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In this paper, we consider the Schrödinger equation on a network formed by a tree with
the last generation of edges formed by infinite strips. We give an explicit description of
the solution of the linear Schrödinger equation with constant coefficients. This allows
us to prove dispersive estimates, which in turn are useful for solving the nonlinear
Schrödinger equation. The proof extends also to the laminar case of positive step-
function coefficients having a finite number of discontinuities. C© 2011 American
Institute of Physics. [doi:10.1063/1.3629474]

I. INTRODUCTION

Let us first consider the linear Schrödinger equation (LSE) on R:{
iut + uxx = 0, x ∈ R, t ∈ R,

u(0, x) = u0(x), x ∈ R.
(1)

The linear semigroup eit� has two important properties, which can be easily seen via the Fourier
transform. First, the conservation of the L2-norm:

‖eit�u0‖L2(R) = ‖u0‖L2(R), (2)

and a dispersive estimate of the form

‖eit�u0‖L∞(R) ≤ C√|t | ‖u0‖L1(R), t �= 0. (3)

From these two inequalities, by using the classical T T ∗ argument, space-time estimates follow,
known as Strichartz estimates (see Refs. 17 and 30):

‖eit�u0‖Lq
t (R, Lr

x (R)) ≤ C‖u0‖L2(R), (4)

where (q, r ) are so-called admissible pairs:

2

q
+ 1

r
= 1

2
, 2 ≤ q, r ≤ ∞. (5)

These dispersive estimates have been successfully applied to obtain well-posedness results for the
nonlinear Schrödinger equation (see, Refs. 12 and 31, and the reference therein).

In this article, we prove the dispersion inequality for the linear Schrödinger operator defined on
a tree (bounded, connected graph without closed paths) with the external edges infinite. We assume
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that the tree does not contain vertices of multiplicity two, since they are irrelevant for our model. Let
us notice that in this context we cannot use Fourier analysis as done on R for getting the dispersion
inequality.

The presentation of the Laplace operator will be given in full details in Sec. II. Let us just
say here that the Laplacian operator, �� , acts as the usual Laplacian on R on each edge and that
at vertices the Kirchhoff conditions must be fulfilled: continuity condition for the functions on the
graph and transmission condition at the level of their first derivative. So our analysis will be a 1D
ramified analysis. More general coupling conditions are discussed in Sec. IV.

In Ref. 19 the second author proved the same result in the case of regular trees. This means some
restrictions on the shape of the trees: all the vertices of the same generation have the same number
of descendants and all the edges of the same generation are of the same length. These restrictions
allow to define some average functions on the edges of the same generation and to analyze some
1D laminar Schrödinger equation (depending on the shape of the tree), where dispersion estimates
were available from the first author’s paper.5 The strategy used in Ref. 19 cannot be applied in the
case of a general tree and the scope of this article is to extend the class of trees where the dispersion
estimate holds. In the case of a graph with a closed path, in general there exist compact supported
eigenfunctions for the considered Laplace operator and then the dispersion estimate fails.

The motivation for studying thin structures comes from mesoscopic physics and nanotechnology.
Mesoscopic systems are those that have some dimensions which are too small to be treated using
classical physics while they are too large to be considered on the quantum level only. The quantum
wires are physical systems with two dimensions reduced to a few nanometers. We refer to Ref. 24
and references therein for more details on such type of structures.

The simplest model describing conduction in quantum wires is a Hamiltonian on a planar graph,
i.e., a one-dimensional object. Throughout the paper we consider a class of idealized quantum wires,
where the configuration space is a planar graph and the Hamiltonian is minus the Laplacian with
Kirchhoff’s boundary conditions at the vertices of the graph. This condition makes the Hamiltonian
to be a self-adjoint operator. More general coupling conditions that guarantee the self-adjointness
are given in Ref. 21.

The problems addressed here enter in the framework of metric graphs or networks. Those are
metric spaces which can be written as the union of finitely many intervals, which are compact or
[0,∞) and any two of these intervals are either disjoint or intersect only in one or both of their
endpoints. Differential operators on metric graphs arise in a variety of applications. We mention some
of them: carbon nano-structures,27 photonic crystals,15 high-temperature granular superconductors,3

quantum waveguides,9 free-electron theory of conjugated molecules in chemistry, quantum chaos,
etc. For more details we refer the reader to review papers.14, 18, 24, 25

The linear and cubic Schrödinger equation on simple networks with Kirchhoff connection
conditions and particular type of data has been analyzed in Ref. 10. The symmetry imposed on the
initial data and the shape of the networks allow to reduce the problem to a Schrödinger equation
on the half-line with appropriate boundary conditions, for which a detailed study is done by inverse
scattering. Some numerical experiments are also presented in Ref. 10. The propagation of solitons
for the cubic Schrödinger equation on simple networks but with connection conditions in link with
the mass and energy conservation is analyzed in Ref. 29. On star graphs, the cubic Schrödinger
equation was considered in Refs. 1 and 2 and well-posedness was proved at the H 1 energy level,
as well as the existence of stationary states and the description of the propagation of solitons for
boundary conditions of δ type, including Kirchhoff vertex.

The main result is the following, where by {Ie}e∈E we shall denote the edges of the tree.

Theorem 1.1: The solution of the linear Schrödinger equation on a tree is of the form

eit�� u0(x) =
∑
λ∈R

aλ√|t |
∫

Iλ

ei φλ (x,y)
t u0(y) dy, (6)

with φλ(x, y) ∈ R, Iλ ∈ {Ie}e∈E ,
∑

λ∈R |aλ| < ∞, and it satisfies the dispersion inequality

‖eit�� u0‖L∞(�) ≤ C√|t | ‖u0‖L1(�), t �= 0. (7)
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The proof uses the method in Ref. 5 in an appropriate way related to the ramified analysis on
the tree, by recursion on the number of vertices. It consists in writing the solution in terms of the
resolvent of the Laplacian, which in turn is computed in the framework of almost periodic functions.

As mentioned before, Strichartz estimates (4) can be derived from the dispersion inequality and
have been used intensively to obtain well-posedness results for the nonlinear Schrödinger equation
(NSE). The arguments used in the context of NSE on R can also be used here to obtain the following
as a typical result.

Corollary 1.2: Let p ∈ (0, 4). For any u0 ∈ L2(�) there exists a unique solution

u ∈ C(R, L2(�)) ∩
⋂

(q,r ) admissible

Lq
loc(R, Lr (�)),

of the nonlinear Schrödinger equation{
iut + ��u ± |u|pu = 0, t �= 0,

u(0) = u0, t = 0.
(8)

Moreover, the L2(�)-norm of u is conserved along the time

‖u(t)‖L2(�) = ‖u0‖L2(�).

The proof is standard once the dispersion property is obtained and it follows as in [Ref. 12,
p. 109, Theorem 4.6.1].

With the same method we obtain the same results in the case of the Laplacian on the graph
with laminar coefficients (piecewise constants, bounded between two positive constants—the details
on the laminar Laplacian are given in Sec. III). This might be of physical interest when the wire
on a edge is composed of different pieces. Equations with variable coefficients on networks have
been previously analyzed in Ref. 33 for the heat equation and in Ref. 4 for the wave equations. For
clearness we give in details the proof in the constant coefficient case because it contains the core
ideas. We then very briefly describe the way to extend it to laminar coefficients.

The paper is organized as follows. In Sec. II, we introduce the Laplacian on a graph and write the
systems we want to analyze. In Sec. III, we present the proof of Theorem 1.1. Some open problems
are discussed in Sec. IV.

II. NOTATIONS AND PRELIMINARIES

In this section, we present some generalities about metric graphs and introduce the Laplace
operator on such structure. Let � = (V, E) be a graph where V is a set of vertices and E is the
set of edges. For each v ∈ V , we denote Ev = {e ∈ E : v ∈ e}. We assume that � is a countable
connected locally finite graph, i.e., the degree of each vertex v of � is finite: d(v) = |Ev| < ∞. The
edges could be of finite length and then their ends are vertices of V or they have infinite length and
then we assume that each infinite edge is a ray with a single vertex belonging to V (see, Ref. 26 for
more details on graphs with infinite edges).

We fix an orientation of � and for each oriented edge e, we denote by I (e) the initial vertex and
by T (e) the terminal one. Of course, in the case of infinite edges we have only initial vertices.

We identify every edge e of � with an interval Ie, where Ie = [0, le] if the edge is finite and
Ie = [0,∞) if the edge is infinite. This identification introduces a coordinate xe along the edge e. In
this way � is a metric space and is often named metric graph.26

Let v be a vertex of V and e be an edge in Ev . We set for finite edges e

j(v, e) =
{

0 if v = I (e)

le if v = T (e)
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and

j(v, e) = 0, if v = I (e),

for infinite edges.
We identify any function u on � with a collection {ue}e∈E of functions ue defined on the edges

e of �. Each ue can be considered as a function on the interval Ie. In fact, we use the same notation
ue for both the function on the edge e and the function on the interval Ie identified with e. For
a function u : � → C, u = {ue}e∈E , we denote by f (u) : � → C the family { f (ue)}e∈E , where
f (ue) : e → C.

A function u = {ue}e∈E it is continuous if and only if ue is continuous on Ie for every e ∈ E ,
and moreover, is continuous at the vertices of �:

ue( j(v, e)) = ue′
( j(v, e′)), ∀ e, e′ ∈ Ev.

The space L p(�), 1 ≤ p < ∞ consists of all functions u = {ue}e∈E on � that belong to L p(Ie)
for each edge e ∈ E and

‖u‖p
L p(�) =

∑
e∈E

‖ue‖p
L p(Ie) < ∞.

Similarly, the space L∞(�) consists of all functions that belong to L∞(Ie) for each edge e ∈ E and

‖u‖L∞(�) = sup
e∈E

‖ue‖L∞(Ie) < ∞.

The Sobolev space H m(�), m ≥ 1 an integer, consists in all continuous functions on � that
belong to H m(Ie) for each e ∈ E and

‖u‖2
H m (�) =

∑
e∈E

‖ue‖2
H m (e) < ∞.

The above spaces are Hilbert spaces with the inner products

(u, v)L2(�) =
∑
e∈E

(ue, ve)L2(Ie) =
∑
e∈E

∫
Ie

ue(x)ve(x)dx

and

(u, v)H m (�) =
∑
e∈E

(ue, ve)H m (Ie) =
∑
e∈E

m∑
k=0

∫
Ie

dkue

dxk

dkve

dxk
dx .

We now introduce the Laplace operator �� on the graph �. Even if it is a standard procedure
we prefer for the sake of completeness to follow Ref. 11. Consider the sesquilinear continuous form
ϕ on H 1(�) defined by

ϕ(u, v) = (ux , vx )L2(�) =
∑
e∈E

∫
Ie

ue
x (x)ve

x (x)dx .

We denote by D(��) the set of all the functions u ∈ H 1(�) such that the linear map v ∈ H 1(�) →
ϕu(v) = ϕ(u, v) satisfies

|ϕ(u, v)| ≤ C‖v‖L2(�) for all v ∈ H 1(�).

For u ∈ D(��), we can extend ϕu to a linear continuous mapping on L2(�). There is a unique
element in L2(�) denoted by ��u, such that

ϕ(u, v) = −(��u, v) for all v ∈ H 1(�).

We now define the normal exterior derivative of a function u = {ue}e∈E at the endpoints of the
edges. For each e ∈ E and v an endpoint of e we consider the normal derivative of the restriction of
u to the edge e of Ev evaluated at i(v, e) to be defined by

∂ue

∂ne
( j(v, e)) =

{−ue
x (0+) if j(v, e) = 0,

ue
x (le−) if j(v, e) = le.
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With this notation it is easy to characterise D(��) (see, Ref. 11):

D(��) =
{

u = {ue}e∈E ∈ H 2(�) :
∑
e∈Ev

∂ue

∂ne
( j(v, e)) = 0 for all v ∈ V

}

and

(��u)e = (ue)xx for all e ∈ E, u ∈ D(��).

In other words, D(��) is the space of all continuous functions on �, u = {ue}e∈E , such that for
every edge e ∈ E , ue ∈ H 2(Ie) and satisfying the following Kirchhoff-type condition:∑

e∈E :T (e)=v

ue
x (le−) −

∑
e∈E :I (e)=v

ue
x (0+) = 0 for all v ∈ V .

It is easy to verify that (��, D(��)) is a linear, unbounded, self-adjoint, dissipative operator on
L2(�), i.e., �(��u, u)L2(�) ≤ 0 for all u ∈ D(��).

Let us consider the LSE on �:{
iut (t, x) + ��u(t, x) = 0, x ∈ �, t �= 0,

u(0) = u0, x ∈ �.
(9)

Using the properties of the operator i�� we obtain as a consequence of the Hille-Yosida theorem
the following well-posedness result:

Theorem 2.1: For any u0 ∈ D(��) there exists a unique solution u(t) of system (9) that satisfies

u ∈ C(R, D(��)) ∩ C1(R, L2(�)).

Moreover, for any u0 ∈ L2(�), there exists a unique solution u ∈ C(R, L2(�)) that satisfies

‖u(t)‖L2(�) = ‖u0‖L2(�) for all t ∈ R.

The L2(�)-isometry property is a consequence of the fact that the operator i�� satisfies
�(i��u, u)L2(�) = 0 for all u ∈ D(��).

For any u0 ∈ D(��) system (9) can be written in an explicit way as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue ∈ C(R, H 2(Ie)) ∩ C1(R, L2(Ie)), e ∈ E,

iue
t (t, x) + �ue(t, x) = 0, x ∈ Ie, t �= 0,

for all v ∈ V, ue(t, j(v, e)) = ue′
(t, j(v, e′)), ∀e, e′ ∈ Ev, t �= 0,∑

e∈E :T (e)=v

ue
x (t, le−) −

∑
e∈E :I (e)=v

ue
x (t, 0+) = 0 for all v ∈ V .

(10)

Let us now consider the laminar case. We consider σ as a piecewise constant function on each
edge of the tree such that there exist two positive constants σ1 and σ2 such that

0 < σ1 < σ (x) < σ2, ∀ x ∈ Ie, ∀ e ∈ E .

With a similar argument as before we introduce the operator �σ,� as follows:

D(�σ,�) =
{

u = {ue}e∈E ∈ H 2(�) :
∑
e∈Ev

σ ( j(v, e))
∂ue

∂ne
( j(v, e)) = 0 for all v ∈ V

}

and

(�σ,�u)e = ∂x (σ (·)∂x (ue)) for all e ∈ E, u ∈ D(∂x (σ∂x )).

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



083703-6 L. Ignat and V. Banica J. Math. Phys. 52, 083703 (2011)

It follows that for any u0 ∈ D(�σ,�) the following system is well-posed⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ue ∈ C(R, H 2(Ie)) ∩ C1(R, L2(Ie)), e ∈ E,

iue
t (t, x) + ∂x (σ (x)∂x ue)(t, x) = 0, x ∈ Ie, t �= 0,

for all v ∈ V, ue(t, j(v, e)) = ue′
(t, j(v, e′)), ∀e, e′ ∈ Ev, t �= 0,∑

e∈E :T (e)=v

σ (le−)ue
x (t, le−) =

∑
e∈E :I (e)=v

σ (0+)ue
x (t, 0+) for all v ∈ V .

(11)

We remark that when function σ is identically equal to one we obtain the previous system (10).

III. PROOF OF THEOREM 1.1

A. The description of the solution

For ω ≥ 0, let Rω be the resolvent of the Laplacian on a tree

Rωf = (−�� + ω2 I )−1f.

We shall prove in Lemma 3.3 that ωRωf(x) can be analytically continued in a region containing
the imaginary axis. Therefore, we can use a spectral calculus argument to write the solution of the
Schrödinger equation with initial data u0 as

eit�� u0(x) =
∫ ∞

−∞
eitτ 2

τ Riτ u0(x)
dτ

π
. (12)

We shall also obtain in Lemma 3.4 that the following decomposition holds

τ Riτ u0(x) =
∑
λ∈R

bλeiτψλ(x)
∫

Iλ

u0(y)eiτβλ ydy, (13)

with ψλ(x), βλ ∈ R, Iλ ∈ {Ie}e∈E, and
∑

λ∈R |bλ| < ∞. Then decomposition (6) is implied by (12),
(13), and the fact that for t > 0 and r ∈ R∫ ∞

−∞
eitτ 2

eiτr dτ = ei π
4
√

π
e− r2

4t√
t

.

From (6) the dispersion estimate (7) of Theorem 1.1 follows immediately since
∑

λ∈R |αλ| < ∞.
Above and in what follows the integration of function f = ( f e)e∈E on interval Ie means the

integral of f e on the considered interval.

Remark 3.1: As in Ref. 5 we notice that since we can express the solution of the wave equation
vt t − ��v = 0 with initial data (v0, 0) as

v(t, x) =
∫ ∞

−∞
eitτ Riτ v0(x)iτ

dτ

2π
,

the property

sup
x∈�

∫ ∞

−∞
|v(t, x)|dt ≤ C‖v0‖L1(�),

follows similarly. Let us mention here that the well-posedness of a class of nonlinear dispersive
waves on trees, the Benjamin-Bona-Mahony equation, has been investigated in Ref. 6.

B. Structure of the resolvent

In order to obtain the expression of the resolvent second-order equations

(Rωf)′′ = ω2 Rωf − f,
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must be solved on each edge of the tree together with coupling conditions at each vertex. Then, on
each edge parametrized by Ie,

Rωf(x) = ceωx + c̃e−ωx + 1

2ω

∫
Ie

f(y) e−ω|x−y|dy, x ∈ Ie.

Since Rωf belongs to L2(�) the coefficients c’s are zero on the infinite edges e ∈ E , parametrized by
[0,∞). If we denote by I the set of internal edges, we have 2|I| + |E | coefficients. The Kirchhoff
conditions of continuity of Rωf and of transmission of ∂x Rωf at the vertices of the tree give the
system of equations on the coefficients. We have the same number of equations as the number of
unknowns. We denote D� the matrix of the system, whose elements are real powers of eω.

Therefore, the resolvent Rωf(x) is a finite sum of terms

Rωf(x) = 1

ω det D�(ω)

N (�)∑
λ=1

cλe±ω�λ(x)
∫

Iλ

f(y) e±ωydy + 1

2ω

∫
Ie

f(y) e−ω|x−y|dy, (14)

where x ∈ Ie, �λ(x) ∈ R, Iλ ∈ {Ie}e∈E, and |N (�)| < ∞. We shall prove the following proposition
that will imply Lemma 3.3 and 3.4 needed for obtaining Theorem 1.1.

Proposition 3.2: Function det D�(ω) is lower bounded by a positive constant on a strip con-
taining the imaginary axis:

∃c�, ε� > 0, | det D�(ω)| > c�,∀ω ∈ C, |�ω| < ε�.

Lemma 3.3: Function ωRωf(x) can be analytically continued in a region containing the imagi-
nary axis.

Proof: The proof is an immediate consequence of decomposition (14) and of Proposition 3.2. �
Lemma 3.4: The following decomposition holds

τ Riτ u0(x) =
∑
λ∈R

bλeiτψλ(x)
∫

Iλ

u0(y)eiτβλ ydy,

with ψλ(x), βλ ∈ R, Iλ ∈ {Ie}e∈E, and
∑

β∈R |bλ| < ∞.

Proof: We notice that for τ ∈ R, det D�(iτ ) is a finite sum of powers of eiτ . Then, by
Proposition 3.2 we are in the framework of a classical theorem in representation theory (Sec. 29,
Corollary 1 of Ref. 16) that asserts that the inverse of det D�(iτ ) is

∑
λ∈R dλeiτλ with

∑
λ∈R |dλ| < ∞

and from (14) the Lemma follows. �
The rest of this section is the proof of Proposition 3.2. We shall show by recursion on the number

of vertices the following stronger “double” property:

P(n) : If � has n vertices, we have the property P,

P : ∃c�, ε� > 0, ∃0 < r� < 1, | det D�(ω)| > c�,

∣∣∣∣det D̃�(ω)

det D�(ω)

∣∣∣∣ < r�, ∀ω ∈ C, |�ω| < ε�.

We have denoted by D̃�(ω), the matrix of the system verified by the coefficients, if we impose that
on one of the last infinite edges l ∈ E we replace in the expression of the resolvent c̃e−ωx by ceωx .

C. Proof of P(1)

In this case, we have a star-shaped tree with m ≥ 3 of edges. All the edges are parametrized by
[0,∞). In particular, D�(ω) = D� . We shall actually prove a stronger property, which implies the
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property P for any ε� > 0:

P(1, m) : If � has 1 vertex and m edges, det D�(ω) = m and det D̃�(ω) = m − 2.

The resolvent contains c̃ j e−ωx , 1 ≤ j ≤ m, on each of the external edges. We write matrix
D�m such that the last line is coming from Kirchhoff derivative condition and that the other lines
are coming from Kirchhoff continuity condition. So matrix D�m can be written such that it has
components 1 on the last line, and on the principal diagonal, di,i+1 = −1 for 1 ≤ j ≤ m − 1, and
zeros elsewhere

D�m =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −1

1 −1

. .

. .

. .

1 −1

1 −1

1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By development with respect to the last column and P(1, m − 1),

det D�m = 1 + det D�m−1 = m.

Similarly,

det D̃�m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 −1

1 −1

. .

. .

. .

1 −1

1 −1

1 1 1 1 1 1 1 −1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 1 + det D̃�m−1 = m − 2,

so P(1, m) is proven for any m ≥ 3 and implicitly P(1).

D. Proof of P(n − 1) ⇒ P(n).

Any tree �n with n vertices, n ≥ 2, can be seen as a tree �n−1 with n − 1 vertices on which we
add an extra-vertex. More precisely, let us consider a vertex v from which there start m ≥ 2 external
infinite edges and one internal edge connecting it to the rest of the tree (see, Fig. 1). Let us notice that
such a choice is possible since the graph has no cycles. In particular, the edge whose lower extremity
is this vertex v is an internal edge l, whose length should be denoted by a and whose upper vertex is
denoted by ṽ. Now we remove this vertex and transform the internal edge l into an external infinite
one. The new graph �n−1 has n − 1 vertices.

With respect to the problem on �n−1, the resolvent on �n involves a new term ceωx aside from
c̃e−ωx on the interval edge l, and on the external edges emerging from the vertex v it involves
terms c̃ j e−ωx , 1 ≤ j ≤ m. We also have the Kirchhoff conditions at the vertex v, which give m + 1
equations on the coefficients.

We write the square N × N matrix D�n such that the last m + 2 column corresponds to the
unknowns c̃, c, c̃1, ..., c̃m . On the last line we write the Kirchhoff derivative condition at the vertex
v, and on the N − j lines, 1 ≤ j ≤ m the Kirchhoff continuity conditions at the vertex v. Also, on
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v

v~

c1e-ωx∼

c2e-ωx∼

c3e-ωx∼

ce -ωx∼ +ceωx
l

v~

c e-ωx∼

(a) (b)

FIG. 1. With vertex v we obtain tree �4 (left) from �3 (right).

the N − m − 1 line we write the derivative condition in the vertex ṽ and on the N − m − 2 line the
continuity condition in ṽ relating c̃, and now also c, to the others coefficients. So D�n is a matrix
obtained from the (N − m − 1) × (N − m − 1) matrix D�n−1 (whose last column corresponds to the
unknown c̃) and from D�m (see Sec. III C) in the following way:

(D�n )i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(D�n−1 )i, j , 1 ≤ i, j ≤ N − m − 1,

−1, (i, j) ∈ {(N − m − 2, N − m), (N − m − 1, N − m), (N − m, N − m + 1)},
eωa, (i, j) ∈ {(N − m, N − m), (N , N − m)},

e−ωa, (i, j) = (N − m, N − m − 1),

−e−ωa, (i, j) = (N , N − m − 1),

(D�m )i, j , N − m + 1 ≤ i, j ≤ N ,

D�n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D�n−1

−1

−1

e−ωa eωa −1

1 −1

1 −1

. .

. .

. .

1 −1

1 −1

−e−ωa eωa 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

In the case n = 1, we have that D�1 = D�m̃ for some m̃ ≥ 3. Also, we emphasize that with the above
recursion, matrix D̃�n is obtained from D�n by replacing its N × N element with −1.

We develop det D�n with respect to the last m + 1 lines, that is, as an alternated sum of
determinants of m + 1 × m + 1 minors composed from the last m + 1 lines of D�n times the
determinant of D�n without the lines and columns the minor is made of. The only possibility to
obtain a m + 1 × m + 1 minor composed from the last m + 1 lines of D�n different from zero is to
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choose one of the columns N − m − 1 and N − m, together with all last m columns. This follows
from the fact that if we eliminate from det D�n both columns N − m − 1 and N − m, together
with m − 1 columns among the last m columns, we obtain a block-diagonal type matrix, with first
diagonal block D�n−1 with its last column replaced by zeros, so its determinant vanishes. Therefore,

det D�n = det D�n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

eωa −1

1 −1

1 −1

. .

. .

. .

1 −1

1 −1

eωa 1 1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

− det D̃�n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

e−ωa −1

1 −1

1 −1

. .

. .

. .

1 −1

1 −1

−e−ωa 1 1 1 1 1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By developing with respect to the first column the m + 1 × m + 1 minors,

det D�n = det D�n−1 (eωa det D�m + (−1)m+2eωa(−1)m)

− det D̃�n−1 (e−ωa det D�m − (−1)m+2e−ωa(−1)m),

so using from Sec. III C that det D�m = m, det D̃�m (ω) = m − 2, we find

det D�n (ω) = (m + 1)eωa det D�n−1 (ω) − (m − 1)e−ωa det D̃�n−1 (ω)

= (m + 1)eωa det D�n−1 (ω)

(
1 − e−2ωa m − 1

m + 1

det D̃�n−1 (ω)

det D�n−1 (ω)

)
.

Now, from P(n − 1) we have for |�ω| small enough

1 − e−2ωa m − 1

m + 1

det D̃�n−1 (ω)

det D�n−1 (ω)
> c0 > 0.

Also, P(n − 1) gives us the existence of two positive constants c�n−1 and ε�n−1 such that
| det D�n−1 (ω)| > c�n−1 , ∀ω ∈ C, |�ω| < ε�n−1 , so eventually, we get

∃c�n , ε�n > 0, | det D�n (ω)| > c�n , ∀ω ∈ C, |�ω| < ε�n ,

and the first part of property P is proved for P(n).
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In a similar way, we get

det D̃�n (ω) = (m − 1)eωa det D�n−1 (ω) − (m − 3)e−ωa det D̃�n−1 (ω),

so

det D̃�n (ω)

det D�n (ω)
=

m−1
m+1 − m−3

m+1 e−2ωa det D̃�n−1 (ω)
det D�n−1 (ω)

1 − m−1
m+1 e−2ωa det D̃�n−1 (ω)

det D�n−1 (ω)

.

Thus, we also get the second part of P for P(n) since∣∣∣∣∣
m−1
m+1 − m−3

m+1 z

1 − m−1
m+1 z

∣∣∣∣∣ < 1 ⇐⇒ 0 < (m − 2)(|z|2 − 1) + 2(m − 1)(1 − �z).

E. Extension to the laminar coefficient case

For ω ≥ 0 let Rω be the resolvent of the operator �σ,� defined in Secs. III A and III B. We shall
proceed as in Sec. III A and III B, and the main point will be the proof of Proposition 3.2 in the
laminar coefficient case. On each side of the edge, parametrized by x ∈ I ⊂ R, where the coefficient
in the laminar Laplacian is σ (x) = 1

b2 , the resolvent writes

Rωf(x) = ceωbx + c̃e−ωbx + 1

2ω

∫
I

f(y) e−ωb|x−y|dy, x ∈ I.

As in Secs. III C and III D and using the same notations, we shall show by recursion on the number
of vertices property P(n) which leads to the dispersion estimate.

We prove property P(1) on a star-shaped tree by recursion on the number of discontinuities in
the laminar structure:

P(1, p) : If � has 1 vertex and p discontinuities along its edges we have property P.

We denote by m ≥ 3 the number of edges. We start with P(1, 0). We denote by 1
b2

j
, 1 ≤ j ≤ m

the coefficients of the laminar Laplacian on each edge. The resolvent contains the terms c̃ j e−ωb j x ,
1 ≤ j ≤ m (and cmeωb3x on the last edge for the computation of D̃�) on each edge. The matrix D�m,0

is the same as D�m in Sec. III C but with 1
bi

on the last line. By developing with respect to the last
column,

det D�m,0 =
m∑

j=1

1

b j
, det D̃�m,0 =

m−1∑
j=1

1

b j
− 1

bm
,

so the property P follows immediately. Now, we shall prove that P(1, p − 1) implies P(1, p).
Without loss of generality we can suppose that on the last mth edge of �m,p there is at least one
discontinuity. We denote by x f the last discontinuity point on this edge, and by xi the previous
discontinuity if there is one, or xi = 0 otherwise. We denote the length x f − xi by a, the coefficient
of the laminar Laplacian on (xi , x f ) by 1

b2
i
, and the coefficient of the laminar Laplacian on (x f ,∞)

by 1
b2

f
. We call �m,p−1 the graph obtained from �m,p by removing the last discontinuity x f on the

last edge, and we extend the laminar Laplacian on it on [x f ,∞) by 1
b2

i
. With respect to the problem

on �m,p−1, in the expression of the resolvent we have on [xi , x f ] aside from the term c̃i e−ωbi x , the
extra term ci eωbi x , and on [x f ,∞) a term c̃ f e−ωb f x . Also, there are two connection conditions at the
new discontinuity point x f . We write the matrix D�m,p such that the last three columns correspond
to the unknowns (c̃i , ci , c̃ f ), the last two lines come from the connection condition at x f , and the
previous last two lines come from the connection condition at xi , if xi is a discontinuity point, and
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from the Kirchhoff conditions concerning ci , c̃i if it is the vertex. We have

D�m,p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

D�m,p−1

−eωbi xi

− eωbi xi

bi

e−ωbi x f eωbi x f −e−ωb f x f

− e−ωbi x f

bi

eωbi x f

bi
− e−ωb f x f

b f

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

By developing the determinants of D�m,p and D̃�m,p with respect to the last two lines, we obtain

det D�m,p = eωbi x f e−ωb f x f

(
1

b f
+ 1

bi

)
det D�m,p−1 − e−ωbi x f e−ωb f x f

(
1

b f
− 1

bi

)
det D̃�m,p−1 ,

det D̃�m,p = eωbi x f eωb f x f

(
− 1

b f
+ 1

bi

)
det D�m,p−1 − e−ωbi x f eωb f x f

(
− 1

b f
− 1

bi

)
det D̃�m,p−1 .

Thus, P(1, p) follows from P(1, p − 1) as in the constant coefficient case.
Finally, we shall prove that P(n − 1) ⇒ P(n). Let us consider a vertex v from which there start

m ≥ 2 external infinite edges and one internal edge connecting it to the rest of the graph. The proof
of P(1, p − 1) ⇒ P(1, p), of eliminating discontinuities on infinite edges also works for trees with
n ≥ 1 vertices. So it is enough to prove P(n) for a graph �n with no discontinuities on the infinite
edges emanating from vertex v. We call 1

b2
j
, 1 ≤ j ≤ m the coefficients of the laminar Laplacian on

the m edges emerging from v. With the previous notations and from Sec. III D we have

det D�n (ω) = eωbi x f

⎛
⎝ m∑

j=1

1

b j
+ 1

bi

⎞
⎠ det D�n−1 − e−ωbi x f

⎛
⎝ m∑

j=1

1

b j
− 1

bi

⎞
⎠ det D̃�n−1 ,

det D̃�n (ω) = eωbi x f

⎛
⎝m−1∑

j=1

1

b j
− 1

bm
+ 1

bi

⎞
⎠ det D�n−1 − e−ωbi x f

⎛
⎝m−1∑

j=1

1

b j
− 1

bm
− 1

bi

⎞
⎠ det D̃�n−1 .

Using these recursion relations, we find that P(n − 1) implies P(n) completing the proof in the
laminar case.

IV. OPEN PROBLEMS

In this paper, we have analyzed the dispersive properties for the linear Schrödinger equation on
trees. We have assumed that the coupling is given by the classical Kirchhoff’s conditions. However,
there are other coupling conditions (see Ref. 21) which allow to define an operator �(A, B) on
a metric graph. Under some assumptions on the coupling conditions (A, B) it has been proved in
Ref. 21 that the considered operator, denoted by �(A, B), is self-adjoint.

The existence of the dispersive properties for the solutions of the Schrödinger on a graph under
general coupling conditions on the vertices iut + ��(A, B)u = 0 is mainly an open problem. The
resolvent formula obtained in Refs. 20 and 23 in terms of the coupling matrices A and B might
help to understand the general problem. In the same papers, there are also some combinatorial
formulations of the resolvent in terms of walks on graphs. Such combinational aspects could clarify
if the dispersion is possible only on trees or there are graphs (with some of the edges infinite) with
suitable couplings where the dispersion is still true.

It is expected that other results on the Schrödinger equation on R are still valid on networks.
For instance, the smoothing estimate for the linear equation with constant coefficients is still valid.
Although its classical proof on R relies on Fourier analysis, one may easily adapt the proof in Ref. 7
which uses only integrations by parts and Besovs spaces that can still be defined on a tree using the
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heat operator. Strichartz estimates has been used previously to treat controllability issues for NSE in
Ref. 28. The possible applications of the present results in the control context remains to be analyzed.
We mention here some previous works on the controllability/stabilization of the wave equation on
networks.13, 32 Finally, another problem of interest is the study of the dispersion properties for the
magnetic operators analyzed in Refs. 22 and 24. The analysis in this case is more difficult since
in the presence of an external magnetic field the effect of the topology of the graph becomes more
pronounced. In contrast with the analysis done here, in the case of magnetic operators the graphs are
viewed as structures in the three dimensional Euclidean space R3 and the orientation of the edges
becomes important.
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Mathématiques Modernes (Gauthier-Villars, Paris, 1964).
17 Ginibre, J. and Velo, G., “The global Cauchy problem for the nonlinear Schrödinger equation revisited,” Ann. Inst. H.
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