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1 Introduction

Let us consider the linear Schrödinger equation (LSE):
{

iut + uxx = 0, x ∈ R, t �= 0,

u(0, x) = ϕ(x), x ∈ R.
(1.1)

Linear equation (1.1) is solved by u(t, x) = S(t)ϕ, where S(t) = eit� is the free
Schrödinger operator. The linear semigroup has two important properties. First, the
conservation of the L2-norm:

‖S(t)ϕ‖L2(R) = ‖ϕ‖L2(R) (1.2)

and a dispersive estimate of the form:

|(S(t)ϕ)(x)| ≤ 1

(4π |t |)1/2
‖ϕ‖L1(R), x ∈ R, t �= 0. (1.3)

The space-time estimate

‖S(·)ϕ‖L6(R,L6(R)) ≤ C‖ϕ‖L2(R), (1.4)

due to Strichartz [14], is deeper. It guarantees that the solutions of system (1.1) decay
as t becomes large and that they gain some spatial integrability. Inequality (1.4) was
generalized by Ginibre and Velo [3]. They proved the mixed space-time estimates,
well known as Strichartz estimates:

‖S(·)ϕ‖Lq(R,Lr (R)) ≤ C(q, r)‖ϕ‖L2(R) (1.5)

for the so-called admissible pairs (q, r):

1

q
= 1

2

(
1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞. (1.6)

Similar results can be stated in any space dimension but it is beyond the scope of
this article. These estimates have been successfully applied to obtain well-posedness
results for the nonlinear Schrödinger equation ( see [2, 15] and the reference therein).

Let us now consider the following system of difference equations⎧⎨
⎩

iut + �du = 0, j ∈ Z, t �= 0,

u(0) = ϕ,
(1.7)

where �d is the discrete Laplacian defined by

(�du)(j) = uj+1 − 2uj + uj−1, j ∈ Z.

Concerning the long time behavior of the solutions of system (1.7) in [12] the authors
have proved that a decay property similar to the one obtained for the continuous
Schrödinger equation holds:

‖u(t)‖l∞(Z) ≤ C(|t | + 1)−1/3‖ϕ‖l1(Z), ∀ t �= 0. (1.8)
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The proof of (1.8) consists in writing the solution u of (1.7) as the convolution be-
tween a kernel Kt and the initial data ϕ and then estimate Kt by using Van der Cor-
put’s lemma. For the linear semigroup exp(it�d), Strichartz like estimates similar to
those in (1.5) have been obtained in [12] for a larger class of pairs (q, r):

1

q
≤ 1

3

(
1

2
− 1

r

)
, 2 ≤ q, r ≤ ∞. (1.9)

We also mention [5] and [6] where the authors consider a similar equation on
hZ by replacing �d by �d/h2 and analyze the same properties in the context of
numerical approximations of the linear and nonlinear Schrödinger equation.

A more thorough analysis has been done in [9] and [11] where the authors analyze
the decay properties of the solutions of equation iut + Au = 0 where A = �d − V ,
with V a real-valued potential. In these papers l1(Z)–l∞(Z) and l2−σ (Z)–l2

σ (Z) es-
timates for exp(itA)Pa,c(A) have been obtained where Pa,c(A) is the spectral pro-
jection to the absolutely continuous spectrum of A and l2±σ (Z) are weighted l2(Z)-
spaces.

In what concerns the Schödinger equation with variable coefficients we mention
the results of Banica [1]. Consider a partition of the real axis as follows: −∞ = x0 <

x1 < · · · < xn+1 = ∞ and a step function σ(x) = b−2
i for x ∈ (xi, xi+1), where bi

are positive numbers. The solution u of the Schrödinger equation

{
iut (t, x) + (σ (x)ux)x(t, x) = 0, for x ∈ R, t �= 0,

u(0, x) = u0(x), x ∈ R,

satisfies the dispersion inequality

‖u(t)‖L∞(R) ≤ C|t |−1/2‖u0‖L1(R), t �= 0,

where constant C depends on n and on sequence {bi}ni=0. We recall that in [4] the
above result was used in the analysis of the long time behavior of the solutions of
the linear Schödinger equation on regular trees. In the case of discrete equations the
corresponding model is given by

{
iUt + AU = 0, t �= 0,

U(0) = ϕ,
(1.10)

where the infinite matrix A is symmetric with a finite number of diagonals nonidenti-
cally vanishing. Once a result similar to [1] will be obtained for discrete Schrödinger
equations with non-constant coefficients we can apply it to obtain dispersive esti-
mates for discrete Schrödinger equations on trees. But as far as we know the study
of the decay properties of solutions of system (1.10) in terms of the properties of A

is a difficult task and we try to give here a partial answer to this problem. In the case
when A is a diagonal matrix these properties are easily obtained by using the Fourier
transform and classical estimates for oscillatory integrals.



1038 J Fourier Anal Appl (2011) 17:1035–1065

The main goal of this article is to analyze a simplified model which consists in
coupling two DSE by Kirchhoff’s type condition:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iut (t, j) + b−2
1 (�du)(t, j) = 0 j ≤ −1, t �= 0,

ivt (t, j) + b−2
2 (�dv)(t, j) = 0 j ≥ 1, t �= 0,

u(t,0) = v(t,0), t �= 0,

b−2
1 (u(t,−1) − u(t,0)) = b−2

2 (v(t,0) − v(t,1)), t �= 0,

u(0, j) = ϕ(j), j ≤ −1,

v(0, j) = ϕ(j), j ≥ 1.

(1.11)

In the above system u(t,0) and v(t,0) have been artificially introduced to couple the
two equations on positive and negative integers. The third condition in the above sys-
tem requires continuity along the interface j = 0 and the fourth one can be interpreted
as the continuity of the flux along the interface.

The main result of this paper is given in the following theorem.

Theorem 1.1 For any ϕ ∈ l2(Z \ {0}) there exists a unique solution (u, v) ∈
C(R, l2(Z \ {0})) of system (1.11). Moreover, there exists a positive constant
C(b1, b2) such that

‖(u, v)(t)‖l∞(Z\{0}) ≤ C(b1, b2)(|t | + 1)−1/3‖ϕ‖l1(Z\{0}), ∀t ∈ R, (1.12)

holds for all ϕ ∈ l1(Z \ {0}).
Using the well-known results of Keel and Tao [7] we obtain the following

Strichartz-like estimates for the solutions of system (1.11).

Theorem 1.2 For any ϕ ∈ l2(Z \ {0}) the solution (u, v) of system (1.11) satisfies

‖(u, v)‖Lq(R, lr (Z\{0})) ≤ C(q, r)‖ϕ‖l2(Z\{0})
for all pairs (q, r) satisfying (1.9).

The paper is organized as follows: In Sect. 2 we present some discrete models, in
particular system (1.11) in the case b1 = b2 and show how it is related with problem
(1.7). In addition, a system with a dynamic coupling along the interface is presented.
In Sect. 3 we present some classical results on oscillatory integrals and make some
improvements that we will need in the proof of Theorem 1.1. In Sect. 4 we obtain an
explicit formula for the resolvent associated with system (1.11). We prove a limiting
absorption principle and we give the proof of the main result of this paper. Finally we
present some open problems.

2 Some Discrete Models

In this section in order to emphasize the main differences and difficulties with respect
to the continuous case when we deal with discrete systems we will consider two
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models. In the first case we consider system (1.11) with the two coefficients in the
front of the discrete Laplacian equal. In the following we denote Z

∗ = Z \ {0}.

Theorem 2.1 Let us assume that b1 = b2. For any ϕ ∈ l2(Z∗) there exists a unique
solution u ∈ C(R, l2(Z∗)) of system (1.11). Moreover there exists a positive constant
C(b1) such that

‖u(t)‖l∞(Z∗) ≤ C(b1)(|t | + 1)−1/3‖ϕ‖l1(Z∗), ∀ t ∈ R, (2.1)

holds for all ϕ ∈ l1(Z∗).

In the particular case considered here we can reduce the proof of the dispersive es-
timate (2.1) to the analysis of two problems: one with Dirichlet’s boundary condition
and another one with a discrete Neumann’s boundary condition.

Before starting the proof of Theorem 2.1 let us recall that in the case of system
(1.7) its solution is given by u(t) = Kt ∗ ϕ where ∗ is the standard convolution on Z

and

Kt(j) =
∫ π

−π

e−4it sin2(
ξ
2 )eijξ dξ, t ∈ R, j ∈ Z.

In [12] a simple argument based on Van der Corput’s lemma has been used to
show that for any real number t the following holds:

|Kt(j)| ≤ C(|t | + 1)−1/3, ∀j ∈ Z. (2.2)

Proof of Theorem 2.1 The existence of the solutions is immediate since operator A

defined in (2.7) is bounded in l2(Z∗). We prove now the decay property (2.1). Let us
restrict for simplicity to the case b1 = b2 = 1.

For (u, v) solution of system (1.11) let us set

S(j) = v(j) + u(−j)

2
, D(j) = v(j) − u(−j)

2
, j ≥ 0.

Observe that u and v can be recovered from S and D as follows

(u, v) = ((S − D)(−·), S + D).

Writing the equations satisfied by u and v we obtain that D and S solve two discrete
Schrödinger equations on Z+ = {j ∈ Z, j ≥ 1} with Dirichlet, respectively Neumann
boundary conditions:

⎧⎪⎪⎨
⎪⎪⎩

iDt (t, j) + (�dD)(t, j) = 0 j ≥ 1, t �= 0,

D(t,0) = 0, t �= 0,

D(0, j) = ϕ(j)−ϕ(−j)
2 , j ≥ 1,

(2.3)
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and
⎧⎪⎪⎨
⎪⎪⎩

iSt (t, j) + (�dS)(t, j) = 0 j ≥ 1, t �= 0,

S(t,0) = S(t,1), t �= 0,

S(0, j) = ϕ(j)+ϕ(−j)
2 , j ≥ 1.

(2.4)

Making an odd extension of the function D and using the representation formula
for the solutions of (1.7) we obtain that the solution of the Dirichlet problem (2.3)
satisfies

D(t, j) =
∑
k≥1

(Kt (j − k) − Kt(j + k))D(0, k), t �= 0, j ≥ 1. (2.5)

A similar even extension of function S permits us to obtain the explicit formula for
the solution of the Neumann problem (2.4)

S(t, j) =
∑
k≥1

(Kt (k − j) + Kt(k + j − 1))S(0, k), t �= 0, j ≥ 1. (2.6)

Using the decay of the kernel Kt given by (2.2) we obtain that S(t) and D(t) decay
as (|t | + 1)−1/3 and then the same property holds for u and v. This finishes the proof
of this particular case. �

Observe that our proof has taken into account the particular structure of the equa-
tions. When the coefficients b1 and b2 are not equal we cannot write an equation
verified by functions D or S.

We now write system (1.11) in matrix formulation. Using the coupling conditions
at j = 0 system (1.11) can be written in the following equivalent form

{
iUt + AU = 0,

U(0) = ϕ,

where U = (u, v)T , u = (u(j))j≤−1, v = (vj )j≥1 and

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · 0 0 0 0 0
0 b−2

1 −2b−2
1 b−2

1 0 0 0 0
0 0 b−2

1 −b−2
1 − 1

b2
1+b2

2

1
b2

1+b2
2

0 0 0

0 0 0 1
b2

1+b2
2

− 1
b2

1+b2
2

− b−2
2 b−2

2 0 0

0 0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 0 · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(2.7)
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In the particular case b1 = b2 = 1 the operator A can be decomposed as follows

A = �d + B =

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · 0 0 0 0 0
0 1 −2 1 0 0 0 0
0 0 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

· · · · · · · · · 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1

2 − 1
2 0 0 0

0 0 0 − 1
2

1
2 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 · · · · · · · · ·

⎞
⎟⎟⎟⎟⎟⎟⎠

.

However, we do not know how to use the dispersive properties of exp(it�d) and
the particular structure of B in order to obtain the decay of the new semigroup
exp(it (�d + B)).

Another model of interest is the following one inspired in the numerical approxi-
mations of LSE. Set

a(x) =
{

b−2
1 , x < 0,

b−2
2 , x > 0.

Using the following discrete derivative operator

(∂u)(x) = u

(
x + 1

2

)
− u

(
x − 1

2

)

we can introduce the second order discrete operator

∂(a∂u)(j) = a

(
j + 1

2

)
u(j + 1) −

(
a

(
j + 1

2

)
+ a(j − 1

2
)

)
u(j)

+ a

(
j − 1

2

)
u(j − 1), j ∈ Z.

In this case we have to analyze the following system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

iut (t, j) + b−2
1 (�du)(t, j) = 0, j ≤ −1, t �= 0,

iut (t, j) + b−2
2 (�du)(t, j) = 0, j ≥ 1, t �= 0,

iut (t,0) + b−2
1 u(t,−1) − (b−2

1 + b−2
2 )u(t,0) + b−1

2 u(t,1) = 0, t �= 0,

u(0, j) = ϕ(j), j ∈ Z.

(2.8)
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In matrix formulation it reads iUt + AU = 0 where U = (u(j))j∈Z, and the operator
A is given by the following one

A =

⎛
⎜⎜⎜⎜⎝

· · · · · · · · · 0 0 0 0
0 b−2

1 −2b−2
1 b−2

1 0 0 0
0 0 b−2

1 −(b−2
1 + b−2

2 ) b−2
2 0 0

0 0 0 b−2
2 −2b−2

2 b−2
2 0

0 0 0 0 · · · · · · · · ·

⎞
⎟⎟⎟⎟⎠ . (2.9)

Observe that in the case b1 = b2 the results of [12] give us the decay of the solutions.
Regarding the long time behavior of the solutions of system (2.8) we have the

following result.

Theorem 2.2 For any ϕ ∈ l2(Z) there exists a unique solution u ∈ C(R, l2(Z)) of
system (2.8). Moreover, there exists a positive constant C(b1, b2) such that

‖u(t)‖l∞(Z) ≤ C(b1, b2)(|t | + 1)−1/3‖ϕ‖l1(Z), ∀t ∈ R,

holds for all ϕ ∈ l1(Z).

The proof of this result is similar to the one of Theorem 1.1 and we will only
sketch it at the end of Sect. 4.

3 Oscillatory Integrals

In this section we present some classical tools for oscillatory integrals and we give
an improvement of Van der Corput’s Lemma that is in some sense similar to the one
obtained in [8]. First of all let us recall Van der Corput’s lemma (see for example
[13], p. 332).

Lemma 3.1 (Van der Corput) Let k ≥ 1 be an integer, and φ : [a, b] → R such that
|φ(k)(x)| ≥ 1 for all x ∈ [a, b], and φ′ monotone in the case k = 1.
Then ∣∣∣∣

∫ b

a

eitφ(x)ψ(x)dx

∣∣∣∣ ≤ ck|t |− 1
k

(
‖ψ‖L∞(a,b) +

∫ b

a

|ψ ′(ξ)|dξ

)
, ∀t �= 0.

A first improvement has been obtained in [8] where the authors analyze the
smoothing effect of some dispersive equations. We will present here a particular case
of the results in [8], that will be sufficient for our purposes. In the sequel 
 will be
a bounded interval. We consider class A2 of real functions φ ∈ C3(
) satisfying the
following conditions:

(1) Set Sφ = {ξ ∈ 
 : φ′′ = 0} is finite,
(2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 2 such that for all

|ξ − ξ0| < ε,

c1|ξ − ξ0|α−2 ≤ |φ′′(ξ)| ≤ c2|ξ − ξ0|α−2,
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(3) φ′′ has a finite number of changes of monotonicity.

Lemma 3.2 Let 
 be a bounded interval, φ ∈ A2 and

I (x, t) =
∫




ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2dξ.

Then for any x, t ∈ R

|I (x, t)| ≤ cφ |t |−1/2, (3.1)

where cφ depends only on the constants involved in the definition of class A2.

Remark 1 The results of [8] are more general that the one we presented here allowing
functions with vertical asymptotics, finite union of intervals or infinite domains.

As a corollary we also have [8]:

Corollary 3.1 If φ ∈ A2 then
∣∣∣∣
∫




ei(tφ(ξ)−xξ)|φ′′(ξ)|1/2ψ(ξ)dξ

∣∣∣∣ ≤ Cφ |t |−1/2
(

‖ψ‖L∞(
) +
∫




|ψ ′(ξ)|dξ

)
,

holds for all x, t ∈ R.

In the proof of our main result we will need a result similar to Lemma 3.2 but
with |p′′′|1/3 instead of |p′′|1/2 in the definition of I (x, t). We define class A3 of real
functions φ ∈ C4(
) satisfying the following conditions:

(1) Set Sφ = {ξ ∈ 
 : φ′′′ = 0} is finite,
(2) If ξ0 ∈ Sφ then there exist constants ε, c1, c2 and α ≥ 3 such that for all |ξ −ξ0| <

ε,

c1|ξ − ξ0|α−3 ≤ |φ′′′(ξ)| ≤ c2|ξ − ξ0|α−3, (3.2)

(3) φ′′′ has a finite number of changes of monotonicity.

Lemma 3.3 Let 
 be a bounded interval, φ ∈ A3 and

I (x, t) =
∫




ei(tφ(ξ)−xξ)|φ′′′(ξ)|1/3dξ.

Then for any x, t ∈ R

|I (x, t)| ≤ cφ |t |−1/3, (3.3)

where cφ depends only on the constants involved in the definition of class A3.

In the following we will write a � b if there exists a positive constant C such that
a ≤ Cb. Similar for a � b. Also we will write a ∼ b if C1b ≤ a ≤ C2b for some
positive constants C1 and C2.
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Proof We observe that since 
 is bounded we only need to consider the case when t

is large.
Case 1: 0 < m ≤ |φ ′′′

(ξ)| ≤ M .
We apply Van der Corput’s Lemma with k = 3 to the phase function φ(ξ) − xξ/t

and to ψ = |φ′′′|1/3. Then

|I (x, t)| ≤ C(tm)−
1
3 (‖ψ‖L∞(
) + ‖ψ ′‖L1(
)).

Since φ′′′ has a finite number of changes of monotonicity we deduce that φ(4) changes
the sign finitely many times and then

‖ψ ′‖L1(
) = 1

3

∫



∣∣∣(φ ′′′
(ξ))−

2
3 φ(4)(ξ)

∣∣∣dξ ≤ 1

3
m− 2

3

∫



|φ(4)(ξ)|dξ ≤ C(m,M).

Hence

|I (x, t)| ≤ C(M,m)t−
1
3 .

Case 2: 0 ≤ |φ ′′′
(ξ)| < M .

Using the assumptions on φ we can assume that there exists only one point ξ0 ∈ 


such that φ′′′(ξ0) = 0. Notice that if φ ∈ A3, then any translation and any linear
perturbation of φ (i.e. φ(ξ − ξ0) + aξ + b) is still in A3 and the conditions in the
definition of set A3 are verified with the same constants as φ. Therefore we can
assume that ξ0 = 0 and φ′(ξ0) = 0. Moreover let us assume that as ξ ∼ 0, |φ′(ξ)| ∼
|ξ |α and |φ′′′(ξ)| ∼ |ξ |β for some numbers α ≥ 2 and β > 0.

We distinguish now two cases depending on the behavior of φ′ near ξ = 0. If
α ≥ 4 then |φ(k)(ξ)| ∼ |ξ |α−k as ξ ∼ 0 for k = 2,3 and, in particular β = α − 3. The
case α = 3 cannot appear since then β = α − 3 and φ

′′′
does not vanish at ξ = 0. For

α = 2, |φ′(ξ)| ∼ |ξ |, |φ′′(ξ)| ∼ 1 as ξ ∼ 0 and the third derivative satisfies |φ′′′(ξ)| ∼
|ξ |β as ξ ∼ 0 for some positive integer β . This last case occurs for example when
φ′(ξ) = ξ + ξ3. In all cases β ≥ α − 3.

We split 
 as follows

I (x, t) =
∫

|ξ |≤ε

ei(tφ(ξ)−xξ)|φ′′′(ξ)| 1
3 dξ +

∫
|ξ |≥ε

ei(tφ(ξ)−xξ)|φ′′′(ξ)| 1
3 dξ = I1 + I2.

Since ξ = 0 is the only point where the third derivative vanishes we have that
outside an interval that contains the origin φ′′′ does not vanish. Thus I2 can be treated
as in the first case.

Let us now estimate the first term I1. We define 
j ,1 ≤ j ≤ 3, as follows


1 = {ξ ∈ 
||ξ | ≤ min(ε, |t |−1/α)},


2 =
{
ξ ∈ 
 − 
1||ξ | ≤ ε, and

∣∣∣φ′(ξ) − x

t

∣∣∣ ≤ 1

2

∣∣∣x
t

∣∣∣
}

,


3 = {ξ ∈ 
 − (
1 ∪ 
2)||ξ | ≤ ε}.
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In the case of 
1 we use that for some β ≥ 1, the third derivative of φ satisfies
c1|ξ |β ≤ |φ′′′(ξ)| ≤ c2|ξ |β for |ξ | < ε. We get

∫

1

|φ′′′(ξ)| 1
3 dξ ≤ c

1
3
2

∫

1

|ξ | β
3 dξ ≤ C|
1|t− β

3α ≤ C|t |− 1
α
− β

3α ≤ C|t |−1/3,

where the last inequality holds since α ≤ β + 3 and |t | ≥ 1.
In the case of the integral on 
2 we assume that x �= 0 since otherwise 
2 has

measure zero. Observe that for ξ ∈ 
2 we have

±|φ′(ξ)| ∓
∣∣∣x
t

∣∣∣ ≤
∣∣∣φ′(ξ) − x

t

∣∣∣ ≤ 1

2

∣∣∣x
t

∣∣∣ ,
which implies that

1

2

∣∣∣x
t

∣∣∣ ≤ |φ′(ξ)| ≤ 3

2

∣∣∣x
t

∣∣∣.
Since |φ′(ξ)| ∼ |ξ |α−1 we have that |ξ | ∼ |x/t | 1

α−1 . Then |φ′′′(ξ)| ∼ |ξ |β ∼ |x/t | β
α−1

and

min
ξ∈
2

|φ′′′(ξ)| > 0.

Applying Van der Corput’s Lemma with k = 3 and using that φ(4) changes the sign
finitely many times we obtain that

∣∣∣
∫


2

ei(tφ(ξ)−xξ)|φ′′′(ξ)| 1
3 dξ

∣∣∣

≤ C
(

min
ξ∈
2

|φ′′′(ξ)||t |
)− 1

3
(
‖|φ′′′(ξ)| 1

3 ‖L∞(
2) + ‖(|φ′′′(ξ)| 1
3 )′‖L1(
2)

)

= C
(

min
ξ∈
2

|φ′′′(ξ)|
)− 1

3 |t |− 1
3

(
max
ξ∈
2

|φ′′′(ξ)| 1
3 + 1

3

∫

2

|φ′′′(ξ)|− 2
3 |φ(4)(ξ)|dξ

)

≤ C
(

min
ξ∈
2

|φ′′′(ξ)|
)− 1

3
max
ξ∈
2

|φ′′′(ξ)| 1
3 |t |− 1

3 .

Since on 
2, |φ ′′′
(ξ)| ∼ |x/t | β

α−1 , there exists a positive constant C such that

max
ξ∈
2

|φ ′′′
(ξ)| 1

3 ≤ C
(

min
ξ∈
2

|φ ′′′
(ξ)|

) 1
3
,

which gives us the desired estimates on the integral on 
2.
Now, we estimate the integral on 
3. Observe that we have to consider the case

|t |−1/α < ε, otherwise 
2 = 
3 = ∅. In particular, for ξ ∈ 
3, we have |t |−1/α < ξ <

ε. Integrating by parts the integral on 
3 satisfies

∣∣g
∫


3

ei(tφ(ξ)−xξ)|φ′′′(ξ)| 1
3 dξ

∣∣∣∣
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= 1

|t |
∣∣∣∣
∫


3

(ei(tφ(ξ)−xξ))′ |φ′′′(ξ)| 1
3

φ′(ξ) − x
t

dξ

∣∣∣∣

≤ 1

|t |
∣∣∣∣ ± ei(tφ(ξ)−xξ) |φ′′′(ξ)| 1

3

φ′(ξ) − x
t

∣∣∣∣
∂
3

∣∣∣∣

+ 1

|t |
∣∣∣∣
∫


3

ei(tφ(ξ)−xξ)
1
3 |φ′′′(ξ)|− 2

3 φ(4)(ξ)(φ′(ξ) − x
t
) − |φ′′′(ξ)| 1

3 φ′′(ξ)

(φ′(ξ) − x
t
)2

dξ

∣∣∣∣

≤ 2

|t | max
ξ∈
3

|φ′′′(ξ)| 1
3

|φ′(ξ) − x
t
| + 1

3|t |
∫


3

|φ′′′(ξ)|− 2
3 |φ(4)(ξ)|

|φ′(ξ) − x
t
|

+ 1

|t |
∫


3

|φ′′′(ξ)| 1
3 |φ′′(ξ)|

(φ′(ξ) − x
t
)2

dξ. (3.4)

In the following we obtain upper bounds for all terms in the right hand side of
(3.4). Since on 
3, |φ′(ξ)− x/t | ≥ |x/2t |, there exists a positive constant c such that

∣∣∣φ′(ξ) − x

t

∣∣∣ > c|φ′(ξ)| ≥ c|ξ |α−1, ∀ξ ∈ 
3.

In the case of the first term

1

|t | sup
ξ∈
3

|φ′′′(ξ)| 1
3∣∣φ′(ξ) − x
t

∣∣ ≤ C

|t | sup
ξ∈
3

|ξ | β
3

|ξ |α−1
= C

|t | sup
ξ∈
3

|ξ | β
3 −α+1 ≤ |t |−1/3, (3.5)

since |ξ | ≤ ε ≤ 1 and |ξ |β/3−α+1 ≤ |ξ |(α−3)/3−α+1 = |ξ |−2α/3 ≤ |t |2/3.
The second term satisfies

1

|t |
∫


3

1
3 |φ′′′(ξ)|− 2

3 |φ(4)(ξ)|
|φ′(ξ) − x

t
| dξ ≤ C

|t |
∫


3

|ξ |−2β/3

|ξ |α−1
|φ(4)(ξ)|dξ

≤ C

|t |
∫


3

|ξ | −2β
3 −α+1|φ(4)(ξ)|dξ.

Integrating by parts, applying the triangle inequality and using the definition of 
3

we get

∫

3

|ξ | −2β
3 −α+1|φ(4)(ξ)|dξ � sup


3

|ξ | −2β
3 −α+1|φ′′′(ξ)| +

∫

3

|ξ | −2β
3 −α|φ′′′(ξ)|dξ

� sup

3

|ξ | β
3 −α+1 +

∫

3

|ξ | β
3 −αdξ

� sup

3

|ξ | β
3 −α+1 ≤ |t |2/3,

where the last inequality follows as in (3.5).
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The last term in (3.4) can be estimated as follows

∫

3

|φ′′′(ξ)| 1
3 |φ′′(ξ)|(

φ′(ξ) − x
t

)2
dξ �

∫

3

|ξ |β/3+α−2

|ξ |2(α−2)
=

∫

3

|ξ |β/3−α � sup

3

|ξ | β
3 −α+1 ≤ |t |2/3.

Putting together the estimates for the terms in the right hand side of (3.4) we obtain
that the integral on 
3 also decays as |t |−1/3.

The proof is now finished. �

4 Proof of the Main Result

In this section we prove the main result of this paper. In order to do this, we will
follow the ideas of [1] in the case of a discrete operator. Let us consider the system

{
iUt + AU = 0,

U(0) = ϕ,
(4.1)

where U(t) = (u(t, j))j �=0 and operator A is given by (2.7). We compute explicitly
the resolvent (A − λI)−1 and we obtain a limiting absorption principle. Finally we
prove Theorem 1.1 which is the main result of this paper.

4.1 The Resolvent

We start by localizing the spectrum of operator A and computing the resolvent
R(λ) = (A − λI)−1. We use some classical results on difference equations.

Theorem 4.1 For any b1 and b2 positive the spectrum of operator A satisfies

σ(A) = [−4 max{b−2
1 , b−2

2 },0]. (4.2)

Proof Since A is self-adjoint we have that

σ(A) ⊂
[

inf‖u‖
l2(Z∗)≤1

(Au,u), sup
‖u‖

l2(Z∗)≤1

(Au,u)
]
.

Explicit computations show that

(Au,u) = −b−2
1

∑
j≤−1

(uj − uj−1)
2 − 1

b2
1 + b2

2

(u−1 − u1)
2 − b−2

2

∑
j≥1

(uj+1 − uj )
2.

It is easy to see that (Au,u) ≤ 0 and

(Au,u) ≥ −2 max{b−2
1 , b−2

2 }
∑
j∈Z∗

(u2
j + u2

j+1) = −4 max{b−2
1 , b−2

2 }
∑
j∈Z∗

u2
j .

In order to prove that the spectrum is continuous we need to prove that for any
λ ∈ [−4 max{b−2

1 , b−2
2 },0] we can find un ∈ l2(Z∗) with ‖un‖l2(Z∗) ≤ 1 such that
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‖(A − λI)un‖l2(Z∗) tends to zero. To fix the ideas let us assume that b2 ≤ b1 and

λ ∈ [−4b−2
2 ,0]. We construct un such that all its components un,j , j ≤ −1, vanish.

Thus for such un’s we have that

(Aun)j = b−2
2 (�dun)j , j ≥ 1.

Using the fact that any λ ∈ [−4b−2
2 ,0] belongs to σ(b−1

2 �d) we can construct se-
quences (un,j )j≥1 such that ‖un‖l2(Z∗) ≤ 1 and ‖(A − λI)un‖l2(Z∗) → 0. This im-
plies that λ ∈ σ(A) and the proof is finished. �

Before computing the resolvent (A − λI)−1 we need some results for difference
equations.

Lemma 4.1 For any λ ∈ C \ [−4,0] and g ∈ l2(Z∗), any solution f ∈ l2(Z∗) of

�df (j) − λf (j) = g(j), j �= 0

with f (0) prescribed is given by

f (j) = αr |j | + 1

2r − 2 − λ

∑
k∈Z∗

r |j−k|g(k) (4.3)

where α is determined by f (0) and r is the unique solution with |r| < 1 of

r2 − 2r + 1 = λr.

Moreover

f (j) = f (0)r |j | + 1

r − r−1

∑
k

(r |j−k| − r |j |+|k|)g(k), j �= 0.

Proof Let us consider the case when j ≥ 1, the other case j ≤ −1 can be treated
similarly. Writing the equation satisfied by f we obtain that

f (j + 1) − (2 + λ)f (j) + f (j − 1) = g(j), j ≥ 1.

This is an inhomogeneous difference equation whose solutions are written as the sum
between a particular solution and the general solution for the homogeneous difference
equation

f (j + 1) − (2 + λ)f (j) + f (j − 1) = 0, j ≥ 1.

Let us denote by r1 and r2, |r1| ≤ |r2|, the two solutions of the second order equation

r2 − (2 + λ)r + 1 = 0.

Since 2 + λ ∈ C \ [−2,2] we have that r1 and r2 belong to C \ R and more than that
|r1| < 1 < |r2|. Thus we obtain that

f (j) = αr
j

1 + βr
j

2 + 1

2r − 2 − λ

∑
k∈Z∗

r
|j−k|
1 g(k). (4.4)
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Since f is an l2(Z+) function we should have β = 0. Then formula (4.3) holds.
The last identity is obtained by putting j = 0 in (4.4) and using that 2r − 2 − λ =
r − r−1. �

As an application of the previous Lemma we have the following result.

Lemma 4.2 Set Z1 = Z ∩ (−∞,−1] and Z2 = Z ∩ [1,∞). For any λ ∈ C \
[−4 max{b−2

1 , b−2
2 },0] and g ∈ l2(Z∗), any solution f ∈ l2(Z) of

b−2
s �df (j) − λf (j) = g(j), j ∈ Zs,

with f (0) prescribed is given by

f (j) = αsr
|j |
s + b2

s

2rs − 2 − λb2
s

∑
k∈Zs

r
|j−k|
s g(k), j ∈ Zs, s ∈ {1,2} (4.5)

where for s ∈ {1,2}, constant αs is determined by f (0) and rs is the unique solution
with |rs | < 1 of

r2
s − 2rs + 1 = λrsb

2
s .

Moreover

f (j) = f (0)r
|j |
s + b2

s

rs − r−1
s

∑
k∈Zs

(r
|j−k|
s − r

|j |+|k|
s )g(k), j ∈ Zs. (4.6)

The proof of this lemma consists in just applying Lemma 4.1 to the difference
equations in Z1 and Z2.

Lemma 4.3 Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 },0]. For any g ∈ l2(Z∗) there exists a
unique solution f ∈ l2(Z∗) of the equation (A − λI)f = g. Moreover, it is given by
the following formula

f (j) = −r
|j |
s

b−2
2 (1 − r2) + b−2

1 (1 − r1)

[∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

]

+ b2
s

rs − r−1
s

∑
k∈Zs

(r
|j−k|
s − r

|j |+|k|
s )g(k), j ∈ Zs, (4.7)

where for s ∈ {1,2}, rs = rs(λ) is the unique solution with |rs | < 1 of the equation

r2
s − 2rs + 1 = λb2

s rs .

Proof Any solution of (A − λI)f = g satisfies
⎧⎨
⎩

�df (j) − b2
s λf (j) = b2

s g(j), j ∈ Zs,

b−2
1 (f (−1) − f (0)) = b−2

2 (f (0) − f (1)),
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where f (0) is artificially introduced in order to write the system in a convenient form
that permits us to apply Lemma 4.2.

Using (4.6) we obtain

f (−1) = f (0)r1 − b2
1

∑
k∈Z2

r
|k|
1 g(k)

and

f (1) = f (0)r2 − b2
2

∑
k∈Z2

r
|k|
2 g(k).

The coupling condition gives us that

f (0) = −1

b−2
1 (1 − r1) + b−2

2 (1 − r2)

∑
s=1,2, k∈Zs

r |k|
s g(k).

Introducing this formula in (4.6) we obtain the explicit formula of the resolvent. �

4.2 Limiting Absorption Principle

In this subsection we write a limiting absorption principle. From Lemma 4.3 we know
that for any λ ∈ C \ [−4 max{b−2

1 , b−2
2 },0] and ϕ ∈ l2(Z∗) there exists R(λ)ϕ =

(A − λ)−1ϕ ∈ l2(Z∗) and it is given by

(R(λ)ϕ)(j) = −r
|j |
s

b−2
2 (1 − r2) + b−2

1 (1 − r1)

[∑
k∈I1

r
|k|
1 ϕ(k) +

∑
k∈I2

r
|k|
2 ϕ(k)

]

+ b2
s

rs − r−1
s

∑
k∈Is

(r
|j−k|
s − r

|j |+|k|
s )ϕ(k), j ∈ Zs, (4.8)

where rs = rs(λ), s ∈ {1,2}, is the unique solution with |rs | < 1 of the equation

r2
s − 2rs + 1 = λb2

s rs .

Let us now consider I = [−4 max{b−2
1 , b−2

2 },0]. As we proved in Theorem 4.1 we
have that σ(A) = I . For any ω ∈ I and ε ≥ 0 let us denote by r±

s,ε the unique solution
with modulus less than one of

r2 − 2r + 1 = (ω ± iε)b2
s r.

Denoting r+
s,ε = exp(z+

s,ε) with z+
s,ε = a+

s,ε + iã+
s,ε , a+

s,ε < 0 and ã+
s,ε ∈ [−π,π] we

obtain by taking the imaginary part in the equation satisfied by r+
s,ε that

(exp(a+
s,ε) − exp(−a+

s,ε)) sin(ã+
s,ε) = εb2

s .

Thus ã+
s,ε ∈ [−π,0]. A similar result holds for r−

s,ε , ã−
s,ε ∈ [0,π].
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Let us set r±
s = limε↓0 r±

s,ε . Using the sign of the imaginary part of r±
s,ε we obtain

that r±
s are the solutions with Im (r+

s ) ≤ 0 ≤ Im (r−
s ) of the equation

r2 − 2r + 1 = ωb2
s r.

Also, using that r−
s,ε = r+

s,ε we obtain r−
s = r+

s .

For any ω ∈ J = I \ {−4b−2
1 ,−4b−2

2 ,0} and ϕ ∈ l1(Z∗) let us set

(R±(ω)ϕ)(j) = −(r±
s )|j |

b−2
2 (1 − r±

2 ) + b−2
1 (1 − r±

1 )

[∑
k∈I1

(r±
1 )|k|ϕ(k) +

∑
k∈I2

(r±
2 )|k|ϕ(k)

]

+ b2
s

r±
s − (r±

s )−1

∑
k∈Is

((r±
s )|j−k| − (r±

s )|j |+|k|)ϕ(k), j ∈ Zs.

We will prove that R±(ω) are well defined as bounded operators from l1(Z∗) to
l∞(Z∗). We point out that we cannot define R±(ω) for ω ∈ {−4b−2

1 ,−4b−2
2 ,0} since

for ω = 0 we have r1 = r2 = 1 and for ω = 4b−2
s , s ∈ {1,2}, we have rs = −1. We

also emphasize that R−(ω)ϕ = R+(ω)ϕ. This is a consequence of the fact that for any

ω ∈ I , r−
s (ω) = r+

s (ω). Formally, the above operator equals R(ω ± iε) with ε = 0.
We point out that as operators on l2(Z∗), R(ω ± iε) are defined for any ω ∈ I but
only if ε �= 0.

Lemma 4.4 For any ϕ ∈ l1(Z∗) operator exp(itA) satisfies

eitAϕ = 1

2iπ

∫
I

eitω[R+(ω) − R−(ω)]ϕ dω. (4.9)

Proof To clarify the ideas behind the proof we divide it in several steps.
Step 1. Let I1 be a bounded interval such that I ⊂ I1. There exists a constant

C(ω) = 1

|ω|1/2
+ 1

|ωb2
1 + 4|1/2

+ 1

|ωb2
2 + 4|1/2

∈ L1(I1) (4.10)

such that for all ω ∈ I1 \ {−4b−2
1 ,−4b−2

2 ,0} the following inequality

|(R(ω ± iε)ϕ)(n)| � C(ω)‖ϕ‖l1(Z∗), for all ϕ ∈ l1(Z∗) and n ∈ Z
∗,

holds uniformly on small enough ε.
Step 2. For any ω ∈ J , R±(ω) are bounded operators from l1(Z∗) to l∞(Z∗) and

‖R±(ω)‖l1(Z∗)−l∞(Z∗) � C(ω).

Step 3. For any ω ∈ J , ϕ ∈ l1(Z∗) and n ∈ Z
∗ the following holds

lim
ε↓0

(R(ω ± iε)ϕ)(n) = (R±(ω)ϕ)(n).



1052 J Fourier Anal Appl (2011) 17:1035–1065

Step 4. For any ϕ ∈ l1(Z∗) and n ∈ Z
∗ we have

lim
ε↓0

∫
I

eitω(R(ω ± iε)ϕ)(n)dω =
∫

I

eitω(R±(ω)ϕ)(n)dω.

Step 5. For any ϕ ∈ l1(Z∗)

eitAϕ = 1

2iπ

∫
I

eitω[R+(ω) − R−(ω)]ϕdω.

Proof of Step 1. Observe that for any ω ∈ R and ε > 0 we have

|(R(ω ± iε)ϕ)(n)|

� ‖ϕ‖l1(Z∗)

(
1

|b−2
2 (1 − r±

2,ε) + b−2
1 (1 − r±

1,ε)|
+ 1

|r±
1,ε − (r±

1,ε)
−1|

+ 1

|r±
2,ε − (r±

2,ε)
−1|

)
.

Solution r±
s,ε of equation r2 − 2r + 1 = (ω ± iε)b2

s r satisfies

1

|r±
s,ε |

− |r±
s,ε | ≤

∣∣∣∣r±
s,ε − 1

r±
s,ε

∣∣∣∣ = bs |ω ± iε|1/2.

Then for all ω ∈ I1 and ε small enough we have

|r±
s,ε | ≥

2

bs |ω ± iε|1/2 + (b2
s |ω ± iε| + 4)1/2

≥ C > 0

and

|r±
s,ε | ≤

1

|r±
s,ε |

+
∣∣∣r±

s,ε − 1

r±
s,ε

∣∣∣ ≤ C1 < ∞.

Thus for any ω ∈ I1 we have

1

|r±
s,ε − (r±

s,ε)
−1| � 1

|1 − r±
s,ε ||1 + r±

s,ε |
� 1

|1 − r±
s,ε |

+ 1

|1 + r±
s,ε |

.

Using the equation satisfied by r±
s,ε we find that

|1 − r±
s,ε | = bs |ω ± iε|1/2|r±

s,ε | � |ω ± iε|1/2 ≥ |ω|1/2

and

|1 + r±
s,ε | = |(ω ± iε)b2

s + 4|1/2|r±
s,ε | � |(ω ± iε)b2

s + 4|1/2 ≥ |ωb2
s + 4|1/2.

Putting together the above estimates for the roots r±
s,ε we find that for all ω ∈ I1 and

ε small enough the following holds

1

|r±
1,ε − (r±

1,ε)
−1| + 1

|r±
2,ε − (r±

2,ε)
−1| � 1

|ω|1/2
+ 1

|ωb2
1 + 4|1/2

+ 1

|ωb2
2 + 4|1/2

.
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We now prove that

1

|b−2
2 (1 − r±

2,ε) + b−2
1 (1 − r±

1,ε)|
� 1

|ω|1/2
.

We recall that the sign of the imaginary parts of r±
1,ε and r±

2,ε is the same. Also, since

|r±
s,ε | < 1, the real parts of 1 − r±

1,ε and 1 − r±
2,ε are positive. These properties of the

roots imply that

|b−2
2 (1 − r±

2,ε) + b−2
1 (1 − r±

1,ε)| ≥ b−2
2 |1 − r±

2,ε | + b−2
1 |1 − r±

1,ε | � |ω|1/2.

Putting together the above results we obtain that Step 1 is satisfied with C(ω)

given by (4.10) uniformly on all ε > 0 sufficiently small.
Step 2 follows as Step 1 by putting ε = 0 and replacing r±

s,ε with r±
s .

Proof of Step 3. We write

R(ω ± iε)ϕ(n) =
∑
k∈Z∗

R(ω ± iε, n, k)ϕ(k),

where R(ω ± iε, n, k) collects all the coefficients in front of ϕ(k) in formula (4.7).
Using that, for any ω ∈ J , r±

s,ε(ω) → r±
s (ω) we obtain that R(ω± iε, n, k)ϕ(k) →

R±(ω,n, k)ϕ(k). Since for any ω ∈ J and ε small enough we have the uniform bound

|R(ω ± iε, n, k)ϕ(k)| ≤ C(ω)|ϕ(k)|, ∀k ∈ Z
∗,

we can apply Lebesgue’s dominated convergence theorem to conclude that
∑
k∈Z∗

R(ω ± iε, n, k)ϕ(k) →
∑
k∈Z∗

R±(ω,n, k)ϕ(k),

which proves Step 3.
Step 4 follows by Lebesgue’s dominated convergence theorem since we have the

pointwise convergence in Step 3 and the uniform bound in Step 1.
Proof of Step 5. Applying Cauchy’s formula we obtain that

eitA = 1

2iπ

∫
�

eitωR(ω)dω

for any curve � that rounds the spectrum of operator A. For small parameter ε we
choose in the above formula path �ε to be the following rectangle

�ε = {ω ± iε,ω ∈ [−4 max{b−2
1 , b−2

2 } − ε, ε]}
∪ {−4 max{b−2

1 , b−2
2 } − ε + iη, η ∈ [−ε, ε]} ∪ {ε + iη, η ∈ [−ε, ε]}.

Using the estimates for R(λ), λ ∈ �ε obtained in Step 1 and the convergence in Step
4 we obtain that for any ϕ ∈ l1(Z∗) the following holds:

eitAϕ = 1

2πi

∫
I

eitω(R+(ω) − R−(ω))ϕdω.

The proof is now complete. �
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4.3 Proof of the Main Result

We now prove the main result of this paper.

Proof of Theorem 1.1. For any ϕ ∈ l1(Z∗) Lemma 4.4 gives us that

(eitAϕ)(n) = 1

2πi

∫
I

eitω(R+(ω) − R−(ω))ϕ(n)ds, n ∈ Z
∗,

where I = [−4 max{b−2
1 , b−2

2 },0]. Using the fact that R−(ω)ϕ = R+(ω)ϕ we obtain

(eitAϕ)(n) = 1

π

∫
I

eitω(( ImR+)(ω)ϕ)(n)dω, n ∈ Z
∗,

where ImR+ is given by

( ImR+)(ω)ϕ(j) = (R+(ω)ϕ)(j) − (R−(ω)ϕ)(j)

2i

=
∑
k∈Z1

ϕ(k) Im
−(r+

s )|j |(r+
1 )|k|

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )

+
∑
k∈Z2

ϕ(k) Im
−(r+

s )|j |(r+
2 )|k|

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )

+
∑
k∈Zs

ϕ(k) Im
b2
s

r+
s − (r+

s )−1
((r+

s )|j−k| − (r+
s )|j |+|k|), j ∈ Zs

and for s ∈ {1,2}, r+
s is the root of r2 − 2r + 1 = ωb2

s r with the imaginary part
nonpositive.

In order to prove (1.12) it is sufficient to show the existence of a constant C =
C(b1, b2) such that

∑
k∈Z1

|ϕ(k)|
∣∣∣∣
∫

I

eitω Im
(r+

s )|j |(r+
1 )|k|

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )
dω

∣∣∣∣
≤ C(|t | + 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z

∗, (4.11)

and

∑
k∈Zs

|ϕ(k)|
∣∣∣
∫

I

eitω Im
(r+

s )|j−k|

r+
s − (r+

s )−1
dω

∣∣∣ ≤ C(|t | + 1)−1/3‖ϕ‖l1(Z∗), ∀j ∈ Z
∗.

(4.12)
The estimates for the other two terms occurring in the representation of ImR+(ω)

are similar.
Step I. Proof of (4.12). We prove that

sup
j∈Z

∣∣∣
∫

I

eitω Im
(r+

s )|j |

r+
s − (r+

s )−1
dω

∣∣∣ ≤ C(b1, b2)(|t | + 1)−1/3, ∀t ∈ R. (4.13)
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We split I as I = I1 ∪ I2 where I1 = [−4 max{b−2
1 , b−2

2 },4b−2
s ] and I2 = [4b−2

s ,0].
If ω ∈ I1, the following equation

r + 1

r
= 2 + ωb2

s

has real roots and then
∫

I

eitω Im
(r+

s )|j |

r+
s − (r+

s )−1
dω = 0.

When ω ∈ I2, root rs of equation rs + 1
rs

= 2+ωb2
s has the form rs = e−iθ , θ ∈ [0,π].

Using the change of variables ω = b−2
s (2 cos θ − 2) we get

∫
I2

eitω Im
(r+

s )|j |

r+
s − (r+

s )−1
dω = 2b−2

s

∫ π

0
eitb−2

s (2 cos θ−2) Im
e−i|j |θ

e−iθ − eiθ
sin θdθ

= −2b−2
s

∫ π

0
eitb−2

s (2 cos θ−2) Im
e−i|j |θ

2i sin θ
sin θdθ

= b−2
s

∫ π

0
eitb−2

s (2 cos θ−2) Re e−i|j |θ dθ

= b−2
s

2

∫ π

0
eitb−2

s (2 cos θ−2)(ei|j |θ + e−i|j |θ )dθ.

Van der Corput’s Lemma applied to the phase function φ(θ) = (2 cos θ − 2)b−2
s +

jθ/t shows that
∣∣∣∣
∫ π

0
eit (2 cos θ−2)b−2

s eijθ dθ

∣∣∣∣ ≤ C(bs)(|t | + 1)−3, ∀t ∈ R,∀j ∈ Z. (4.14)

The proof of (4.12) is now finished.
Step II. Proof of (4.11). It is sufficient to prove that

sup
j,k∈N

∣∣∣∣
∫

I

eitω (r+
1 )j (r+

2 )k

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )
dω

∣∣∣∣ ≤ C(b1, b2)(|t | + 1)−1/3, ∀t ∈ R.

To fix the ideas let us assume that b2 ≤ b1. We split interval I as follows I = I1 ∪ I2
where I1 = [−4b−2

2 ,−4b−2
1 ] and I2 = [−4b−2

1 ,0]. We remark that on I1, r+
1 ∈ R and

r+
2 ∈ C \ R. On I2 both r+

1 and r+
2 belong to C \ R. We prove that

sup
j,k∈N

∣∣∣
∫

I1

eitω (r+
1 )j (r+

2 )k

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )
dω

∣∣∣ ≤ C(b1, b2)(|t | + 1)−1/3 (4.15)

and

sup
j,k∈N

∣∣∣
∫

I2

eitω (r+
1 )j (r+

2 )k

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )
dω

∣∣∣ ≤ C(b1, b2)(|t | + 1)−1/3. (4.16)
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Let us set h(ω) = b−2
2 (1 − r+

2 (ω)) + b−2
1 (1 − r+

1 (ω)) Using the same arguments
as in the proof of Lemma 4.4 we get that |h(ω)| ≥ C(b1, b2)|ω|1/2. Then, on I1,
|h(ω)| ≥ c > 0. Moreover |h′(ω)| ≤ c2 < ∞. Using integration by parts we obtain
that

∣∣∣
∫

I1

eitω (r+
1 )j (r+

2 )k

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )
dω

∣∣∣

≤ sup
x∈I1

∣∣∣
∫ x

−4b−2
2

eitω(r+
1 )j (r+

2 )kdω

∣∣∣(‖1/h‖L∞(I1) + ‖(1/h)′‖L1(I1)

)

≤ C(b1, b2) sup
x∈I1

∣∣∣
∫ x

−4b−2
2

eitω(r+
1 )j (r+

2 )kdω

∣∣∣.
A similar argument shows that

∣∣∣
∫ x

−4b−2
2

eitω(r+
1 )j (r+

2 )kdω

∣∣∣

≤ sup
y≤x

∣∣∣
∫ y

−4b−2
2

eitω(r+
2 )kdω

∣∣∣(‖(r+
1 )j‖L∞(I1) + ‖((r+

1 )j )′‖L∞(I1)

)
.

Observe that for ω ∈ I1, r+
1 (ω) given by

r+
1 (ω) =

2 + b2
1ω −

√
(2 + b2

1ω)2 − 4

2

is a decreasing function. Thus

‖((r+
1 )j )′‖L1(I1)

≤ ‖(r+
1 )j‖L∞(I1) ≤ 1, ∀j ∈ N.

The proof of (4.15) is now reduced to the following estimate:

sup
y∈I1

∣∣∣
∫ y

−4b−2
2

eitω(r+
2 (ω))kdω

∣∣∣ ≤ C(b1, b2)(|t | + 1)−1/3, ∀k ∈ N, t ∈ R.

Making the change of variables ω = b−2
2 (2 cos θ − 2) and applying Van der Corput’s

Lemma as in the final step of Step I we obtain that

∣∣∣
∫ y

−4b−2
2

eitω(r+
2 (ω))kdω

∣∣∣ = 2b−2
2

∣∣∣
∫ π

2 arcsin(b2
2/y)

eitb2
2(2 cos θ−2)e−ikθ sin θdω

∣∣∣
≤ C(b2)(|t | + 1)−1/3.

We now prove (4.16). We first make the change of variables ω = b−2
1 (2 cos θ − 2).

Thus
∫

I2

eitω (r+
1 )j (r+

2 )k

b−2
2 (1 − r+

2 ) + b−2
1 (1 − r+

1 )
dω
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= 2b−2
1

∫ π

0
eitb−2

1 (2 cos θ−2)e−ijθ e−2ik arcsin(b2b
−1
1 sin θ

2 ) sin θ

h(θ)
dθ,

where h(θ) = b−2
2 (1 − r+

2 (θ)) + b−2
1 (1 − r+

1 (θ)), r+
1 (θ) = e−iθ and r+

2 (θ) =
e−2i arcsin(b2b

−1
1 sin θ

2 ).
Using that far from θ = 0 function h satisfies |h(θ)| > 0 we choose a small para-

meter ε and split our integral as follows:

∫ π

0
eitb−2

1 (2 cos θ−2)e−ijθ e−2ik arcsin(b2b
−1
1 sin θ

2 ) sin θ

h(θ)
dθ = T1 + T2

=
∫ ε

0
eitb−2

1 (2 cos θ−2)e−ijθ e−2ik arcsin(b2b
−1
1 sin θ

2 ) sin θ

h(θ)
dθ

+
∫ π

ε

eitb−2
1 (2 cos θ−2)e−ijθ e−2ik arcsin(b2b

−1
1 sin θ

2 ) sin θ

h(θ)
dθ.

Observe that on interval [0, ε]
∥∥∥ sin θ

h(θ)

∥∥∥
L∞(0,ε)

+
∥∥∥ d

dθ
(
sin θ

h(θ)
)

∥∥∥
L1(0,ε)

≤ M < ∞

and on interval [ε,π]
∥∥∥ 1

h(θ)

∥∥∥
L∞(ε,π)

+
∥∥∥ d

dθ
(

1

h(θ)
)

∥∥∥
L1(ε,π)

≤ M < ∞.

Then we have the following estimates for T1 and T2

|T1| ≤ M sup
x∈[0,ε]

∣∣∣
∫ x

0
eitb−2

1 (2 cos θ−2)e−ijθ e−2ik arcsin(b2b
−1
1 sin θ

2 )dθ

∣∣∣
and

|T2| ≤ M sup
x∈[ε,π]

∣∣∣
∫ π

x

eitb−2
1 (2 cos θ−2)e−ijθ e−2ik arcsin(b2b

−1
1 sin θ

2 ) sin θdθ

∣∣∣.
We now apply the following lemma that we prove later.

Lemma 4.5 Let a ∈ (0,1] and 0 ≤ δ ≤ π . There exists C(a, δ) such that for all real
numbers y, z and t

∣∣∣
∫ π

δ

eit (2 cos θ+2z arcsin(a sin θ
2 ))eiyθ sin θdθ

∣∣∣ ≤ C(a, δ)(|t | + 1)−1/3 (4.17)

and if δ > 0

∣∣∣
∫ π−δ

0
eit (2 cos θ+2z arcsin(a sin θ

2 ))eiyθ dθ

∣∣∣ ≤ C(a, δ)(|t | + 1)−1/3. (4.18)
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We obtain that

|T1| ≤ MC(a, ε)(|t | + 1)−1/3

and

|T2| ≤ MC(a, ε)(|t | + 1)−1/3.

The proof of Theorem 1.1 is now finished. �

Proof of Lemma 4.5 Since the integrals in (4.17) and (4.18) are on bounded intervals
it is sufficient to prove that, for t large enough, each of the integrals is bounded by
|t |−1/3. In the case of (4.17) we will consider the case δ = 0 since the proof for δ > 0
is similar.

Let us denote by ψ either the function χ(0,π−δ) or sin θ . We set

p(θ) = 2 cos θ + 2z arcsin

(
a sin

θ

2

)
, θ ∈ [0,π].

Using the Maple software we obtain that

min
θ∈[0,π][(p

′′(θ))2 + (p′′′(θ))2]

≥ min

{
4 + z2a2(a2 − 1)

2

16
,

a2

4(1 − a2)

(
z − 4

√
1 − a2

a

)2}
.

If z is such that |z − 4
√

1−a2

a
| ≥ ε > 0 then Van der Corput’s lemma applied to the

phase function p(θ) + yθ/t guarantees that

∣∣∣
∫ π

0
eitp(θ)eiyθψ(θ)dθ

∣∣∣ ≤ C(a, ε)(|t | + 1)−1/3.

Assume now that |z − 4
√

1−a2

a
| < ε with ε small enough that we will specify later.

Let us write

z = 4
√

1 − a2

a
+ b

with b a small parameter such that |b| < ε. With this notation p(θ) = pb(θ) = q(θ)+
br(θ) where

q(θ) = 2 cos(θ) + 8
√

1 − a2

a
arcsin

(
a sin

θ

2

)

and

r(θ) = 2 arcsin

(
a sin

θ

2

)
.

Solving system (q ′′(θ), q ′′′(θ)) = (0,0) with Maple software we obtain that it has a
unique solution θ = π . Thus for any δ < π there exists a positive constant c(a, δ)



J Fourier Anal Appl (2011) 17:1035–1065 1059

such that

|q ′′(θ)| + |q ′′′(θ)| ≥ c(a, δ), ∀θ ∈ [0,π − δ].
It implies the existence of an ε = ε(a, δ) such that for all |b| ≤ ε

|p′′
b(θ)| + |p′′′

b (θ)| ≥ c(a, δ) − |b| sup
x∈[0,π]

(|r ′′| + |r ′′′|) ≥ c(a, δ)

2
, ∀ θ ∈ [0,π − δ].

Hence, Van der Corput’s Lemma applied to the phase function pb(θ) + yθ/t guaran-
tees that

∣∣∣
∫ π−δ

0
eitpb(θ)eiyθψ(θ)dθ

∣∣∣ ≤ C(a, δ)(|t | + 1)−1/3, ∀|b| < ε,∀t, y ∈ R.

The proof of (4.18) is finished.
To prove estimate (4.17) it remains to show that we can choose δ(a) small enough

such that for all |b| < ε

|Ib(t)| :=
∣∣∣
∫ π

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ ≤ C(a)(|t | + 1)−1/3, ∀y, t ∈ R. (4.19)

The Taylor expansions of q and r near θ = π are as follows

q(θ) = −2a + 8
√

1 − a2 arcsin(a)

a
− 1

16

(2a2 − 1)(θ − π)4

−1 + a2

− 1

384

(4a2 − 1)(θ − π)6

(−1 + a2)2
+ O((θ − π)8),

and

r(θ) = 2 arcsin(a)− 1

4

a√
1 − a2

(θ −π)2 + 1

192

a(2a2 + 1)

(1 − a2)3/2
(θ −π)4 +O((θ −π)6).

Also the second derivatives of q and r satisfy

q ′′(θ) = −3

4

(2a2 − 1)(θ − π)2

−1 + a2
+ O(|θ − π |4) as θ ∼ π,

and

r ′′(θ) = −1

2

a√
1 − a2

+ O(θ − π)2 as θ ∼ π.

Observe that for a �= 1/
√

2, the second derivative of q behaves as (θ − π)2 near
θ = π . Otherwise it behaves as (θ − π)4 near the same point. Since the proof of
(4.19) is quite different in the two cases we will treat them separately.

In the sequel δ(a) is chosen such that we can compare q and r with their Taylor
expressions near θ = π .



1060 J Fourier Anal Appl (2011) 17:1035–1065

Case 1. a �= 1/
√

2. The main idea is to split the interval [π − δ(a),π] in three
intervals where we can compare |θ − π | with |b|1/2 and decide which of them domi-
nates the other:

[π − δ(a),π] = [π − δ(a),π − α2|b|1/2] ∪ [π − α2|b|1/2,π − α1|b|1/2]
∪ [π − α1|b|1/2,π],

where α1 � 1 � α2 are independent of b but depend on the parameter a. More pre-
cisely the parameters α1 and α2 are chosen in terms of the first two coefficients of the
Taylor expansion of functions q and r near θ = π .

Let us consider the interval [π − δ(a),π − α2|b|1/2] with α2 large enough. In this
interval |θ −π | dominates |b|1/2 and we apply Lemma 3.2. We check the hypotheses
of this lemma. In this interval the first derivative of pb is of the same order as |θ −π |3:

|p′
b(θ)| ≥ |q ′(θ)| − |b||r ′(θ)| ≥ C1|θ − π |(|θ − π |2 − C2|b|) ≥ C3|θ − π |3

and

|p′
b(θ)| ≤ |q ′(θ)| + |b||r ′(θ)| ≥ C4|θ − π |(|θ − π |2 + C5|b|) ≥ C6|θ − π |3.

Also, the second derivative satisfies:

|p′′
b(θ)| ≥ |q ′′(θ)| − |b||r ′′(θ)| ≥ C7(|θ − π |2 − C8|b|) ≥ C9|θ − π |2

and

|p′′
b(θ)| ≤ |q ′′(θ)| + |b||r ′′(θ)| ≥ C10(|θ − π |2 + C11|b|) ≥ C12|θ − π |2.

We emphasize that all the above constants are independent of b. Observe that on the
considered interval |p′′

b | � |b|. If we try to apply Van der Corput’s Lemma with k = 2
we obtain

∣∣∣
∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ

∣∣∣
≤ (|tb|)−1/2 max

[π−δ(a),π−α2|b|1/2]
| sin θ | ≤ C(δ(a))|tb|−1/2,

an estimate that is not uniform in the parameter b.
However, using Lemma 3.2 we obtain the existence of a constant C depending on

all the constants Ci, i = 1, . . . ,12 but independent of the parameter b, such that

∣∣∣
∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ sin(θ)dθ

∣∣∣

=
∣∣∣
∫ π−α2|b|1/2

π−δ(a)

eitpb(θ)eiyθ |p′′
b(θ)|1/2 sin(θ)

|p′′
b(θ)|1/2

dθ

∣∣∣

≤ C|t |−1/2
(

max
[π−δ(a),π−α1|b|1/2]

| sin(θ)|
|p′′

b(θ)|1/2
+

∫ π−α2|b|1/2

π−δ(a)

∣∣∣( sin(θ)

|p′′
b(θ)|1/2

)′
(θ)

∣∣∣dθ
)
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≤ C|t |−1/2 max
[π−δ(a),π−α2|b|1/2]

| sin(θ)|
|p′′

b(θ)|1/2

� C|t |−1/2 max
[π−δ(a),π−α2|b|1/2]

| sin(θ)|
|θ − π | � C|t |−1/2. (4.20)

On the interval [π − α2|b|1/2,π − α1|b|1/2] the third derivative of pb satisfies:

|p′′′(θ)| � |θ − π ||C(a) + b| � |b|1/2,

since C(a) �= 0 in the case a �= 1/
√

2. Applying Van der Corput’s Lemma with k = 3
we get

∣∣∣
∫ π−α1|b|1/2

π−α2|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣
� (|tb|1/2)−1/3 max

θ∈[π−α2|b|1/2,π−α1|b|1/2]
| sin θ | � |t |−1/3. (4.21)

On interval [π − α1|b|1/2,π] with α1 small enough, the term |br ′′(θ)| dominates
|q ′′(θ)|. The behavior of p′′

b(θ) is given by |br ′′(θ)|:
|p′′

b(θ)| ≥ |br ′′(θ)| − |q ′′(θ)| ≥ C1(|b| − C2|θ − π |2) ≥ C3|b|,
for some positive constants C1 and C2 independent of the parameter b. Applying Van
der Corput’s Lemma with k = 2 we get

∣∣∣
∫ π

π−α1|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ � (|tb|)−1/2 max
θ∈[π−α1|b|1/2,π]

| sin θ | � |t |−1/2.

(4.22)
Using (4.20), (4.21) and (4.22) we obtain that (4.19) holds uniformly for all |b| <

ε,y and t real numbers.
Case 2. a = 1/

√
2. In this case the Taylor expansion of function q at θ = π is

given by

q(θ) = −2a + 8
√

1 − a2 arcsin (a)

a
− 1

384

(
4a2 − 1

)
(θ − π)6

(−1 + a2
)2

+ O(|θ − π |8).

We split the interval [π − δ(a),π] as follows:

[π − δ(a),π] = [π − δ(a),π − α3|b|1/4] ∪ [π − α3|b|1/4,π − α2|b|1/4]
∪ [π − α2|b|1/4,π − α1|b|1/2] ∪ [π − α1|b|1/2,π],

where α2 � 1 � α3 and all α1, α2, α3 are independent of b.
On the first interval [π − δ(a),π − α3|b|1/4] we apply Lemma 3.3. We have to

check that the first third derivatives behave as powers of |θ − π | in this interval.
Observe that

|p′
b(θ)| ≥ C1|θ − π |(|θ − π |4 − C2|b|) ≥ C3|θ − π |5
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and

|p′
b(θ)| ≤ C4|θ − π |(|θ − π |4 + C5|b|) ≥ C6|θ − π |5.

In a similar manner

C7|θ − π |4 ≤ |p′′
b(θ)| ≤ C8|θ − π |4.

Also the third derivative satisfies

|p′′′
b (θ)| ≥ C9|θ − π |(|θ − π |2 − C10|b|) ≥ C11|θ − π |3

and

|p′′′
b (θ)| ≤ C12|θ − π |(|θ − π |2 + C13|b|) ≥ C14|θ − π |3.

We now apply Lemma 3.3 taking into account that all the above constants are inde-
pendent of b and we obtain

∣∣∣
∫ π−α3|b|1/4

π−δ(a)

eitpb(θ)eiyθ sin θdθ

∣∣∣

=
∣∣∣
∫ π−α3|b|1/4

π−δ(a)

eitpb(θ)eiyθ |p′′′
b (θ)|1/3 sin θ

|p′′′
b (θ)|1/3

dθ

∣∣∣

� |t |−1/3
(

max
[π−δ(a),π−α3|b|1/4]

| sin θ |
|p′′′

b (θ)|1/3
+

∫ π−α3|b|1/4

π−δ(a)

∣∣∣( sin θ

|p′′′
b (θ)|1/3

)′∣∣∣dθ
)

� |t |−1/3 max
[π−δ(a),π−α3|b|1/4]

| sin θ |
|p′′′

b (θ)|1/3

� |t |−1/3 max
[π−δ(a),π−α3|b|1/4]

| sin θ |
|θ − π | ≤ C|t |−1/3. (4.23)

In the case of the interval [π − α3|b|1/4,π − α2|b|1/4] we apply Van der Corput’s
Lemma with k = 3 and use that

|p′′′
b (θ)| ≥ C1|θ −π |(|θ −π |2 −C2|b|) ≥ C1|θ −π |(α2

2 |b|1/2 −C2|b|) ≥ C3|b|1/4+1/2.

Then

∣∣∣
∫ π−α2|b|1/4

π−α3|b|1/4
eitpb(θ)eiyθ sin θ

∣∣∣
≤ (|t ||b|3/4)−1/3 max

[π−α3|b|1/4,π−α2|b|1/4]
| sin θ | ≤ C|t |−1/3. (4.24)

Let us now consider the integral on the interval [π − α2|b|1/4,π − α1|b|1/2]. Ob-
serve that in this case

∣∣∣
∫ π−α1|b|1/2

π−α2|b|1/4
eitpb(θ)eiyθ sin θdθ

∣∣∣
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≤
∫ π−α1|b|1/2

π−α2|b|1/4
| sin θ |dθ ≤

∫ α2|b|1/4

α1|b|1/2
| sin θ |dθ

≤
∫ α2|b|1/4

α1|b|1/2
θdθ ≤ C|b|1/2 ≤ C|t |−1/3, (4.25)

as long as |b| ≤ |t |−2/3.
We now consider the case |b| ≥ |t |−2/3 and prove that a similar estimate can be

obtained. Observe that on the considered interval the second derivative of pb satisfies

|p′′
b(θ)| ≥ |b||r ′′(θ)| − |q ′′(θ)| ≥ C1(|b| − C2|θ − π |4) ≥ C1(|b| − C2(α2|b|1/4)4)

≥ C3|b|.
Thus, Van der Corput’s Lemma with k = 2 gives us

∣∣∣
∫ π−α1|b|1/2

π−α2|b|1/4
eitpbeiyθ sin θdθ

∣∣∣
� (|tb|)−1/2 max

θ∈[π−α2|b|1/4,π−α1|b|1/2]
| sin θ | ≤ (|tb|)−1/2|b|1/4

≤ |t |−1/2|b|−1/4 ≤ |t |−1/2|t |1/6 = |t |−1/3. (4.26)

On the last interval [π − α1|b|1/2,π] the term |br ′′(θ)| dominates |q ′′(θ)|. Then
the behavior of p′′

b(θ) in the considered interval is given by |br ′′(θ)|:

|p′′
b(θ)| ≥ |br ′′(θ)| − |q ′′(θ)| ≥ C1(|b| − C2|θ − π |4) ≥ C3|b|.

Thus

∣∣∣
∫ π

π−α1|b|1/2
eitpb(θ)eiyθ sin(θ)dθ

∣∣∣ � (|tb|)−1/2 max
θ∈[π−α1|b|1/2,π]

| sin θ | � |t |−1/2.

(4.27)
Using the previous estimates (4.23), (4.24), (4.25), (4.26) and (4.27) we obtain

that estimate (4.19) also holds in the case a = 1/
√

2.
The proof of Lemma 4.5 is now finished. �

In the case of system (2.8) the proof of Theorem 2.2 follows the lines of the proof
of Theorem 1.1 by taking into account the representation formula for the resolvent of
the operator A given by (2.9).

Lemma 4.6 Let λ ∈ C \ [−4 max{b−2
1 , b−2

2 },0] and A given by (2.9). For any g ∈
l2(Z∗) there exists a unique solution f ∈ l2(Z∗) of the equation (A − λI)f = g.
Moreover, it is given by the following formula

f (j) = −r
|j |
s

b−2
1 (r−1

1 − r1) + b−2
2 (r−1

2 − r2)

[
g(0) +

∑
k∈Z1

r
|k|
1 g(k) +

∑
k∈Z2

r
|k|
2 g(k)

]
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+ b2
s

rs − r−1
s

∑
k∈Zs

(r
|j−k|
s − r

|j |+|k|
s )g(k), j ∈ Zs, (4.28)

where for s ∈ {1,2}, rs = rs(λ) is the unique solution with |rs | < 1 of the equation

r2
s − 2rs + 1 = λb2

s rs .

We leave the complete details of the proof of Theorem 2.2 to the reader.

5 Open Problems

In this article we have analyzed the dispersive properties of the solutions of a system
consisting in coupling two discrete Schrödinger equations. However we do not cover
the case when more discrete equations are coupled. The main difficulty is to write in
an accurate and clean way the resolvent of the linear operator occurring in the system.
Once this case will be understood then we can treat discrete Schödinger equations on
trees similar to those considered in [4] in the continuous case.

The analysis presented in this paper mainly concerns the l1–l∞ decay property. In
a recent paper [10] the authors use some modifications of the stationary phase method
to obtain improved l1–lp decay estimates for the linear Fermi-Pasta-Ulam chain, the
Klein-Gordon chain and the discrete nonlinear Schrödinger equation. The optimality
of l1–lp estimates for the models presented here remains to be investigated.

There is another question which arises from this paper. Suppose that we have
a system iUt + AU = 0 with an initial datum at t = 0, where A is an symmetric
operator with a finite number of diagonals not identically vanishing. Under which
assumptions on the operator A does solution U decay and how can we characterize
the decay property in terms of the properties of A? When A is a diagonal operator we
can use Fourier’s analysis tools but in the case of a non-diagonal operator this is not
useful.
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