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Classification of pseudo-Riemannian submersions with totally
geodesic fibres from pseudo-hyperbolic spaces

Gabriel Bădiţoiu

Abstract

We classify pseudo-Riemannian submersions with connected totally geodesic fibres from a real
pseudo-hyperbolic space onto a pseudo-Riemannian manifold. Also, we obtain the classification
of the pseudo-Riemannian submersions with (para-)complex connected totally geodesic fibres
from a (para-)complex pseudo-hyperbolic space onto a pseudo-Riemannian manifold.

1. Introduction and the main theorem

Riemannian submersions, introduced by O’Neill [37] and Gray [24], have been used by many
authors to construct new specific Riemannian metrics, like Einstein or positively curved
ones [8, 27], and to study various geometric structures of Riemannian manifolds [17]. In this
paper, we show that the pseudo-Riemannian submersions with connected, totally geodesic fibres
from a pseudo-hyperbolic onto a pseudo-Riemannian manifold are equivalent to the Hopf ones;
see below. First, we give a short review of well-known classification results of Riemannian
submersions and of their nice applications in Riemannian geometry and then we discuss the
pseudo-Riemannian case.

In early work, Escobales [15, 16] and Ranjan [39] classified Riemannian submersions with
connected totally geodesic fibres from a sphere, and with complex connected totally geodesic
fibres from a complex projective space. Using a topological argument, Ucci [44] showed that
there are no Riemannian submersions with fibres CP 3 from the complex projective space CP 7

onto S8(4), and with fibres HP 1 from the quaternionic projective space HP 3 onto S8(4).
A major advance obtained by Gromoll and Grove [26] is that, up to equivalence, the only
Riemannian submersions from spheres with connected fibres are the Hopf fibrations, except
possibly for fibrations of the 15-sphere by homotopy 7-spheres. This classification was invoked
in the proofs of the Diameter Rigidity Theorem in Gromoll and Grove [25] and of the Radius
Rigidity Theorem in Wilhelm [45]. Using Morse theory, Wilking [46] ruled out the Gromoll and
Grove unsettled case by showing that any Riemannian submersion π : S15 → B8 is equivalent
to a Riemannian submersion with totally geodesic fibres, which by Escobales’ classification
must be equivalent to a Hopf Riemannian submersion. A nice consequence of this classification
is the improved version of the Diameter Rigidity Theorem due to Wilking [46].

In the pseudo-Riemannian set-up, the pioneering work is due to Magid [33], who
proved that the pseudo-Riemannian submersions with connected totally geodesic fibres
from an anti-de Sitter space onto a Riemannian manifold are equivalent to the Hopf
pseudo-Riemannian submersions H2m+1

1 → CHm. Generalizing Magid’s result, Stere Ianuş
and I showed that any pseudo-Riemannian submersion with connected totally geodesic fibres
from a pseudo-hyperbolic space onto a Riemannian manifold is equivalent to one of the Hopf
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pseudo-Riemannian submersions: H2m+1
1 → CHm, H4m+3

3 → HHm or H15
7 → H

8(−4), and
as a consequence we classified the pseudo-Riemannian submersions with connected complex
totally geodesic fibres from a complex pseudo-hyperbolic space onto a Riemannian manifold
(see [4]). In [3], I extended these results to the case of a pseudo-Riemannian base under the
assumption that either (i) the base space is isotropic or (ii) the dimension of fibres is less than
or equal to 3, and the metrics induced on the fibres are negative definite. I also proved that
condition (ii) implies (i) (see [3]). In this paper, we drop these assumptions and we prove the
following main result.

Theorem 1.1. Let π : Ha
l → B be a pseudo-Riemannian submersion with connected

totally geodesic fibres from a real pseudo-hyperbolic space Ha
l of curvature −1 onto a pseudo-

Riemannian manifold. Then π is equivalent to one of the following Hopf pseudo-Riemannian
submersions:

(a) πC : H2m+1
2t+1 → CHm

t , 0 � t � m,
(b) πA : H2m+1

m → APm,
(c) πH : H4m+3

4t+3 → HHm
t , 0 � t � m,

(d) πB : H4m+3
2m+1 → BPm,

(e) π1
O

: H15
15 → H8

8 (−4),
(f) πO′ : H15

7 → H8
4 (−4),

(g) π2
O

: H15
7 → H8(−4),

where CHm
t and HHm

t are the indefinite complex and quaternionic pseudo-hyperbolic spaces
of holomorphic, respectively, quaternionic curvature −4; APm is the para-complex projective
space of real dimension 2m, signature (m,m) and para-holomorphic curvature −4; BPm is
the para-quaternionic projective space of real dimension 4m, signature (2m, 2m) and para-
quaternionic curvature −4.

The plan of the paper can be summarized as follows. Section 2 presents some known
definitions and results in the theory of pseudo-Riemannian submersions. In § 3, we exhibit
the construction of the Hopf pseudo-Riemannian submersions from pseudo-hyperbolic spaces,
which ensures the existence of at least one pseudo-Riemannian submersion in each class
(a)–(g) of Theorem 1.1. In § 4, we see that the base space B is isometric to either a pseudo-
hyperbolic space or a complete, simply connected, special Osserman pseudo-Riemannian
manifold, which was classified in [10]. To exclude the Cayley planes of octonions, and of para-
octonions from the list of possible base spaces, we prove that the curvature tensor of B has
a Clifford structure. For the remaining cases, we establish that the dimension and the index
of the total space are, in fact, those claimed in Theorem 1.1. This reduces the equivalence
problem of two pseudo-Riemannian submersions to the one of the same base space, which we
resolve in § 5. Section 6 features consequences of Theorem 1.1: (a) the classification of the
pseudo-Riemannian submersions with totally geodesic fibres from complex pseudo-hyperbolic
spaces or from para-complex projective spaces under the assumption that the fibres are,
respectively, complex or para-complex submanifolds and (b) the non-existence of the pseudo-
Riemannian submersions with quaternionic or para-quaternionic fibres from HHm

t or BPm,
respectively.

2. Preliminaries

In this section, we recall several notions and results that will be used throughout the
paper.
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Definition 2.1. A smooth surjective submersion π : (M, g) → (B, g′) between two
pseudo-Riemannian manifolds is said to be a pseudo-Riemannian submersion (see [38]) when
π∗ preserves scalar products of vectors normal to fibres and when the metric induced on every
fibre Fb = π−1(b), where b ∈ B, is non-degenerate.

The vectors tangent to fibres are called vertical and those normal to fibres are called
horizontal. We denote the vertical distribution by V and the horizontal distribution by H. The
geometry of pseudo-Riemannian submersions is characterized in terms of the O’Neill tensors
T , A (see [37, 38]) defined for every vector fields E, F on M by

AEF = h∇hEvF + v∇hEhF , TEF = h∇vEvF + v∇vEhF , (2.1)

where ∇ is the Levi-Civita connection of g, and v and h denote the orthogonal projections
on V and H, respectively. We assume that the fibres are totally geodesic, which is equivalent
to TEF = 0 for every E,F . The O’Neill tensor A is alternating, that is, AXY = −AY X for
any horizontal vectors X,Y , and skew-symmetric with respect to g, that is, g(AEF,G) =
−g(F,AEG) for every vector fields E, F , G (see [8, 17, 37, 38]). Throughout the paper,
X,Y,Z, Z ′ will always be horizontal vector fields, while U, V,W,W ′ will be vertical vector
fields. We assume that dim M > dim B and that M is connected.

We denote by R, R′ and R̂ the Riemann curvature tensors of M , B and of a fibre Fb,
respectively. We choose the convention for the curvature tensor R(E,F ) = ∇E∇F −∇F∇E −
∇[E,F ]. By R′(X,Y )Z we shall also denote the horizontal lift of R′(π∗X,π∗Y )π∗Z. The
structure equations of a pseudo-Riemannian submersion, usually called the O’Neill equations,
are stated next in a totally geodesic fibre set-up.

Proposition 2.2 [8, 17, 24, 37]. If π : M → B is a pseudo-Riemannian submersion with
totally geodesic fibres, then

(a) R(X,Y,Z, Z ′) = R′(X,Y,Z, Z ′) − 2g(AXY,AZZ ′) + g(AY Z,AXZ ′) − g(AXZ,AY Z ′);
(b) R(X,Y,Z, U) = g((∇ZA)XY,U);
(c) R(X,U, Y, V ) = g((∇UA)XY, V ) + g(AXU,AY V );
(d) R(U, V,W,W ′) = R̂(U, V,W,W ′) and (e) R(U, V,W,X) = 0.

Corollary 2.3. If π : M → B is a pseudo-Riemannian submersion with totally geodesic
fibres, then

(a) R(X,Y,X, Y ) = R′(X,Y,X, Y ) − 3g(AXY,AXY );
(b) R(X,U,X,U) = g(AXU,AXU).

Definition 2.4. A vector field X on M is said to be basic if X is horizontal and π-related
to a vector field X ′ on B. A vector field X along the fibre π−1(b), b ∈ B is said to be basic
along π−1(b) if X is horizontal and π∗pX(p) = π∗qX(q) for every p, q ∈ π−1(b).

We note that each vector field X ′ on B has a unique horizontal lift X to M which is basic.
For a vertical vector field V and a basic vector field X, we have h∇V X = AXV (see [37]).

Definition 2.5. Two pseudo-Riemannian submersions π, π′ : (M, g) → (B, g′) are said to
be equivalent if there exists an isometry f of M that induces an isometry f̃ of B so that
π′ ◦ f = f̃ ◦ π.
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3. The construction of the Hopf pseudo-Riemannian submersions

In this section, we exhibit the constructions of the real, complex, quaternionic pseudo-
hyperbolic spaces, of the para-complex and para-quaternionic projective spaces and of the
Hopf pseudo-Riemannian submersions from the real pseudo-hyperbolic spaces.

Definition 3.1. Let 〈·, ·〉
R

m+1
t+1

be the inner product of signature (m − t, t + 1) on R
m+1

given by

〈x, y〉
R

m+1
t+1

= −
t∑

i=0

xiyi +
m∑

i=t+1

xiyi (3.1)

for x = (x0, . . . , xm), y = (y0, . . . , ym) ∈ R
m+1. For any c < 0 and any positive integer t, let

Hm
t (c) = {x ∈ R

m+1 | 〈x, x〉
R

m+1
t+1

= 1/c} be the pseudo-Riemannian submanifold of

R
m+1
t+1 = (Rm+1, ds2 = −dx0 ⊗ dx0 − · · · − dxt ⊗ dxt + dxt+1 ⊗ dxt+1 + · · · + dxm ⊗ dxm).

The space Hm
t (c) is called the m-dimensional pseudo-hyperbolic space of index t. The hyper-

bolic space Hm(c) is the hypersurface {x = (x0, x1, . . . , xm) ∈ R
m+1 |x0 > 0, 〈x, x〉

R
m+1
1

=
1/c} endowed with the metric induced from R

m+1
1 .

It is well-known that Hm
t (c) has constant sectional curvature c, and we shall define simply

Hm
t = Hm

t (−1).
Throughout the paper, we use the notation: H for the field of quaternions; A and B for

the algebras of para-complex and para-quaternionic numbers, respectively; O for the algebra
of octonions (Cayley numbers) and O

′ for that of para-octonions [29] (split octonions). For
F ∈ {C, A, H, B, O, O′}, and for z ∈ F , we denote by z̄ the conjugate of z in F and, as usual,
|z|2F = z̄z = zz̄ ∈ R.

3.1. The indefinite Hopf pseudo-Riemannian submersions

When K ∈ {C, H}, let 〈·, ·〉Km+1
t+1

be the inner product on Km+1 given by

〈z, w〉Km+1
t+1

= Re

(
−

t∑
i=0

ziw̄i +
m∑

i=t+1

ziw̄i

)
, (3.2)

where z = (z0, . . . , zm), y = (w0, . . . , wm) ∈ Km+1. We set d = dimR K and assume c < 0.
We simply note that Sd−1 = {z ∈ K | zz̄ = 1}, and

H
d(m+1)−1
d(t+1)−1 (c/4) = {z ∈ Km+1 | 〈z, z〉Km+1

t+1
= 4/c}. (3.3)

The restriction of the projection

{z ∈ Kn+1 | 〈z, z〉Km+1
t+1

< 0} −→ {z ∈ Kn+1 | 〈z, z〉Km+1
t+1

< 0}/K∗, z 	→ zK∗ (3.4)

to H
d(m+1)−1
d(t+1)−1 (c/4) is a submersion

πK : H
d(m+1)−1
d(t+1)−1 (c/4) −→ KHm

t (c) = H
d(m+1)−1
d(t+1)−1 (c/4)/Sd−1, z 	→ zSd−1, (3.5)

called the indefinite Hopf fibration of H
d(m+1)−1
d(t+1)−1 (c/4). There is a unique pseudo-Riemannian

metric on KHm
t (c) such that πK : H

d(m+1)−1
d(t+1)−1 (c/4) → KHm

t (c) is a pseudo-Riemannian
submersion with totally geodesic fibres. We shall simply define KHm

t = KHm
t (−4). For c = −4,

and for K = C and K = H, respectively, the Hopf pseudo-Riemannian submersions are:

(a) πC : H2m+1
2t+1 → CHm

t with the fibres isometric to H1
1 = (S1,−gS1) and

(b) πH : H4m+3
4t+3 → HHm

t with the fibres H3
3 = (S3,−gS3).
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A nice reference for the construction of πC is [7]. Note that CHm
t has holomorphic sectional

curvature −4 (see [7]), and that HHm
t has quaternionic sectional curvature −4.

3.2. The para-Hopf pseudo-Riemannian submersions

There are several models of para-complex and of para-quaternionic projective spaces [9, 11,
14, 18]. Following [14, 18], we present a para-complex model of a para-complex projective
space, APm, which is simply connected for m � 2, and a simply connected, para-quaternionic
model for the para-quaternionic projective space, BPm; see [9].

For D ∈ {A, B}, let d = dimR D. We consider the inner product of signature ((m + 1)d/2,
(m + 1)d/2) on Dm+1 given by

〈z, w〉 = Re

(
m∑

i=0

ziw̄i

)
(3.6)

for z = (z0, . . . , zm), y = (w0, . . . , wm) ∈ Dm+1. Identifying Dm+1 = R
d(m+1)
d(m+1)/2, via (z0, . . . , zm)


 (z1
0 , . . . , z1

m, . . . , zd
0 , . . . , zd

m), where zi = (z1
i , . . . , zd

i ), 0 � i � m, we simply have 〈z, w〉 =
−〈z, w〉

R
d(m+1)
d(m+1)/2

for any z, w. In particular, we can write H2m+1
m = {z ∈ A

m+1 | 〈z, z〉 = 1} and

H4m+3
2m+1 = {z ∈ B

m+1 | 〈z, z〉 = 1}.
We set A

m+1
0 = {z ∈ A

m+1 | 〈z, z〉 > 0} and A+ = {t = x + εy ∈ A | tt̄ > 0, x > 0}. The para-
complex projective space APm is defined to be the quotient of A

m+1
0 under the equivalence

relation: Z 
 W if Z = tW for some t ∈ A+ (see [14, 18]).
We note that H1 = {t ∈ A+ | tt̄ = 1}. The restriction of the projection A

m+1
0 → APm =

A
m+1
0 /A+ to H2m+1

m gives the Hopf submersion

πA :: H2m+1
m −→ APm = H2m+1

m /H1. (3.7)

Moreover, there exists a unique pseudo-Riemannian metric g′ on APm such that πA is a pseudo-
Riemannian submersion with totally geodesic fibres [14]. The space (APm, g′) is a complete
para-holomorphic space form and its para-holomorphic curvature is −4.

The construction of BPm is analogous to the para-complex projective space. We have

BPm = {z ∈ B
m+1 | 〈z, z〉 = 1}/{t ∈ B | tt̄ = 1} = H4m+3

2m+1/H3
1 , (3.8)

and there exists a unique pseudo-Riemannian metric g′ on BPm such that the projection

πB : H4m+3
2m+1 −→ BPm = H4m+3

2m+1/H3
1 (3.9)

is a pseudo-Riemannian submersion with totally geodesic fibres [9]. Moreover, (BPm, g′) is a
complete, simply connected, para-quaternionic space form of para-quaternionic curvature −4
(see [9]).

3.3. The Hopf pseudo-Riemannian submersions between pseudo-hyperbolic spaces: the
Hopf construction

All Hopf pseudo-Riemannian submersions between (real) pseudo-hyperbolic spaces can
explicitly be obtained by the Hopf construction.

A bilinear map G : R
p × R

q → R
n is said to be an orthogonal multiplication if G is norm-

preserving, that is, |G(x, y)| = |x| |y| for any x ∈ R
p, y ∈ R

q (see [5, 41]). A Hopf construction
is a map ϕ : R

p × R
q → R

n+1 defined by ϕ(x, y) = (|x|2 − |y|2, 2G(x, y)) for some orthogonal
multiplication G (see [5, 41]). The Hopf construction can provide several examples of harmonic
morphisms (see [31, 41]), and we would like to refer the reader to the beautiful book [5] due
to Baird and Wood for other nice results on this topic. Since the sectional curvatures K, K ′

of the total and base spaces of any pseudo-Riemannian submersion between real space forms
must obey K ′ = 4K, we are forced to consider the map ϕ(x, y)/2 instead.
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Let F ∈ {C, A, H, B, O, O′}, and let ϕ1, ϕ2 : F × F → R × F be, respectively, the maps
given by

ϕ1(x, y) = ((|x|2 − |y|2)/2, x̄y) and ϕ2(x, y) = ((|x|2 + |y|2)/2, x̄y) (3.10)

for any x, y ∈ F , where x̄ denotes the conjugation of x in F and as usual |x|2 = xx̄, |y|2 = yȳ.
For convenience, we denote t1 = (|x|2 − |y|2)/2 ∈ R, t2 = (|x|2 + |y|2)/2 ∈ R and w = x̄y ∈ F .
Since |w|2 = |x̄y|2 = |x|2|y|2 for any x, y ∈ F , it is easy to see that

(i) if |x|2 + |y|2 = 1, then t21 + |w|2 = 1
4 ;

(ii) if |x|2 − |y|2 = 1, then t22 − |w|2 = 1
4 .

Setting d = dimR F , we identify F × F 
 R
2d via

((x1, . . . , xd), (y1, . . . , yd)) 
 (x1, y1, . . . , xd, yd). (3.11)

When F ∈ {C, H, O}, we consider the following restrictions of ϕ1 and ϕ2 to H2d−1
2d−1 and to

H2d−1
d−1 , respectively:

ϕ1 : H2d−1
2d−1 = {(x, y) ∈ F 2 | |x|2 + |y|2 = 1} −→ Hd

d (−4) = {(t1, w) ∈ R × F | t21 + |w|2 = 1
4};

ϕ2 : H2d−1
d−1 = {(x, y) ∈ F 2 | |x|2 − |y|2 = 1} −→ Hd(−4) = {(t2, w) ∈ R × F | t22 − |w|2 = 1

4}.
This simple construction gives six Hopf pseudo-Riemannian submersions with totally
geodesic fibres:

π1 : H3
3 −→ H2

2 (−4) = CH1
1 , π2 : H7

7 −→ H4
4 (−4) = HH1

1 , π3 : H15
15 −→ H8

8 (−4),

π4 : H3
1 −→ H2(−4) = CH1, π5 : H7

3 −→ H4(−4) = HH1, π6 : H15
7 −→ H8(−4) = OH1.

The first three submersions are the well-known Hopf fibrations between spheres.
When F ∈ {A, B, O′}, the restriction of ϕ1 to H2d−1

d−1 ,

ϕ1 : H2d−1
d−1 = {(x, y) ∈ F 2 | |x|2 + |y|2 = 1} −→ Hd

d/2(−4) = {(t1, w) ∈ R × F | t21 + |w|2 = 1
4},

gives another three Hopf pseudo-Riemannian submersions with totally geodesic fibres between
pseudo-hyperbolic spaces:

π7 : H3
1 −→ H2

1 (−4) = AH1, π8 : H7
3 −→ H4

2 (−4) = BH1, π9 : H15
7 −→ H8

4 (−4).

Note that, for F ∈ {A, B, O′}, the restriction of ϕ2 to H2d−1
d−1 will give the same π7, π8, π9.

In [31], Konderak constructed the harmonic morphisms 2π7 and 2π8 via the Hopf construction
(see also [5, Examples 14.6.5–6]). For identification (3.11) of O

′ × O
′ 
 R

16, the Hopf pseudo-
Riemannian submersion π9 : H15

7 → H8
4 (−4) can be written explicitly as

π9(x1, y1, . . . , x8, y8)

= ((x2
1 + x2

2 + x2
3 + x2

4 − x2
5 − x2

6 − x2
7 − x2

8 − y2
1 − y2

2 − y2
3 − y2

4 + y2
5

+ y2
6 + y2

7 + y2
8)/2, x1y1 + x2y2 + x3y3 + x4y4 − x5y5 − x6y6 − x7y7 − x8y8,−x2y1

+ x1y2 + x4y3 − x3y4 − x6y5 + x5y6 + x8y7 − x7y8, −x3y1 − x4y2 + x1y3 + x2y4

− x7y5 − x8y6 + x5y7 + x6y8, −x4y1 + x3y2 − x2y3 + x1y4 − x8y5 + x7y6 − x6y7

+ x5y8, −x5y1 − x6y2 − x7y3 − x8y4 + x1y5 + x2y6 + x3y7 + x4y8, −x6y1 + x5y2

− x8y3 + x7y4 − x2y5 + x1y6 − x4y7 + x3y8, −x7y1 + x8y2 + x5y3 − x6y4 − x3y5

+ x4y6 + x1y7 − x2y8, −x8y1 − x7y2 + x6y3 + x5y4 − x4y5 − x3y6 + x2y7 + x1y8).

Note that π1, π2, π4, π5, π7, π8 fall, respectively, in the categories πC, πH, πC, πH, πA, πB of
§ § 3.1 and 3.2. Define π1

O
= π3, π2

O
= π6, πO′ = π9. To the best of our knowledge, πO′ does not

appear in the literature.
The construction of the Hopf pseudo-Riemannian submersions solves the existence problem

for each class (a) –(g) of Theorem 1.1. In the following sections, we approach the uniqueness.
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Remark 3.2. The Hopf pseudo-Riemannian submersions are homogeneous, that is, of the
form π : G/K → G/H with K ⊂ H closed Lie subgroups:

πC : H2m+1
2t+1 = SU(m− t, t + 1)/SU(m− t, t) −→ CHm

t =SU(m− t, t + 1)/S(U(1)U(m− t, t)),

πH : H4m+3
4t+3 = Sp(m − t, t + 1)/Sp(m − t, t) −→ HHm

t = Sp(m − t, t + 1)/Sp(1)Sp(m − t, t),

πA : H2m+1
m = SU(m + 1, A)/SU(m, A) −→ APm = SU(m + 1, A)/S(U(1, A)U(m, A)),

πB : H4m+3
2m+1 = Sp(m + 1, B)/Sp(m, B) −→ BPm = Sp(m + 1, B)/Sp(1, B)Sp(m, B),

π1
O : H15

15 = Spin(9)/Spin(7) −→ H8
8 (−4) = Spin(9)/Spin(8),

π2
O : H15

7 = Spin(8, 1)/Spin(7) −→ H8(−4) = Spin(8, 1)/Spin(8),

πO′ : H15
7 = (Spin(5, 4)/Spin(3, 4))0 −→ H8

4 (−4) = (Spin(5, 4)/Spin(4, 4))0.

By Harvey’s book [28, p. 312], each of Spin(5, 4)/Spin(3, 4) and Spin(5, 4)/Spin(4, 4) has two
connected components: a pseudo-sphere and a pseudo-hyperbolic space. Here (·)0 denotes the
pseudo-hyperbolic component.

By analogy to Hopf Riemannian submersions from spheres [8], each of the canonical
variations of πB, πH, π1

O
, π2

O
and πO′ gives a new homogeneous Einstein metric on the

pseudo-hyperbolic space. The classification problem of homogeneous Einstein metrics on
pseudo-hyperbolic spaces shall be discussed somewhere else.

4. The geometry of the base space

An important step of the proof of Theorem 1.1 is to establish that the base space is either
a real space form or a special Osserman pseudo-Riemannian manifold. By the classification
of complete, simply connected, special Osserman pseudo-Riemannian manifolds [10, 19], we
explicitly get the geometry of the base space, and then we see that the dimensions and the
indices of the total space and of the base are those claimed in Theorem 1.1. First, we recall
[3, Proposition 3.8], which provides the completeness and the simply connectedness of the
base space.

Proposition 4.1. Let π : M → B be a pseudo-Riemannian submersion with connected,
totally geodesic fibres from a complete connected pseudo-Riemannian manifold M onto a
pseudo-Riemannian manifold B. Then B is complete. Moreover, if M is simply connected,
then B is also simply connected.

Let π : M → B be a pseudo-Riemannian submersion. We use the following notation
throughout the paper: n = dim B, s = index B, Fb = π−1(b) for some b ∈ B, r = dimFb and
r′ = indexFb.

4.1. The construction of a special basis B of H along a fibre

A key ingredient for understanding the geometry of the base and of the fibres is the construction
of a special orthonormal basis B of H along a fibre, which we recall from [3]. First, we state
the following lemma, which provides useful properties of O’Neill’s integrability tensor for a
constant curvature total space.

Lemma 4.2 [3]. Let π : M → B be a pseudo-Riemannian submersion with connected,
totally geodesic fibres from a pseudo-Riemannian manifold M with constant curvature c �= 0.
Then the following assertions are true.

(a) If X is a horizontal vector such that g(X,X) �= 0, then the map AX : V → H given by
AX(V ) = AXV is injective and the map A∗

X : H → V given by A∗
X(Y ) = AXY is surjective.
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(b) If X, Y are the horizontal lifts along the fibre π−1(π(p)), p ∈ M, of two vectors
X ′, Y ′ ∈ Tπ(p)B, respectively, g′(X ′,X ′) �= 0 and (AXY )(p) = 0, then AXY = 0 along the fibre
π−1(π(p)).

The proof of Lemma 4.2 relies on the O’Neill equations. Corollary 2.3(b) simply gives

A∗
XAXV = −cg(X,X)V (4.1)

for every vertical vector field V , which implies (i). By Corollary 2.3(a), we get (ii).
Let p ∈ M and let {v1p, . . . , vrp} be an orthonormal basis in Vp. Let X ′ ∈ Tπ(p)B such

that g′(X ′,X ′) = ±1 and let X be the horizontal lift along the fibre π−1(π(p)) of X ′. Let
Y1, Y2, . . . , Yr be the horizontal lifts along the fibre π−1(π(p)) of

1
cg(X,X)

π∗AXv1p,
1

cg(X,X)
π∗AXv2p, . . . ,

1
cg(X,X)

π∗AXvrp,

respectively. For each i ∈ {1, . . . , r}, we consider the vector vi = AXYi defined along the
fibre π−1(π(p)). By Corollary 2.3(a), {v1, v2, . . . , vr} is an orthonormal basis of Vq at any
q ∈ π−1(π(p)) (see [3]), which can be restated as the following lemma.

Lemma 4.3 [3]. In the set-up of Lemma 4.2, the fibres are parallelizable.

Set L0 = X. For every integer α with 1 � α < n/(r + 1), let Lα be a horizontal vector field
along the fibre π−1(π(p)) such that

(1) Lα is the horizontal lift of some unit vector (that is, g(Lα, Lα) ∈ {−1, 1}), and
(2) Lα is orthogonal to L0, L1, . . . , Lα−1, and

Lα(p) ∈ ker A∗
L0(p) ∩ ker A∗

L1(p) ∩ · · · ∩ ker A∗
Lα−1(p). (4.2)

Condition (4.2) is nothing but the statement that Lα(p) is orthogonal to any vector in the
system {L0(p), AL0v1(p), . . . , AL0vr(p), . . . , Lα−1(p), ALα−1v1(p), . . . , ALα−1vr(p)}. Moreover,
by Lemma 4.2(b), Lα(q) belongs to kerA∗

L0(q)
∩ ker A∗

L1(q)
∩ · · · ∩ ker A∗

Lα−1(q)
for every q ∈

π−1(π(p)). In the set-up of Lemma 4.2, Proposition 2.2(c) implies that

B = {L0, AL0v1, . . . , AL0vr, . . . , Lk−1, ALk−1v1, . . . , ALk−1vr} (4.3)

is an orthonormal basis of Hq for any q ∈ π−1(π(p)) (see [3]). It is worth pointing out that any
element in B is basic along the fibre π−1(π(p)) by (4.2) and Proposition 2.2(a) (see [3]). Such
a basis B is said to be a special basis.

Counting the time-like vectors of B, we get the following proposition.

Proposition 4.4 [3]. In the set-up of Lemma 4.2, we have n = k(r + 1) for some positive
integer k and s = q1(r′ + 1) + q2(r − r′) for some non-negative integers q1, q2 with q1 + q2 = k.

The following corollary will be needed later.

Corollary 4.5 [3]. If s ∈ {0, n}, then r′ = r (that is, the metrics induced on fibres are
negative definite).

We now split the problem of identifying the geometry of B into two cases: (i) n = r + 1 (that
is, k = 1) and (ii) n �= r + 1 (that is, k > 1).
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4.2. Case n = r + 1

This case features a constant curvature base space.

Proposition 4.6. In the set-up of Theorem 1.1, n = r + 1 if and only if B has constant
curvature −4.

Proof. Let b ∈ B, X ′ ∈ TbB such that g′(X ′,X ′) = ±1 and p ∈ π−1(b). Let X ∈ Hp be the
horizontal lift of X ′.

Assuming n = r + 1, that is, dimHp = dimVp + 1, we see that AX : Vp → X⊥ = {Y ∈
Hp | g(X,Y ) = 0} is bijective, and thus, for every Y ∈ X⊥, we can write Y = AXV for some
vertical vector V . By (4.1), we get

g(AXY,AXY ) = g(AXAXV,AXAXV ) = g(X,X)2g(V, V ). (4.4)

On the other hand, by Corollary 2.3(b), we have

g(Y, Y ) = g(AXV,AXV ) = −g(X,X)g(V, V ). (4.5)

Combining equations (4.4) and (4.5), we simply get g(AXY,AXY ) = −g(X,X)g(Y, Y ) for every
Y ∈ X⊥, which implies that AXAXZ = g(X,X)Z − g(X,Z)X for any horizontal vector Z.
Now, by Corollary 2.3(a), we obtain

R′(X,Y,X, Y ) = −g(X,X)g(Y, Y ) + g(X,Y )2 + 3g(AXY,AXY )

= −4(g(X,X)g(Y, Y ) − g(X,Y )2), (4.6)

which means that B has constant curvature −4.
Conversely, if B has constant curvature −4, then, by (4.6), we get g(AXY,AXY ) =

−g(X,X)g(Y, Y ) for every Y ∈ X⊥, which implies AXAXY = g(X,X)Y for every Y ∈ X⊥.
Therefore, by (4.1), AX : V → X⊥ is bijective with its inverse given by (AX)−1(Y ) =
(1/(g(X,X)))AXY for Y ∈ X⊥. As a consequence, n − 1 = dimX⊥ = dimVp = r.

Theorem 4.7. In the set-up of Theorem 1.1, if n = r + 1 and 0 < s < n, then π falls into
one of the following cases:

(a) π : H3
1 → H2

1 (−4) = AH1,
(b) π : H7

3 → H4
2 (−4) = BH1,

(c) π : H15
7 → H8

4 (−4).

Proof. First, recall that B has constant curvature −4 by Proposition 4.6. Let X,
Y ∈ Hp such that g(X,X) = 1 and g(Y, Y ) = −1. Let B = {X,AXv1, . . . , AXvr}, B′ =
{Y,AY v′

1, . . . , AY v′
r} be two special bases of Hp. The index of B, the number of time-

like vectors, is r − r′, while the index of B′ is r′ + 1. Therefore, r = 2r′ + 1, s = r′ + 1 and
n = 2(r′ + 1). The pseudo-Riemannian submersion π is of the form π : H4r′+3

2r′+1 → B2r′+2
r′+1 .

By a theorem due to Reckziegel [40], the horizontal distribution H of a pseudo-Riemannian
submersion with totally geodesic fibres is an Ehresmann connection, and thus, by Ehres-
mann [13], π is a locally trivial fibration, which always comes with a long exact homotopy
sequence

· · · −→ π2(B) −→ π1(Fπ(p)) −→ π1(H4r′+3
2r′+1 ) −→ π1(B) −→ π0(Fπ(p)) → · · · . (4.7)

Now, we proceed in two cases: (i) r′ = 0 and (ii) r′ � 1.
Case r′ = 0. Since the fibres are connected, totally geodesic, one-dimensional submanifolds

(when r′ = 0), any fibre is the image of a space-like geodesic in H4r′+3
2r′+1 . Thus, the fibres are
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diffeomorphic to the real line (see [38, p. 113]) and π1(Fπ(p)) = 0. The long exact homotopy
sequence (4.7) gives π1(B) = π1(H3

1 ) = Z. Because B is of constant curvature −4, and, by
Proposition 4.1, is also complete, it simply follows that B is isometric to the pseudo-hyperbolic
space H2

1 (−4), and that corresponds to (a).
Case r′ � 1. By the long exact homotopy sequence (4.7), and by π1(H4r′+3

2r′+1 ) = π1(S2r′+1) =
0, we get π1(B) = 0. The manifold B is additionally complete and of constant curvature −4.
Therefore, B must be isometric to H2r′+2

r′+1 (−4). The case r′ = 1 corresponds to (b).
We now assume that r′ � 2. Since, for r′ � 2, π2(B) = π2(H2r′+2

r′+1 (−4)) = π2(Sr′+1 ×
R

r′+1) = 0 and π1(H4r′+3
2r′+1 ) = π1(S2r′+1 × R

2r′+2) = 0, the long exact homotopy sequence (4.7)
gives π1(Fπ(p)) = 0. On the other hand, since the fibres are totally geodesic in H4r′+3

2r′+1 , the
fibres are complete and of curvature −1. Therefore, the fibres must be isometric to H2r′+1

r′ .
By Lemma 4.3, the fibres are also parallelizable, and that restricts the choices of r′ � 2 to
r′ ∈ {3, 7}. The value r′ = 3 corresponds to the cases (c).

We now show that the case r′ = 7 is not possible, namely, we see that there is no
pseudo-Riemannian submersion π : H31

15 → H16
8 (−4) with connected totally geodesic fibres.

By Ranjan [39], the linear map U : Vp → Hom(Hp,Hp) given by U(V )(X) = AXV extends
to a Clifford representation U : Cl(Vp,−ĝ) → Hom(Hp,Hp), namely, U(v)U(w) + U(w)U(v) =
2g(v, w)Id for every v, w ∈ Vp, because of Corollary 2.3(b). This makes the sixteen-dimensional
space Hp a Cl(Vp)-module, which, as usual, decomposes into irreducible Cl(Vp)-modules. On
the other hand, the signature of the inner product −ĝ(v, w) = −g(v, w) of Vp is (7, 8), and
from the Classification Table of the Clifford algebras [32, p. 29], we see that Cl(Vp,−ĝ) =
Cl(7,8) = R(128) ⊕ R(128). In consequence, any irreducible Cl(Vp)-module is of dimension 128,
and thus the dimension of Hp is too small to allow a non-trivial Clifford representation
U : Cl(Vp) → Hom(Hp,Hp) as above.

The case s = 0 corresponds to a Riemannian base space which was completely classified
in [4], while the case s = n is of a Riemannian submersion from spheres (classified in
[15, 39]) when we apply a change of signs of the metrics of the total and of the base spaces.
By Corollary 4.5, the metrics induced on fibres are negative definite if s ∈ {0, n}.

Theorem 4.8 [4, 15, 39]. In the set-up of Theorem 1.1, we assume n = r + 1. Then the
following assertions are true.

(i) If s = 0, then π is one of the following:
(a) π : H3

1 → H2(−4),
(b) π : H7

3 → H4(−4),
(c) π : H15

7 → H8(−4).
(ii) If s = n, then π is one of the following:

(a′) π : H3
3 → H2

2 (−4),
(b′) π : H7

7 → H4
4 (−4),

(c′) π : H15
15 → H8

8 (−4).

4.3. Case n �= r + 1

We show that B is a complete, simply connected, special Osserman pseudo-Riemannian
manifold.

4.3.1. Special Osserman manifolds. Following [19], we recall the definitions of a Jacobi
operator and of a special Osserman pseudo-Riemannian manifold.
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Definition 4.9. Let (B, g′) be a pseudo-Riemannian manifold and let R′ be the Riemann
curvature tensor of (B, g′). For x ∈ TbB, we consider the linear map R′(·, x)x : TbB → TbB.
Since g′(R′(z, x)x, x) = 0, we have Im(R′(·, x)x) ⊂ x⊥, where x⊥ = {y ∈ TbB | g′(y, x) = 0}.
For x ∈ SbB = {x ∈ TbB | g′(x, x) = ±1}, the restriction R′

x : x⊥ → x⊥ of R′(·, x)x to x⊥ is
called the Jacobi operator with respect to x, that is, R′

x(z) = R′(z, x)x for z ∈ x⊥.

Definition 4.10. A pseudo-Riemannian manifold (B, g′) is called special Osserman if the
following two conditions are satisfied at each b ∈ B:

(I) For every x ∈ SbB, the Jacobi operator R′
x : x⊥ → x⊥ is diagonalizable with exactly

two distinct eigenvalues εxλ and εxμ, where εx = g′(x, x) and λ, μ ∈ R.
(II) Let Eλ(x) = span{x} ⊕ ker(R′

x − εxλId). For each x ∈ SbB, if z ∈ Eλ(x) ∩ SbB, then
Eλ(x) = Eλ(z), and moreover if y ∈ SbB ∩ ker(R′

x − εxμId), then x ∈ ker(R′
y − εyμId).

The values λ and μ involved in the previous definition are not interchangeable, for example, if
(B, g′, J) is the complex or the para-complex pseudo-hyperbolic space of real dimension 2n > 2,
then μ = λ/4 and ker(R′

x − εxλId) = span{Jx} is one-dimensional, while ker(R′
x − εxμId) =

{x, Jx}⊥ = {z | g′(z, x) = g′(z, Jx) = 0} is (2n − 2)-dimensional.

4.3.2. The base space is Special Osserman. For a pseudo-Riemannian submersion π :
(M, g) → (B, g′), we denote by R′

X′ the Jacobi operator of (B, g′) with respect to a vector
X ′ ∈ TbB and, for X,Y ∈ Hp, we also denote by R′

XY the horizontal lift of R′
π∗(X)(π∗Y ) and

we consider R′
X as an operator R′

X : X⊥ → X⊥, with X⊥ = {Y ∈ Hp | g(Y,X) = 0}.

Theorem 4.11. In the set-up of Theorem 1.1, if n �= r + 1, then B is special Osserman.

Proof. Let b ∈ B, X ′ ∈ SbB, Z ′ ∈ TbB and p ∈ π−1(b). Let X,Z ∈ Hp be the horizontal
lifts of X ′ and Z ′, respectively. By Corollary 2.3(a), R′

X is given by

R′
X(Z) = R′(Z,X)X = R(Z,X)X − 3AXAXZ = RXZ − 3AXAXZ. (4.8)

Let {v1, v2, . . . , vr} be an orthonormal basis in Vp, that is, g(vi, vj) = εiδi,j with εi ∈ {−1, 1}.
Let

B = {L0, AL0v1, . . . , AL0vr, . . . , Lk−1, ALk−1v1, . . . , ALk−1vr}
be a special basis of Hp, that is, an orthonormal basis B with L0 = X and ALα

Lβ = 0 for every
α, β ∈ {0, . . . , k − 1}. We show that R′

X : X⊥ → X⊥ is diagonalizable with respect to B and
R′

X has exactly two eigenvalues. By (4.8) and (4.1), we have

R′
X(AXvi) = RX(AXvi) − 3AXAXAXvi

= −g(X,X)AXvi − 3g(X,X)AXvi = −4εXAXvi, (4.9)

which gives R′
X′(π∗(AXvi)) = π∗(R′

X(AXvi)) = −4εX′π∗(AXvi). Since

0 = g(AXvj , ALα
vi) = −g(vj , AXALα

vi)

for every i, j and every α � 1, we get AXALα
vi = 0, which implies that

R′
X(ALα

vi) = RX(ALα
vi) − 3AXAXALα

vi = −g(X,X)ALα
vi = −εXALα

vi. (4.10)

Projecting (4.10) to the base, we have R′
X′(π∗(ALα

vi)) = −εX′π∗(ALα
vi). Since AXLα = 0 by

construction, we see that

R′
X(Lα) = RX(Lα) − 3AXAXLα = −g(X,X)Lα = −εXLα (4.11)



1326 GABRIEL BĂDIŢOIU

for every α � 1 and every i. Therefore, R′
X′(π∗(Lα)) = −εX′π∗(Lα). Summarizing, the Jacobi

operator R′
X′ is diagonalizable with the eigenvalues −4εX′ and −εX′ , and moreover their

eigenspaces are

ker(R′
X′ + 4εX′Id) = {π∗(AXv1), . . . , π∗(AXvr)} and, (4.12)

ker(R′
X′ + εX′Id) = {π∗(L1), π∗(AL1v1), . . . , π∗(AL1vr), . . . ,

π∗(Lk−1), π∗(ALk−1v1), . . . , π∗(ALk−1vr)}. (4.13)

Now, we check that Condition (II) of Definition 4.10 holds.

Lemma 4.12. If Y ′ ∈ E−4(X ′), g′(X ′,X ′) = ±1 and g′(Y ′, Y ′) = ±1, then X ′ ∈ E−4(Y ′).

Proof of Lemma 4.12. By (4.12),

E−4(X ′) = span{X ′} ⊕ ker(R′
X′ + 4εX′Id) = span{π∗X,π∗(AXv1), . . . , π∗(AXvr)},

and, thus, the horizontal lift Y of Y ′ satisfies

Y = aX + AXU (4.14)

for some a ∈ R and some vertical vector U . By (4.14),

g(AXU,AXU) = g(Y, Y ) − a2g(X,X). (4.15)

To prove X ′ ∈ E−4(Y ′), it is sufficient to show that X can be written as

X = bY + AY W (4.16)

for some b ∈ R and some vertical vector W . Applying AY to (4.16), we get AY X = bAY Y +
AY AY W = g(Y, Y )W , which gives W = −AXY/(g(Y, Y )). Similarly, applying AX to (4.14),
we obtain AXY = AXAXU = g(X,X)U . Substituting Y and W into (4.16), we obtain an
equation in b ∈ R

X = b(aX + AXU) − g(X,X)
g(Y, Y )

AaX+AXUU, which is equivalent to (4.17)

X = baX − g(X,X)
g(Y, Y )

AAXUU +
(

b − ag(X,X)
g(Y, Y )

)
AXU. (4.18)

By Corollary 2.3(b),

g(AXU,AZU) = −g(X,Z)g(U,U) (4.19)

for every horizontal vectors X,Z and for every vertical vector U . Since A is skew-symmetric
with respect to g and alternating, we have g(AXU,AZU) = −g(AZAXU,U) = g(AAXUZ,U) =
−g(Z,AAXUU), which, by (4.19), implies that AAXUU = g(U,U)X. Then

baX − g(X,X)
g(Y, Y )

AAXUU =
(

ba − g(X,X)g(U,U)
g(Y, Y )

)
X =

(
ba +

g(AXU,AXU)
g(Y, Y )

)
X

=
(

ba +
g(Y, Y ) − a2g(X,X)

g(Y, Y )

)
X = X − a

(
b − ag(X,X)

g(Y, Y )

)
X,

by (4.15). Therefore, (4.18) has the unique solution b = ag(X,X)/g(Y, Y ).

Lemma 4.13. If Y ′ ∈ ker(R′
X′ + εX′Id), g′(X ′,X ′) = ±1 and g′(Y ′, Y ′) = ±1, then X ′ ∈

ker(R′
Y ′ + εY ′Id).
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Proof of Lemma 4.13. Let X and Y be the horizontal lifts of X ′ and Y ′, respectively. The
Jacobi operator R′

X′ satisfies

R′
X′(Y ′) = π∗(RX(Y ) − 3AXAXY ) = −g′(X ′,X ′)Y ′ − 3π∗(AXAXY ) (4.20)

for any Y ′ ∈ X ′⊥. Therefore, Y ′ ∈ ker(R′
X′ + εX′Id) if and only if AXAXY = 0. Since, by

Lemma 4.2(a), AX : V → H is injective, AXY = 0, hence AY X = 0, which implies that
R′

Y ′(X ′) = π∗(−3AY AY X + RY (X)) = −g′(Y ′, Y ′)X ′ = −εY ′X ′.

These conclude that B is a special Osserman pseudo-Riemannian manifold.

In the next theorem, we identify the geometry of the base space and we find the dimension
and the index of the total space in terms of the geometry of the base space.

Theorem 4.14. Let π : Hn+r
s+r′ → Bn

s be a pseudo-Riemannian under the assumptions of
Theorem 1.1. If n �= r + 1, then π falls in one of the following cases:

(a) H2m+1
2t+1 → CHm

t ,
(b) H2m+1

m → AHm,
(c) H4m+3

4t+3 → HHm
t ,

(d) H4m+3
2m+1 → BHm,

(e) H23
7 → OH2,

(f) H23
15 → OH2

1 ,
(g) H23

23 → OH2
2 ,

(h) H23
q → O

′P 2,

for 0 � t � m and m � 2, and for some 8 � q � 15.

Proof. We first prove that B is simply connected. When s + r′ > 1, Hn+r
s+r′ is simply

connected and thus, by Proposition 4.1, B is also simply connected. If s + r′ = 1, then either
(i) s = 0 and r′ = 1, or (ii) s = 1 and r′ = 0.

In the case (i) s = 0 and r′ = 1, the base space is Riemannian, which, by Magid [33], must
be isometric to CHm, and thus B is simply connected.

In the case (ii) s = 1 and r′ = 0, B is Lorentzian Osserman at the point p, which by Garćıa-
Ŕıo, Kupeli and Vázquez-Lorenzo [19], must be of constant curvature at the point p. On the
other hand, B has constant curvature if and only if n = r + 1. This contradicts our working
assumption n �= r + 1. These conclude that B is simply connected.

By the classification theorem of simply connected, complete special Osserman pseudo-
Riemannian manifolds [10, 19], B is isometric to one of the following:

(a) a definite or indefinite complex space form of signature (2m − 2s, 2s), 0 � s � m;
(b) a definite or indefinite quaternionic space form of signature (4m − 4s, 4s), 0 � s � m;
(c) a para-complex space form of signature (m,m);
(d) a para-quaternionic space form of signature (2m, 2m);
(e) a Cayley plane of octonions with definite or indefinite metric, or a Cayley plane of

para-octonions with indefinite metric of signature (8, 8).

Any non-flat complete, simply connected, para-complex space form is isometric to the
symmetric space SL(m + 1, R)/(SL(m, R) × R) = APm (see [10, 11, 19]), and any non-flat
complete, simply connected, para-quaternionic space form is isometric to the symmetric space
Sp(m + 1, B)/(Sp(m, B)Sp(1, B)) = Sp(2m + 2, R)/(Sp(2m, R)SL(2, R)) = BPm (see [10, 12,
19, 20]).
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By the proof of Theorem 4.11, the values λ and μ of Definition 4.10 are negative, namely
λ = −4 and μ = −1. Then B must be isometric to one of the following spaces:

CHm
t , HHm

t , APm, BPm, OH2, OH2
1 , OH2

2 or O
′P 2, (4.21)

with m � 2 and 0 � t � m. By (4.12), we simply have dim ker(R′
X′ + 4εX′Id) = r, and in

particular the following conditions are satisfied.

(a) If B ∈ {CHm
t , APm}, then ker(R′

X′ + 4εX′Id) = span{IX ′}, where I is a complex or
para-complex structure. Thus, r = 1 and n + r = 2m + 1.

(b) If B ∈ {HHm
t , BPm}, then ker(R′

X′ + 4εX′Id) = span{IX ′, JX ′,KX ′}, with {I, J,K}
a local quaternionic or para-quaternionic structure. Therefore, r = 3 and n + r = 4m + 3.

(c) If B ∈ {OH2
i , O′P 2}0�i�2, then dim ker(R′

X′ + 4εX′Id) = 7. Thus, r = 7 and
n + r = 23.

Now, we find the index of the total space for the choices of B in (4.21).
Case 1: B ∈ {CHm

t , HHm
t , OH2

i }0�t�m, 0�i�2. In this case, the Riemann tensor satisfies

R′(X ′, Y ′,X ′, Y ′) � −(g(X ′,X ′)g(Y ′, Y ′) − g(X ′, Y ′)2) (4.22)

for any X ′, Y ′ vectors on B. Let {vi}i∈{1,...,r} be an orthonormal basis of Vp and let X be
the horizontal lift of a non-null vector X ′ ∈ Tπ(p)B. Taking Y ′ = π∗(AXvi), inequality (4.22)
becomes

R′(π∗X,π∗(AXvi), π∗X,π∗(AXvi)) � −g(X,X)g(AXvi, AXvi). (4.23)

On the other hand, by Corollary 2.3(a) and by (4.1),

R′(π∗X,π∗(AXvi), π∗X,π∗(AXvi)) = −4g(X,X)g(AXvi, AXvi).

Now, (4.23) implies 0 � 3g(X,X)g(AXvi, AXvi) = −g(X,X)2g(vi, vi) for any i. Thus, the
fibres are negative definite. Therefore, in Case 1, π should be in one of (a), (c), (e)–(g) of
Theorem 4.14. Note that, in Case 1, B is isotropic, which means that, for any b ∈ B and
any t ∈ R, the group of isometries of B preserving b acts transitively on {Z ∈ TbB | g′(Z,Z) =
t, Z �= 0} (see [47, p. 367]).

Case 2: B = APm. Since B = APm is a para-quaternionic space form of para-holomorphic
curvature λ = −4,

R′(X ′, Y ′,X ′, Y ′) � −(g(X ′,X ′)g(Y ′, Y ′) − g(X ′, Y ′)2). (4.24)

By a similar argument to Case 1, specializing (4.24) for a non-null vector X ′ and π∗(AXv1), we
get 0 � 3g(X,X)g(AXv1, AXv1) = −g(X,X)2g(v1, v1) and thus the fibres are positive definite
and π falls in (b).

Case 3: B = BPm. We shall show that the fibres have signature (2, 1). Note that (BPm, g′)
has a natural para-quaternionic Kähler structure and its curvature tensor satisfies the relation

R′(X ′, Y ′,X ′, Y ′) = −(g′(X ′,X ′)g′(Y ′, Y ′) − g′(X ′, Y ′)2

− 3g′(J1X
′, Y ′)2 − 3g′(J2X

′, Y ′)2 + 3g′(J3X
′, Y ′)2), (4.25)

where {J1, J2, J3} is a local para-quaternionic structure, a triple of (1, 1)-tensors satis-
fying J1J2 = −J2J1 = J3, J2

i = εiId, g′(JiX
′, Y ′) + g′(X ′, JiY

′) = 0 and ε1 = ε2 = −ε3 = 1.
Obviously, for any X ′, Y ′ such that g′(J3X

′, Y ′) = 0, we have

R′(X ′, Y ′,X ′, Y ′) � −(g′(X ′,X ′)g′(Y ′, Y ′) − g′(X ′, Y ′)2). (4.26)

Let X ′ ∈ TbBPm such that g′(X ′,X ′) = ±1 and let X be its horizontal lift at p ∈
π−1(b). Let J3X ∈ Hp be the horizontal lift of J3X

′. By (4.25), R′(X ′, J3X
′,X ′, J3X

′) =
−4g′(X ′,X ′)g′(J3X

′, J3X
′), and thus

g(AXJ3X,AXJ3X) = −g(X,X)g(J3X,J3X) = −g(X,X)2 = −1,



CLASSIFICATION OF PSEUDO-RIEMANNIAN SUBMERSIONS 1329

by Corollary 2.3(a). Let {v1, v2, v3} be an orthonormal basis of Vp such that v3 = AXJ3X. We
simply note that g(v3, v3) = −1. For i ∈ {1, 2}, taking Y ′ = π∗(AXvi) in (4.26), we get

R′(X ′, π∗(AXvi),X ′, π∗(AXvi)) � −g′(X ′,X ′)g′(π∗(AXvi), π∗(AXvi)). (4.27)

On the other hand, R′(X,AXvi,X,AXvi) = −4g(X,X)g(AXvi, AXvi). Thus, (4.27) becomes
0 � 3g(X,X)g(AXvi, AXvi) = −3g(X,X)2g(vi, vi) for i ∈ {1, 2}. Therefore, g(vi, vi) > 0 for
i ∈ {1, 2}.

To see that the cases (e)–(h) of Theorem 4.14 never occur, we first recall the notion of Clifford
structure.

4.3.3. Clifford structures. We adapt the definition of Clifford structure introduced by
Gilkey [21] and Gilkey, Swann and Vanhecke [23] to pseudo-Riemannian geometry.

Definition 4.15. Let (B, g′) be a pseudo-Riemannian manifold and let R′ be its curvature
tensor. The space (B, g′) has a Cliff(ν)-structure if at every point b there exist (1,1)-tensors
J1, J2, . . . , Jν such that

R′(x, y)z = λ0(g′(y, z)x − g′(x, z)y) +
1
3

ν∑
s=1

εs(λs − λ0)(g′(Jsy, z)Jsx

− g′(Jsx, z)Jsy − 2g′(Jsx, y)Jsz) (4.28)

for any x, y, z ∈ TbB, where λ0, λ1, . . . , λν : B → R, λs(b) �= λ0(b) for s � 1, and g′(Jsx, y) =
−g′(x, Jsy) and JsJt + JtJs = −2εsδs,tId, with εs = ±1.

The Jacobi operator at the point b of a manifold with a Cliff(ν)-structure is given by

R′
y(x) = λ0g

′(y, y)x +
ν∑

s=1

εs(λs − λ0)g′(x, Jsy)Jsy (4.29)

for any x ∈ y⊥. Moreover,

R′
y(Jsy) = λsg

′(y, y)Jsy for any s ∈ {1, . . . , ν} and (4.30)

R′
y(x) = λ0g

′(y, y)x for any x ∈ {y, J1y, . . . , Jry}⊥, (4.31)

and thus a pseudo-Riemannian manifold with a Cliff(ν)-structure is pointwise Osserman
(see [22]).

In the Riemannian set-up, Clifford structures turned out to be a very valuable tool for the
Osserman Conjecture. In [23], Gilkey, Swann and Vanhecke suggested a two-step approach:
(i) show that the pointwise Osserman condition implies the existence of a Clifford structure
with (4.30), (4.31) and (ii) find the manifolds having the curvature tensors of (i). Using this
approach, Nikolayevsky proved the Osserman conjecture in dimension n �= 16; see [35, 36]. In
dimension n = 16, the Cayley planes OH2, OP 2 do not admit Clifford structures [36, p. 510]
and the Osserman Conjecture remains open.

Since the curvature tensor formulae of the Cayley planes of octonions or of para-octonions
are similar to that of OP 2, in particular, the eigenspace of the Jacobi operator for λ = −4
satisfies

ker(R′
(a,b) + 4ε(a,b)Id) =

⎧⎪⎪⎨
⎪⎪⎩

{(
c,

1
|a|2 (bā)c

)
|Re (cā) = 0

}
, if |a|2 �= 0,{(

1
|b|2 (ab̄)d, d

)
|Re (db̄) = 0

}
, if |b|2 �= 0,

(4.32)
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for any (a, b) ∈ SbB (see [29]), one can easily see, by analogy to [36, p. 510], that
OH2

2 , OH2
1 , OH2, O

′P 2 do not admit Cliff(7)-structures. To exclude (e)–(h) of Theorem 4.14,
it is now sufficient to establish the following theorem.

Theorem 4.16. Let π : M → B be a pseudo-Riemannian submersion with connected,
totally geodesic fibres. If M has constant curvature c �= 0, then B has a Cliff(r)-structure.

Proof. Without loss of the generality, we may assume c = ±1. Let p ∈ M and b = π(p) ∈ B.
Let {v1, . . . , vr} be an orthonormal basis of Vp. For any 1 � s � r, let εs = cg(vs, vs) ∈ {−1, 1}
and let Js(X ′) = π∗(AXvs), where X ∈ TpM is the horizontal lift of X ′ ∈ TbB. For any vertical
vector v ∈ Vp, we define the linear map Av : Hp → Hp given by Av(x) = Axv for x ∈ Hp. Since
M has constant curvature c, by Ranjan’s paper [39] we have

AvAw + AwAv = −2cg(v, w)Id (4.33)

for any v, w vertical vectors. Thus, JsJt + JtJs = −2cg(vs, vt)Id = −2εsδs,tId. Also, by Ran-
jan’s paper [39] we have g(AvX,Y ) = −g(X,AvY ) for any X,Y ∈ Hp, which simply implies
g′(JsX

′, Y ′) = −g′(X ′, JsY
′) for every X ′, Y ′ ∈ TbB and every 1 � s � r.

Now, we show that the Jacobi operator of B satisfies (4.29). Let X ′, Y ′ ∈ TbB with
g′(Y ′, Y ′) = ±1, and g(X ′, Y ′) = 0. Let X and Y be the horizontal lifts of X ′ and Y ′,
respectively. Let

B = {L0, AL0v1, . . . , AL0vr, . . . , Lk−1, ALk−1v1, . . . , ALk−1vr}
be a special basis of Hp such that L0 = Y . We recall that B is orthonormal and that ALα

Lβ = 0
for every α, β ∈ {0, . . . , k − 1}, by construction. X can be written as

X = g(X,Y )Y +
∑
α

g(X,Lα)
g(Lα, Lα)

Lα

+
∑

i

g(X,AY vi)
cg(Y, Y )g(vi, vi)

AY vi +
∑
i,α

g(X,ALα
vi)

cg(Lα, Lα)g(vi, vi)
ALα

vi. (4.34)

Since B is orthonormal, AY ALα
vi = 0 by the proof of Theorem 4.11. Applying AY AY to (4.34),

we get

AY AY X =
∑

i

g(X,AY vi)
cg(Y, Y )g(vi, vi)

AY AY AY vi

= −c
∑

i

εig(X,AY vi)AY vi = −
∑

i

εicg(X,JiY )JiY .

Then

R′
Y ′(X ′) = π∗(RY X − 3AY AY X) = cg′(Y ′, Y ′)X ′ + 3c

∑
i

εig
′(X ′, JiY

′)JiY
′. (4.35)

Polarizing (4.35), we get

R′(X ′, Y ′)Z ′ = c(g′(Y ′, Z ′)X ′ − g′(X ′, Z ′)Y ′)

+ c

r∑
i=1

εi(g′(JiY
′, Z ′)JiX

′ − g′(JiX
′, Z ′)JiY

′ − 2g′(JiX
′, Y ′)JiZ

′).

Corollary 4.17. There are no pseudo-Riemannian submersions π : H23
t → B with

connected, totally geodesic fibres from a 23-dimensional pseudo-hyperbolic space H23
t onto

any of the Cayley pseudo-hyperbolic planes of octonions OH2
2 , OH2

1 , OH2 or onto the Cayley
projective plane of para-octonions O

′P 2.
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Remark 4.18. Ranjan [39] proved that there are no Riemannian submersions π : S23 →
OP 2 with connected, totally geodesic fibres (that is, (g) of Theorem 4.14). For a topological
proof of this fact we refer the reader to [42].

5. The theorem of uniqueness

To prove Theorem 1.1, we need the following Theorem of Uniqueness.

Theorem 5.1. Let π1, π2 : Ha
l → B be two pseudo-Riemannian submersions with

connected, totally geodesic fibres from a pseudo-hyperbolic space onto a pseudo-Riemannian
manifold. Then there exists an isometry f : Ha

l → Ha
l such that π2 ◦ f = π1. In particular, π1

and π2 are equivalent.

Proof. The main ideas of the proof are: (1) for a given basepoint b construct special bases B1

and B2 for the fibres F 1
b and F 2

b , respectively, such that B1 and B2 have the same projections to
the base B and (2) show that the unique isometry sending B1 into B2 preserves the integrability
tensors everywhere and sends fibres into fibres.

Let b ∈ B and p, q ∈ Ha
l such that π1(p) = π2(q) = b. We denote by V1 and V2 the vertical

distributions of π1 and π2, and by H1 and H2 the horizontal distributions of π1 and π2,
respectively.

Let {v1p, . . . , vrp} be an orthonormal basis of V1
p and let X ′ ∈ TbB such that g′(X ′,X ′) =

±1. We denote by X1 and X2 the π1- and π2-horizontal lifts of X ′ along the fibres
F 1

b = π−1
1 (b) and F 2

b = π−1
2 (b), respectively. Let (Y 1

1 , Y 1
2 , . . . , Y 1

r ) and (Y 2
1 , Y 2

2 , . . . , Y 2
r ) be the

π1- and π2-horizontal lifts of(
1

−g(X1,X1)
π1∗AX1v1p,

1
−g(X1,X1)

π1∗AX1v2p, . . . ,
1

−g(X1,X1)
π1∗AX1vrp

)
,

along F 1
b and F 2

b , respectively. For each i ∈ {1, . . . , r}, we consider the vectors vi = A1
X1Y 1

i ,
defined along F 1

b , and wi = A2
X2Y 2

i along F 2
b . By § 4, {v1, . . . , vr} is a global orthonormal

basis of vector fields on F 1
b , and we claim that so is {w1, . . . , wr}. Indeed, by Corollary 2.3(a),

we see that

g(wi, wj) = g(A2
X2Y 2

i , A2
X2Y 2

j )

= (1
3 )(R′(π2∗X2, π2∗Y 2

j , π2∗X2, π2∗Y 2
j ) − g(X2,X2)g(Y 2, Y 2) + g(X2, Y 2)2)

= (1
3 )(R′(π1∗X1, π1∗Y 1

j , π1∗X1, π1∗Y 1
j ) − g(X1,X1)g(Y 1, Y 1) + g(X1, Y 1)2)

= g(A1
X1Y 1

i , A1
X1Y 1

j ) = g(vi, vj) = εiδij

along F 2
b . Let B1 = {L1

0, A
1
L1

0
v1, . . . , A

1
L1

0
vr, . . . , L

1
k−1, A

1
L1

k−1
v1, . . . , A

1
L1

k−1
vr} be a special basis

of H1 along F 1
b such that L1

0 = X1 (and A1
L1

α
L1

β = 0). Let L2
1, . . . , L

2
k−1 be the π2-horizontal

lifts of π1∗L1
1, . . . , π1∗L1

k−1 along F 2
b . We take L2

0 = X2. Let

B2 = {L2
0, A

2
L2

0
w1, . . . , A

2
L2

0
wr, . . . , L

2
k−1, A

2
L2

k−1
w1, . . . , A

2
L2

k−1
wr}.

Lemma 5.2. (i) The vector field A2
X2wi is basic along F 2

b and π1∗A1
X1vi = π2∗A2

X2wi for
every i.

(ii) We have A2
X2L2

α = 0 and A2
L2

α
L2

β = 0 for every α and β.

(iii) The basis B2 is a special basis of H2 along F 2
b and π1∗A1

L1
α
vi = π2∗A2

L2
α
wi for every i

and α.
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Proof. Let Z ′ ∈ TbB, and let Z1 and Z2 be the π1- and π2-horizontal lifts of Z ′ along F 1
b

and F 2
b , respectively. By Corollary 2.3(a), we get

g(A2
X2wi, Z

2) = −g(A2
X2Y 2

i , A2
X2Z2) = (1

3 )(R(X2, Y 2
i ,X2, Z2) − R′(X2, Y 2

i ,X2, Z2))

= (1
3 )(R(X1, Y 1

i ,X1, Z1) − R′(X1, Y 1
i ,X1, Z1)) = −g(A1

X1Y 1
i , A1

X1Z2)

= g(A1
X1vi, Z

1),

which simply implies (i). By (i), we see that

g(A2
X2L2

α, wi) = −g(L2
α, A2

X2wi) = −g′(π2∗L2
α, π2∗A2

X2wi)

= −g′(π1∗L1
α, π1∗A1

X1vi) = g(A1
X1L1

α, vi) = 0, (5.1)

for every i and α. Thus, A2
X2L2

α = 0. Therefore, by Proposition 2.2(a), we obtain that

2g(A2
L2

α
L2

β , wi) = 2g(A2
L2

α
L2

β , A2
X2Y 2

i ) = R′(L2
α, L2

β ,X2, Y 2
i )

− R(L2
α, L2

β ,X2, Y 2
i ) + g(A2

L2
β
X2, A2

L2
α
Y 2

i ) − g(A2
L2

α
X2, A2

L2
β
Y 2

i )

= R′(L1
α, L1

β ,X1, Y 1
i ) − R(L1

α, L1
β ,X1, Y 1

i ) = 2g(A1
L1

α
L1

β , vi) = 0,

for every i. Thus, A2
L2

α
L2

β = 0 and hence B2 is a special basis of H2.
By Proposition 2.2(c), A2

L2
α
wi is basic along F 2

b (for details see [3, Lemma 3.4]), and by an
argument similar to [3, Lemma 3.4] one can see that π1∗A1

L1
α
vi = π2∗A2

L2
α
wi.

Since B1 and B2 are special bases, they are orthonormal, by § 4. Let F : TpH
a
l → TqH

a
l be

the linear isometry given by F (vi) = wi, F (A1
L1

α
vi) = A2

L2
α
wi, F (L1

α) = L2
α for any 1 � i � r,

0 � α � k − 1. Since Ha
l is a frame-homogeneous space, there exists an isometry f : Ha

l → Ha
l

such that f(p) = q and f∗p = F (see [38, 47]). It remains to prove that π2 ◦ f = π1.
We say that the condition (
) is satisfied at x ∈ Ha

l if

(
) π2(f(x)) = π1(x), f∗x(H1
x) = H2

f(x), f∗(A1
EF ) = A2

f∗Ef∗F for any E,F ∈ TxHa
l .

We will proceed in four steps.
Step 1. (
) holds at p.
Step 2. (
) holds at every z ∈ F 1

b .
Step 3. If γ̃ : [0, 1] → Ha

l is a π1−horizontal geodesic with γ̃(0) ∈ F 1
b , then (
) holds at any

point γ̃(t), where t ∈ [0, 1].
Step 4. π2(f(x)) = π1(x) for any x ∈ Ha

l .

Proof of Step 1. From the definition of F , we simply have π2(f(p)) = π1(p) and

f∗p(H1
p) = H2

f(p). (5.2)

We recall that the vectors of B1 are basic along F 1
b . Since

A1
A1

L1
α

vi
A1

L1
β
vj = g(L1

α, L1
β)∇̂1

vi
vj (5.3)

along F 1
b (see [3]) and since A1 is alternating, we see that ∇̂1

vi
vj = (1

2 )[vi, vj ]. Similar relations
hold for π2, and, at p, we simply have f∗[vi, vj ] = [f∗vi, f∗vj ] = [wi, wj ]. Therefore,

f∗(A1
A1

L1
α

vi
A1

L1
β
vj) = A2

f∗(A1
L1

α
vi)

f∗(A1
L1

β
vj). (5.4)

By the definition of f and (5.4), we get f∗p(A1
EF ) = A2

f∗pEf∗pF for any E,F ∈ TpH
a
l .

Proof of Step 2. The following lemma shall be needed right away.
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Lemma 5.3 [38, p. 105]. Let N1, N2 be two complete, connected, totally geodesic pseudo-
Riemannian submanifolds of a pseudo-Riemannian manifold M . If p ∈ N1 ∩ N2 and TpN1 =
TpN2, then N1 = N2.

Since f(F 1
b ), F 2

b are totally geodesic in a complete manifold, they are complete. By the
definition of f , f(p) = q, f(p) ∈ f(F 1

b ) ∩ F 2
b . By (5.2), Tf(p)(f(F 1

b )) = Tf(p)F
2
b , which, by

Lemma 5.3, implies that f(F 1
b ) = F 2

b . It follows that (π ◦ f)(z) = π2(z) for every z ∈ F 1
b and

that Tf(z)f(F 1
b ) = Tf(z)F

2
b for every z ∈ F 1

b . Hence, f∗z(H1
z) = H2

f(z) for every z ∈ F 1
b . Since

f∗p = (π2∗q|H2)−1 ◦ (π1∗p|H1) and since every vector of B1 and B2 is basic along F 1
b and F 2

b ,
respectively, f∗z(A1

EF ) = A2
f∗zEf∗zF for every E,F ∈ TzH

a
l and every z ∈ F 1

b .

Proof of Step 3. Let γ : [0, 1] → B be a geodesic in B starting from b = γ(0). Let c = γ(1).
For any z ∈ F 1

b , w ∈ F 2
b we denote by γ1

z : [0, 1] → Ha
l and γ2

w : [0, 1] → Ha
l the π1- and π2-

horizontal lifts of γ starting from z = γ1
z (0) and from w = γ1

w(0), respectively. Note that the
global existence of the horizontal lifts is ensured by the Ehresmann-completeness of H. Let
τ1
γ : F 1

b → F 1
c and τ2

γ : F 2
b → F 2

c be the holonomy diffeomeorphisms of γ given by τ1
γ (z) = γ1

z (1)
and τ2

γ (w) = γ2
w(1), respectively (see [8, 27]). A nice fact to point out is that τ1

γ and τ2
γ are

isometries since the fibres are totally geodesic [8, 30]. Now, we prove that f ◦ τ1
γ (z) = τ2

γ ◦ f(z)
for any z ∈ F 1

b .
The geodesic f ◦ γ1

z is π2-horizontal if its initial velocity is (cf. [8, 15]). We see that
d

dt
(f ◦ γ1

z )
∣∣∣∣
t=0

= f∗z(γ̇1
z (0)) ∈ f∗z(H1

z) = H2
f(z). (5.5)

Thus, γ2
f(z) = f ◦ γ1

z for any z ∈ F 1
b , which can be reinterpreted as f ◦ τ1

γ (z) = τ2
γ ◦ f(z).

Therefore, f(F 1
c ) = F 2

c , hence f∗z(H1
z) = H2

f(z) and π2 ◦ f(z) = π1(z) for any z ∈ F 1
c .

We now check that f preserves the O’Neill integrability tensors. Let X ′(t), Y ′
1(t), . . . , Y ′

r (t),
L′

1(t), . . . , L
′
k−1(t) be the parallel transports along γ of π1∗X1, π1∗Y 1

1 , . . . , π1∗Y 1
r ,

π1∗L1
1, . . . , π1∗L1

k−1. Let (X1(t), Y 1
1 (t), . . . , Y 1

r (t), L1
1(t), . . . , L

1
k−1(t)) and (X2(t), Y 2

1 (t), . . . ,
Y 2

r (t), L2
1(t), . . . , L

2
k−1(t)) be the π1- and π2-horizontal lifts of

(X ′(t), Y ′
1(t), . . . , Y ′

r (t), L′
1(t), . . . , L

′
k−1(t))

along F 1
γ(t) and F 2

γ(t), respectively. Set vi(t) = A1
X1(t)Y

1
i (t) and wi(t) = A2

X2(t)Y
2
i (t). Fixing

z ∈ F 1
b , we simply define γ1 = γ1

z . We need to establish the following technical lemma.

Lemma 5.4. (i) We have v1(∇γ̇1(t)A
1
X1(t)Y

1
i (t)) = 0 and v1(∇γ̇1(t)A

1
L1

α(t)L
1
β(t)) = 0 for any

i, α, β.

(ii) The basis {v1(t), . . . , vr(t)} is an orthonormal basis of vector fields on the fibre F 1
γ(t).

(iii) We have h1(∇γ̇1(t)A
1
L1

α(t)vi(t)) = 0.

(iv) The vector field π1∗(A1
L1

α(t)vi(t)) is the parallel transport of π1∗(A1
L1

α
vi).

(v) The basis B1(t) = {L1
0(t), A

1
L1

0(t)
v1(t) . . . , A1

L1
0(t)

vr(t), . . . L1
k−1(t), A

1
L1

k−1(t)
v1(t) . . . ,

A1
L1

k−1(t)
vr(t)} is an orthonormal basis of H1

γ1(t), and moreover A1
L1

α(t)L
1
β(t) = 0 for

any α and β.

Proof of Lemma 5.4. (i) Since Ha
l has constant curvature, by Proposition 2.2(b), we get

0 = R(X1(t), Y 1
i (t), γ̇1, U) = g((∇γ̇1A1)X1(t)Y

1
i (t), U)

= g(∇γ̇1A1
X1(t)Y

1
i (t), U) − g(A1

∇γ̇1X1(t)Y
1
i (t), U) − g(A1

X1(t)∇γ̇1Y 1
i (t), U)

= g(∇γ̇1AX1(t)Y
1
i (t), U).

Therefore, v1(∇γ̇1(t)A
1
X1(t)Y

1
i (t)) = 0. Similarly, we get v1(∇γ̇1(t)A

1
L1

α(t)L
1
β(t)) = 0.
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(ii) We simply have

γ̇1(t)g(vi(t), vj(t)) = g(v1∇γ̇1(t)vi, vj) + g(vi, v
1∇γ̇1(t)vj) = 0, (5.6)

which implies that g(vi(t), vj(t)) is constant along γ1(t) and thus {vi(t)}1�i�r is an orthonormal
basis.

(iii) Using the fact that (∇E1A)E2 is skew-symmetric with respect to g (see [8]), and that
the total space has constant curvature, by Proposition 2.2(b), we have

0 = R(L1
α(t), Z, γ̇1, vi(t)) = g((∇γ̇1A1)L1

α(t)Z, vi(t)) = −g(Z, (∇γ̇1A1)L1
α(t)vi(t))

= −g(Z,∇γ̇1A1
L1

α(t)vi(t)) + g(Z,A1
∇γ̇1L1

α(t)vi(t)) + g(Z,A1
L1

α(t)v
1∇γ̇1vi(t))

= −g(Z,∇γ̇1A1
L1

α(t)vi(t)),

which implies (iii).
(iv) By (iii), we simply have ∇′

γ̇(t)π1∗(A1
L1

α(t)vi(t)) = 0.
(v) By (iv), we have that B1(t) is an orthonormal basis of H1

γ1(t). By (i), we get

γ̇1(t)g(A1
L1

α(t)L
1
β(t), vi(t)) = g(v1∇γ̇1(t)A

1
L1

α(t)L
1
β(t), vi) + g(A1

L1
α(t)L

1
β(t), v1∇γ̇1(t)vi) = 0,

which implies that g(A1
L1

α(t)L
1
β(t), vi(t)) = g(A1

L1
α(0)L

1
β(0), vi(0)) = 0 for any i. Therefore,

A1
L1

α(t)L
1
β(t) = 0.

Similar results hold for π2. In particular, π2∗(A2
L2

α(t)wi(t)) is the parallel transport of
π2∗(A2

L2
α
wi). From Step 2, π1∗(A1

L1
α
vi) = π2∗(A2

L2
α
wi), and therefore their parallel transports

must be equal to each other:

π1∗z(A1
L1

α(t)vi(t)) = π2∗f(z)(A2
L2

α(t)wi(t)), (5.7)

and that can be rewritten as f∗z(A1
L1

α(t)vi(t)) = A2
L2

α(t)wi(t). Using an argument similar to
Step 2 for the special bases B1(t) and B2(t), we simply get f∗z(A1

EF ) = A2
f∗Ef∗F for any

E,F ∈ B1(t).

Proof of Step 4. Let x be an arbitrary point in Ha
l . Since Ha

l is connected, there exists
a broken geodesic γ(t) in B connecting b and π1(x) (see [38, p. 72]). Applying successively
Step 3 to each smooth piece of the broken geodesic, we see that (
) is satisfied at every point
z ∈ Fγ(t) for every t; in particular, (
) holds at x.

Remark 5.5. A very important result due to Escobales is the criterion of equivalence of
two Riemannian submersions, which states that if π1, π2 : M → B are Riemannian submersions
with connected totally geodesic fibres from a connected complete Riemannian manifold onto a
Riemannian manifold, and if, for some isometry f : M → M , the condition (
) holds at a given
point p ∈ M , then there exists an isometry f̃ : B → B such that π2 ◦ f = f̃ ◦ π1. Although
the proof of Lemma 5.4(i) invokes R(X,Y,Z, U) = 0, a usual hypothesis in the geometry of
transversally symmetric (pseudo-)Riemannian foliations (see [43]), the proof of Theorem 5.1
relies on the construction of a special basis, which is specific to a pseudo-Riemannian submer-
sion with totally geodesic fibres of a non-flat real space form. In Theorems 6.1 and 6.2, we shall
see that Theorem 5.1 can be adapted to the case of pseudo-Riemannian submersions with (para-
)complex, connected, totally geodesic fibres from a (para-)complex pseudo-hyperbolic space.

6. Applications of the main theorem

We summarize the results proved in the previous sections.
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Proof of Theorem 1.1. By Theorems 4.7, 4.8, 4.14 and Corollary 4.17, B is isometric
to one of the following spaces: H8

4 (−4),H8(−4),H8
8 (−4), CHm

t , APm, HHm
t , BPm, denoted

simply by B′. There exists an isometry f̃ : B → B′. Let π′ : M ′ → B′ be the Hopf pseudo-
Riemannian submersion with the base space B′ and with M ′ a pseudo-hyperbolic space. Also,
by Theorems 4.7, 4.8, 4.14, we see that a = dim(M ′), l = index(M ′), and thus M ′ = Ha

l . By
Theorem 5.1, π′ : Ha

l → B′ is equivalent to f̃ ◦ π : Ha
l → B′, namely, there exists an isometry

f : Ha
l → Ha

l such that π ◦ f = f̃ ◦ π. Therefore, π and π′ are equivalent.

As a consequence of Theorem 1.1, we now obtain classification results for pseudo-Riemannian
submersions with totally geodesic fibres from (a) CHm

t , (b) HHm
t , (c) APm, (d) BPm. First,

we define the following Hopf pseudo-Riemannian submersions with totally geodesic fibres:

(a) πC,H : CH2m+1
2t+1 = H4m+3

4t+3 /H1
1 → HHm

t = H4m+3
4t+3 /H3

3 , given by πC,H([zH1
1 ]) = [zH3

3 ];
(b) πC,B : CH2m+1

m = H4m+3
2m+1/H1

1 → BPm = H4m+3
2m+1/H3

1 , given by πC,B([zH1
1 ]) = [zH3

1 ];
(c) πA,B : AP 2m+1 = H4m+3

2m+1/H1 → BPm = H4m+3
2m+1/H3

1 , given by πA,B([zH1]) = [zH3
1 ].

The fibres of πC,H, πC,B, πA,B are isometric to CH1
1 , CH1, AP 1, respectively.

Theorem 6.1. If π : CHa
b → B is a pseudo-Riemannian submersion with connected, totally

geodesic fibres from a complex pseudo-hyperbolic space onto a pseudo-Riemannian manifold
and if the fibres are complex submanifolds, then π is equivalent to one of the following Hopf
pseudo-Riemannian submersions:

(a) πC,H : CH2m+1
2t+1 −→ HHm

t (b) πC,B : CH2m+1
m −→ BPm.

Proof. Let θ : H2a+1
2b+1 → CHa

b be the Hopf pseudo-Riemannian submersion over CHa
b . Now,

π and θ are pseudo-Riemannian submersions with totally geodesic fibres, and by Escobales
[16, Theorem 2.5] so is π ◦ θ, to which we can apply Theorem 1.1. By our usual assumption
dim CHa

b > dim B, we see that the dimension of the fibres of π ◦ θ is greater than 1. Therefore,
π ◦ θ is equivalent to the Hopf pseudo-Riemannian submersions (c)–(g) of Theorem 1.1, which
implies that π must be of the following forms:

(i) CH2m+1
2t+1 → HHm

t ,
(ii) CH2m+1

m → BPm,
(iii) CH7

3 → H8(−4),
(iv) CH7

3 → H8
4 (−4),

(v) CH7
7 → H8

8 (−4).

By Nagy [34, Proposition 4.2], the dimension of the fibres must be 2; thus (iii)–(v) are not
possible. We refer the reader to [39] for a different proof of the non-existence of (v), and to [4]
for that of (iii). Let π1, π2 : CH2m+1

2t+1 → HHm
s be two pseudo-Riemannian submersions with

totally geodesic fibres. By Theorem 5.1, π1 ◦ θ and π2 ◦ θ are equivalent, and, by the proof
of Theorem 5.1, there exists an isometry f : H4m+3

4t+3 → H4m+3
4t+3 depending on the choice of an

orthonormal basis {v1p, v2p, v3p} of V1
p = Ker(π1 ◦ θ), p ∈ H4m+3

4s+3 , such that

π2 ◦ θ ◦ f = π1 ◦ θ. (6.1)

If we choose this orthonormal basis such that v3p is θ-vertical, then, by a similar argument to
the proof of Theorem 5.1, we see that f sends any θ-fibre into a θ-fibre, and thus there exists
an isometry f̃ : CH2m+1

2s+1 → CH2m+1
2s+1 such f̃ ◦ θ = θ ◦ f . By (6.1), we get π2 ◦ f = π1.

A similar argument can be used to show the equivalence of two pseudo-Riemannian
submersions π1, π2 : CH2m+1

m → BPm.
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Theorem 6.2. If π : AP a → B is a pseudo-Riemannian submersion with connected, totally
geodesic fibres from a para-complex projective space onto a pseudo-Riemannian manifold and if
the fibres are para-complex submanifolds, then π is equivalent to the Hopf pseudo-Riemannian
submersions:

πA,B : AP 2m+1 −→ BPm.

Proof. Let πA : H2a+1
a → AP a be the Hopf pseudo-Riemannian submersion over AP a.

One can show by an analogous argument to [34, Proposition 4.2] that in the para-case, the
fibres are also of dimension 2. Applying Theorem 1.1 to π ◦ πA, we obtain that π should be
of the form

(i) AP 2m+1 −→ BPm or (ii) AP 4m+3 −→ HH2m+1
m .

Since the signatures of HH2m+1
m and AP 4m+3 are (4m + 4, 4m) and (4m + 3, 4m + 3),

respectively, (ii) is not possible. The uniqueness of (i) follows analogously to the proof of
Theorem 6.1.

Remark 6.3. The two twistor spaces π : (Zε, g) → BPm, ε = ±1 (see [1]) of the para-
quaternionic Kähler manifold BPn are equivalent to the Hopf pseudo-Riemannian submersions
πC,B : CH2m+1

m → BPm (when ε = −1) and πA,B : AP 2m+1 → BPm (when ε = 1). Here g is the
canonical Kähler–Einstein (when ε = −1) or para-Kähler–Einstein (when ε = 1) metric of Zε

(see [1]). By Alekseevsky and Cortés [1, Theorem 3], there are two Einstein metrics in the
canonical variation on Zε and only one of them is ε- Kähler–Einstein. Another nice fact is
that the twistor space π : Z → HHm

t of the quaternionic Kähler manifold HHm
t is equivalent

to πC,H : CH2m+1
2t+1 → HHm

t .

Corollary 6.4. (i) There are no pseudo-Riemannian submersions π : HHm
t → B with

connected quaternionic fibres.

(ii) There are no pseudo-Riemannian submersions π : BPm → B with connected para-
quaternionic fibres.

Proof. First, we recall that any (para-)quaternionic submanifold of a (para-) quaternionic
manifold is totally geodesic [2].

(i) To obtain a contradiction, suppose that such a submersion π exists. Let πH : H4m+3
4t+3 →

HHm
t be the Hopf pseudo-Riemannian submersion over HHm

t . By Theorem 1.1, π ◦ πH is
equivalent to one of the following: H15

7 → H8(−4), H15
7 → H8

4 (−4) or H15
15 → H8

8 (−4), thus π
must be of the form

(a) HH3
1 −→ H8(−4), (b) HH3

1 −→ H8
4 (−4) or (c) HH3

3 −→ H8
8 (−4). (6.2)

We conclude that the fibres are four-dimensional and that π ◦ πC,H : CH7
2t+1 → H8

s (−4), (t, s) ∈
{(1, 0), (1, 4), (3, 8)} are pseudo-Riemannian submersions with complex, totally geodesic, six-
dimensional fibres, which contradicts Theorem 6.1.

The proof of (ii) is analogous to (i).

Remark 6.5. The Ucci topological proof [44] of the non-existence of (6.2(c)) cannot be
extended to (6.2(a)) and (6.2(b)), because HH3

1 , H8(−4), H8
4 (−4) have the homotopy types

of S4, a point and S4, respectively.
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Remark 6.6. Unlike the Riemannian submersions from spheres, the pseudo-Riemannian
ones from pseudo-hyperbolic spaces feature less rigidity when we drop the condition of totally
geodesic fibres. Particularly, while any Riemannian submersion from a sphere is equivalent to
a Hopf one [46], this is no longer true for the pseudo-Riemannian submersions from pseudo-
hyperbolic spaces. Indeed (cf. [6]) any pseudo-hyperbolic space Ha

l can simply be written as a
warped product Ha

l = (Ha−l ×f Sl, gHa
l
), via the identification φ : Ha−l × Sl → Ha

l , given by
φ((x0, x), u) = (x0u, x) for every u ∈ Sl, (x0, x) ∈ Ha−l, x0 ∈ R+, x ∈ R

a−l. Here f : Ha−l →
R+ is given by f(x0, (x1, . . . , xa−l)) = x0, and the metric of the warped product is gHa−l −
f2gSl . Now the projection

π : Ha
l = Ha−l ×f Sl −→ Ha−l

is a pseudo-Riemannian submersion (with totally umbilical fibres [8]), which is not equivalent
to a Hopf one, except possibly when (a, l) ∈ {(3, 1), (7, 3), (15, 7)}. The classification problem
of pseudo-Riemannian submersions from pseudo-hyperbolic spaces remains open.
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Basel, 2009). MR 2500106 (2010h:53035).

28. F. R. Harvey, Spinors and calibrations, Perspectives in Mathematics 9 (Academic Press, Boston, MA,
1990). MR 1045637 (91e:53056)

29. R. Held, I. Stavrov and B. VanKoten, ‘(Semi-)Riemannian geometry of (para-)octonionic projective
planes’, Differential Geom. Appl. 27 (2009) 464–481. MR 2547826 (2011e:53068).

30. R. Hermann, ‘A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle’, Proc.
Amer. Math. Soc. 11 (1960) 236–242. MR 0112151 (22 #3006)

31. J. J. Konderak, ‘Construction of harmonic maps between pseudo-Riemannian spheres and hyperbolic
spaces’, Proc. Amer. Math. Soc. 109 (1990) 469–476. MR 993755 (90i:58032)

32. H. B. Lawson, Jr. and M.-L. Michelsohn, Spin geometry, Princeton Mathematical Series 38 (Princeton
University Press, Princeton, NJ, 1989). MR 1031992 (91g:53001)

33. M. A. Magid, ‘Submersions from anti-de Sitter space with totally geodesic fibers’, J. Differential Geom.
16 (1981) 323–331. MR 638796 (83i:53085)

34. P.-A. Nagy, Pseudo-Riemannian submersions from pseudo-hyperbolic space forms, Preprint, 2002,
http://www2.unine.ch/webdav/site/math/shared/documents/articles/nagy24-04-02.pdf.

35. Y. Nikolayevsky, ‘Osserman manifolds of dimension 8’, Manuscripta Math. 115 (2004) 31–53. MR 2092775
(2005m:53049)

36. Y. Nikolayevsky, ‘Osserman conjecture in dimension n �= 8, 16’, Math. Ann. 331 (2005) 505–522; Preprint,
2002, arXiv:0204258v2. MR 2122538 (2005k:53038)

37. B. O’Neill, ‘The fundamental equations of a submersion’, Michigan Math. J. 13 (1966) 459–469. MR
0200865 (34 #751)

38. B. O’Neill, Semi-Riemannian geometry, Pure and Applied Mathematics 103 (Academic Press [Harcourt
Brace Jovanovich Publishers], New York, 1983), With applications to relativity. MR 719023 (85f:53002)

39. A. Ranjan, ‘Riemannian submersions of spheres with totally geodesic fibres’, Osaka J. Math. 22 (1985)
243–260. MR 800969 (87a:53078)

40. H. Reckziegel, ‘A fiber bundle theorem’, Manuscripta Math. 76 (1992) 105–110. MR 1171158 (93g:53050)
41. R. T. Smith, ‘Harmonic mappings of spheres’, Amer. J. Math. 97 (1975) 364–385. MR 0391127 (52 #11949)
42. Z. Tang, ‘Nonexistence of a submersion from the 23-sphere to the Cayley projective plane’, Bull. London

Math. Soc. 33 (2001) 347–350. MR 1817774 (2002a:57036)
43. P. Tondeur, Geometry of foliations, Monographs in Mathematics 90 (Birkhäuser, Basel, 1997). MR
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