the global existence of the solutions. O

3.3. Convergence of the method. In what follows we use the piecewise con-
stant interpolator P2. Given the initial datum ¢ € L?*(R?) for the PDE, we choose
the approximating discrete data (cpj*h) jezae such that Pgﬁcp4h converges strongly to ¢
in L2(R?). Thus, in particular, ||P8ﬁg04h||Lz(Rd) < C(lleoll 2 (ray)-

The main convergence result is the following.

THEOREM 3.4. Let p and q be as in Theorem 3.3 and u be the unique solution
of (3.58) for the approzimate initial data Tlp*" as above. Then the sequence Phu"
satisfies

(3.62) Piu" S in L®(R, L*(RY), Phu" —win L (R, LPT*(R?),

(3.63) Phu" — win L2 (R, PRI u") — |uffu in LL (R, LT (RY),

loc loc
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where u is the unique solution of the NSE.

First, we sketch the main ideas of the proof. The main difficulty in the proof of
Theorem 3.4 is the strong convergence Phu — w in L2 (R?*1) which is needed to
pass to the limit in the nonlinear term. Once it is obtained, the second convergence in
(3.63) easily follows. Another technical difficulty comes from the fact that the inter-
polator P} is not compactly supported in the Fourier space. Thus we instead consider
the band-limited interpolator P’ introduced in (2.34) and prove the compactness for
P"u". Once this is obtained, the L2-strong convergence of P"u”" is transferred to
Phu. This is a consequence of the following property of both interpolators (cf. [22,

Thm. 3.4.2, p. 90]):
(3.64) IPhun (1) — Phul (1) oy < AP (1)1 e,

which holds for all real ¢ and Q C R,

To prove the L?-strong convergence of P"u we will show that it is uniformly
bounded in L2, (R, H./?(R%)). We shall also obtain estimates in L2 (R, H. (R%))
which are not uniform on h but, according to (3.64), suffice to ensure that Phu" —Phy"
strongly converges to zero in L%OC(RdH). The following lemma provides local estimates
for Phu" in the H*-norm.

LEMMA 3.3. Let s > 1/2, let I C R be a bounded interval, and let x € C°(R?).
Then there is a constant C(I, ), independent of h, such that

~ C(I,X) =
(3.65) IXPE(S™ (O™ 21, e ray) < W”H‘PM”P(th)

holds for all functions ©*" € 12(4hZ%) and h > 0. Moreover, for any d/2-admissible
pair (q,7)

(3.66) H \P" ( /O "sh(t — i f4h(7)d7>

for all f4 e LY (1,1" (4hZ%)) and h > 0.

Proof. We divide the proof into two steps. The first one concerns the homogeneous
estimate (3.65) and the second one (3.66).

Step 1. Regularity of the homogeneous term. To prove (3.65) it is sufficient to
prove, for any R > 0, the existence of a positive constant C(I, R) such that

s 1T CI,R
[ [ cayrpist ot < S50 [ B ()P
|r|<R [—7/h,7/h]?

Let us consider 1" € 1?(hZ?). Applying Theorem 2.5 to the function P (S"(¢)y")
we obtain

S/ZPh Sh h Qd d C(I.R |€|2S|@(£)|2d£
//1<R ( () )| vt = ( ’ )/—ﬂ/h,ﬂ/h]d |vph(£)|

C(I,x), =
< S M (v iy

L2(I, He (R%))

_CULR) / (51 €)Y/ 0h (€ Pdg
IR [ By A (ijlsin2(§jh)/h2)l/2

_CU.R) / BRGIRES
~ h23—1 [~ /h,m/h]d H?:l |COS(§jh/2)|7

(3.67)
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provided that all terms make sense. Note that this estimate holds for all v € [2(hZ?).
Observe, however, that the term in the denominator in the right-hand side integral
may vanish for the high frequencies ¢ = (£7/h)?%. In order to compensate this fact
we consider initial data in the class of slowly oscillating sequences ﬁ(4th). Now, we

apply the last estimates to ¢ = ﬁ(p4h. Thus

I Tt (o)
// s/QPh(Sh( )H(p4h)| dzdt < 0(23 ]f)/ Cl ¥ (§)| d§
|z|<R h [~ /hx/m)a TGy | cos(&5h/2)]
d
C(I, R C(I.R
< h(2571) /[ ol 2" ()7 Hl|COS(€jh/2)|3df < h(2s 1) ITTo* |12 iz
J:

Step 2. Regularity of the inhomogeneous term. In the following we prove (3.66).
This estimate will be reduced to the homogeneous one (3.65) by using the argument of
Christ and Kiselev [4] (see also [24] in the context of the PDE). A simplified version,
useful in PDE applications, is given in [24].

LEMMA 3.4. Let X and Y be Banach spaces and assume that K(t,s) is a continu-
ous function taking its values in B(X,Y), the space of bounded linear mappings from
X toY. Suppose that —oo < a < b < oo and set

b ¢
t):/ K(t,s)f(s)ds, Wf(t):/K(ts

Assume that 1 < p < q < o0 and |Tf| pe(a.p),v) < | fllzr((a,p),x)- Then

IW fllLaan,y) < 1f1lLe(a.p),5)-

Without loss of generality we can consider I = [0,T]. In view of the above lemma
it is sufficient to prove that the operator

Tf4h XPh (/ Sh Hf4h( ) )

satisfies

C(T,x) &
ITFY | 220,10, bre () < o172 T o 0,77, 17 (-

We write Tf4" as T f4"(t) = xP"S"(t)Ty f4"(t), where
T F (1) l/ §(s) T (s)ds

Estimate (3.67) yields

||Tf4hHL2([O ), He (R4Y) O(I X) T1f4h(€)
,T), H* = 75-1/2 d ] 1/2
= [T [eos(€GR/ 21| Lo n gy

< C(LX) IT\]WL(O
e T [ cos(€ih/2)[ 2 cos(g )] 2

)

L2([=m/h,m/h]%)
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provided that all the above integrals are finite.
Explicit computations on Ty f*" show that

T (¢)
H?:l | cos(&h/2)|1/2] cos(&ih)|H/2

T d
» h
_ 4l / i1 TT | cos (@_)

T
— 4 ( / <A§/Q<s>>*nf4h<s>ds> ©).

3/2 o
|cos(&;h)|* P TLfAR (¢, 5)ds

where the operator AQ/Q is defined in (3.52).
Applying Theorem 2.6 to the operator A% /2 we obtain, by estimate (2.38), that

T
H / (AL (5))TLF0 (5)

S HHf4h||Lq’([O7T],lT’(th)) S HH.f4h||LfI’([O7T],lT’(th))'
12 (hZ)

The proof is now complete. d

Proof of Theorem 3.4. Using (3.60) we obtain that P2u" is uniformly bounded in
L>=(R, L?(R9)). This guarantees the existence of a function u € L>(R, L2(R%)) such
that, up to a subsequence, Piu" —*u in L>(R, L?(R%)). By (3.61) we obtain that
u € LY(I, LPT2(R%)) and, up to a subsequence, Piu” — u in L(I, LPT2(R?)).

In the following we prove the strong convergence of PAu”. First, we prove that
Phuh —Phu — 0in L? (R xR?). Second, we prove the compactness of P*u". Finally,

loc

we obtain that PJu” — u in L? (R x R%).

loc

For any © C R?, classical properties of the interpolator PJu” (see [22, Thm. 3.4.2,
p. 90]) give us

/Q|Pguh — PhuPdr < hQHPfuthql(Q).
Applying Lemma 3.3 with s = 1 we obtain, for any x € C2°(R9),
// X Phu — Phu|2dadt < h2// 2|1 = A)YV2Phul 2 dadt
1 JRd 1 JRd

< hC(I, ||ﬁ804h|‘122(hzd)) —0, h—0.

This shows that Pju" — Phu" — 0in L2 (R x R?).

loc
Using Lemma 3.3 with s = 1/2 we obtain that for any smooth function y, P"u"

satisfies

||XPfUh||L2(1,H1/2(Rd)) < C(1,x, 1™ |12 nzey)-
We can also prove the following uniform boundedness property of its time derivative:

H dP M ‘
dt

< | ARPLU | L 1, -2 ray) + 1P Pu) | b (r, -2 (ray)

LI, H=2(R4))

< PuM o, 2eay + IPL(u" Pu) g r, posor ey < O 0]l L2 (ra))-
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Using the embeddings H*(Q) < comp L2(2) — H~2(Q), Q C R being a bounded do-
main, and the compactness results of [23] we obtain the existence of a function v such
that, up to subsequences, P"u" — v in L%OC(R x R?). Using the strong convergence
of PPu” towards v we obtain that v = u and Pfu” — w in L? (R x R%).

Let T' C Z% be a finite set. Thus for any s € ' we have PEu"(- + sh) — u in
(R x R%) and Phu"(- + sh) — u a.e. in R x R The operators II and II* involve
only a finite number of translations. Then Pgﬁf(ﬁ*uh) — |u|Pu a.e. in R x R? and
PALf (IT*uh) — |ulPu in LY (I, L#+2" (R4)).

Multiplying (3.58) by a function ) € C°(R4*1), Phu satisfies

LQ

loc

hoh(_s h _ RTT £(TT%, b
(3.68) /R/R Pl (—ithy + AMp)dudt /R/R PRI (IT*u" )b dadt.

All the above weak convergences of PRu" and (3.68) show that u satisfies (3.57).

It remains to prove that u € C(R, L?(R?%)) and w(0) = ¢. To prove that
u € C(R, L?(R%)) we show its continuity at ¢ = 0; the same argument works at
any time ¢.

For any positive 0 < ¢t < T < 1, the Strichartz estimates in Theorem 3.1 and the
Holder inequality in time variable applied to the variation of constants formula give
us

h(£) — S™ ()T 12y < H [ st st yas
0

Leo([0,7),12(24))

— 1
S H|uh|puh“Lq<h>'([O,T]7l(P+2)/(th)) <70 (p+2))/q|‘uh”1;;([07T],lP+2(th))

ST P00l ey
Using that PAu” —*u and PAS" ()" —* S(-)¢ in L>=([0,T], L?(R%)) we get
u(t) = Sl L2 may < lim inf [Phu”(-) — PES™ () TIe™ || Lo (0,77, £2(R1))
S TPAC (] pagay)

This proves that the solution u obtained as the limit of Pfu” satisfies u(t) — ¢ in
L*(RY) as t — 0.

The uniqueness of the limit, a solution of the NSE (3.56), allows us to deduce
that the whole sequence P’(}uh converges without extracting subsequences.

The proof of Theorem 3.4 is now complete. O

3.4. The critical case p = 4/d. Our method works similarly in the critical
case p = 4/d for small initial data. More precisely, the following holds.

THEOREM 3.5. There exists a constant ¢, independent of h, such that for all initial
data " € TL(4AWZ®) with [|©"||i2(nza) < €, the semidiscrete critical equation (3.58) with
p = 4/d has a unique global solution u" € C(R, I*(hZ%)) N Lf;:l/d(R, 12H4/4(hzdy).
Moreover, for any d/2-admissible pair (q,7), u" € L] (R, I"(hZ%)) and

™ Lz, ir(nzay < Cla, D02 (nza)

for all finite intervals I, uniformly on h.
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With the same notation, as in the subcritical case, the following convergence result
holds.

THEOREM 3.6. Let p = 4/d. Under the smallness assumption of Theorem 3.5, the
sequence Piu” satisfies

Phul S uin L®(R, L*(RY), Phu® —u in L/ (R, LY4H2(RY),
Piul = win L2 (R x RY), PHI(f(IT*u") = [u[*%uin L2 (R, L&/ (RY),

where u is the unique weak solution of the critical NSE with p = 4/d.

In contrast with the viscous numerical scheme introduced in [12] this time we do
not need to modify the exponent 4/d of the nonlinearity in the numerical scheme. In
the present case, the class of Strichartz estimates for the linear semidiscrete semigroup
hold for d/2-admissible pairs and not for the some a-admissible pairs, a > d/2. This
allows us to use, for the numerical scheme based on the two-grid method, exactly the
same nonlinearity as that given by the nonlinear problem after adapting it by means
of extension and restriction operators II and II* as in (3.58).

We have analyzed here the case of small L2-initial data. In the continuous case,
the global well-posedness can be proved under a more general assumption:

(3.69) e 2@l 24araqg, L2+4/amay) < co

for some sufficiently small constant ¢g. Examples of ¢ satisfying (3.69) with large
L?(R%)-norm are given in [17, Chap. 5, section 5.4, p. 108-109).
At the numerical level, condition (3.69) can be replaced by

(3.70) 1™ ()" | L3, 124470 (nzay < 1,

where ¢ is a positive, small enough constant and ¢" € II(4hZ%). Clearly, for ¢h €
T1(4RZ%) with small I?(hZ?)-norm, estimate (3.48) shows (3.70). The construction of
" € TI(4hZ4) with large I2(hZ%)-norm satisfying (3.70) is an open problem.
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