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SEMI-RIEMANNIAN SUBMERSIONS
WITH TOTALLY UMBILIC FIBRES

GABRIEL BĂDIŢOIU - STERE IANUŞ

We get obstructions to existence of semi-Riemannian submersions with totally
umbilic fibres.

Introduction.

The theory of Riemannian submersions was initiated by O’Neill [13] and
Gray [8]. Presently, there is an extensive literature on Riemannian submer-
sions with different conditions imposed on the total space and on the fibres.
A systematic exposition could be found in the A.Besse’s book [4]. Semi-
Riemannian submersions were introduced by O’Neill in his book [14]. In this
paper we study the semi-Riemannian submersions with totally umbilic fibres.

The main purpose of section 2 is to obtain obstructions to the existence
of the semi-Riemannian submersions with totally umbilic fibres and with
compact and orientable total space, in terms of sectional and scalar curvature.
Using a formula of Ranjan [15], we obtain an integral formula for mixed
scalar curvature τ H V , which give us obstructions to existence of the semi-
Riemannian submersions in some special cases. Then we establish other
integral formula of scalar curvature of total, base and fibres spaces and another
obstruction to existence of semi-Riemannian submersions is obtained.

In section 3 we study the semi-Riemannian submersions π : M →
B with totally umbilic fibres, when the mean curvature vector field H is
parallel in the horizontal bundle along fibres and R(X,Y, X,Y ) is constant
along fibres for every X , Y basic vector fields. If moreover we assume
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that B is a Riemannian manifold and M is a semi-Riemannian manifold of
index dim M − dim B we deduce that the mean curvature vector field H
is basic if and only if the horizontal projection of R(X,Y )A X Y , denoted
by h R(X,Y )AX Y (see page 2), is basic for every X , Y basic vector fields.
We get there are no semi-Riemannian submersions π : M → B with totally
umbilic fibres, M a constant positive curvature semi-Riemannian manifold
of index dim M − dim B ≥ 2 and B a compact and orientable Riemannian
manifold. Then we find that a semi-Riemannian submersion with totally
umbilic fibres, with R(X,Y, X,Y ) constant along fibres for every X , Y
basic vector fields and with basic mean curvature vector field from an m-
dimensional semi-Riemannian manifold of index r = m−n with non-negative
mixed curvature onto an n-dimensional compact and orientable Riemannian
manifold, has totally geodesic fibres, integrable horizontal distribution and
null mixed curvature. Therefore a semi-Riemannian submersion π : M → B
with totally umbilic fibres and with sectional curvature of the fibres non-
vanishing anywhere, from a constant curvature semi-Riemannian manifold M
of index dim M−dim B ≥ 2 is a Clairaut semi-Riemannian submersion. Also
we study the case of positive sectional curvature fibres. We give a sufficient
condition to have every fibre with zero sectional curvature, when the total
space has constant curvature.

1. Preliminaries.

In this section we recall some notions and results which will be needed.

DEFINITION. Let (M, g) be an m-dimensional connected semi-Rieman-
nian manifold of index s (0 ≤ s ≤ m), let (B, g ′) be an n-dimensional
connected semi-Riemannian manifold of index s ′ ≤ s, (0 ≤ s ′ ≤ n). A semi-
Riemannian submersion (see O’Neill [14] ) is a smooth map π : M → B
which is onto and satisfies the following three axioms:

(a) π∗|p is onto for all p ∈ M;

(b) The fibres π−1(b), b ∈ B are semi-Riemannian submanifolds of M;

(c) π∗ preserves scalar products of vectors normal to fibres.

We shall always assume that the dimension of the fibres dim M − dim B
is positive and the fibres are connected.

The vectors tangent to fibres are called vertical and those normal to fibres
are called horizontal. We denote by V the vertical distribution and by H the
horizontal distribution.
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B.O’Neill [13] has characterized the geometry of a Riemannian submer-
sion in terms of the field tensors T , A defined for E , F ∈ �(T M) by

AE F = h∇h EvF + v∇h Eh F

TE F = h∇vEvF + v∇vE h F

where ∇ is the Levi-Civita connection of g. Here the symbols v and h are
the orthogonal projections on V and H respectively. For basic properties of
Riemannian submersions and examples see [4], [8], [13]. The letters U , V ,
W , W ′ will always denote vertical vector fields, X , Y , Z , Z ′ horizontal vector
fields and E ,F ,G ,G ′ arbitrary vector fields on M . A vector field X on M is
said to be basic if X is horizontal and π−related to a vector field X ′ on B. It
is easy to see that every vector field X ′ on B has a unique horizontal lift X to
M and X is basic. The following lemmas are well known (see [13], [6]).

LEMMA 1.1. Let X be a horizontal vector field. If gp(X, Z) = gp′(X, Z)
for all Z basic vector fields on M, for all p, p ′ ∈ π−1(b) and for all b ∈ B
then π∗X is a well defined vector field on B and X is basic.

LEMMA 1.2. We suppose X and Y are basic vector fields on M which are
π -related to X ′ and Y ′ , and V is a vertical vector field. Then

a) h[X,Y ] is basic and π -related to [X ′, Y ′];
b) h∇X Y is basic and π -related to ∇′

X ′Y
′ , where ∇′ is the Levi-Civita

connection on B;

c) h∇V X = AX V .

Let {e1,...,em} be a local field of orthonormal frames on M such that
e1, ..., er are vertical vector fields and er+1, ..., em are basic vector fields,
where r = dim M − dim B denotes the dimension of fibres. We have
g(ea, eb) = εaδab for every a, b (where εa ∈ {−1, 1}). We shall always
denote vertical indices by i, j, k, l, ... = 1, ..., r and horizontal indices by
α, β, γ, δ, ... = r + 1, ...,m . The summation

∑
is taken over all repeated

indices, unless otherwise stated.
The convention for the Riemann tensor used is

R(E, F)G = ∇E∇F G −∇F∇E G −∇[E,F]G

and

R(E, F,G,G ′) = −g(R(E, F)G,G ′).

Let ĝ be the semi-Riemannian metric of a fibre π−1(b) , b ∈ B . We make
the following notations:
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R, R′, R̂ for the Riemann tensors, K , K ′, K̂ for the sectional curvatures,
and s, s ′, ŝ for the scalar curvatures of the metrics g, g ′, ĝ, respectively;

τ H V =
∑

εiεαR(eα, ei , eα, ei ) , H =
∑

εi Tei ei ,

g(A, A) =
∑
α,β

εαεβg(Aeαeβ, Aeαeβ) =
∑
α,i

εiεαg(Aeαei , Aeαei),

g(T , T ) =
∑
i, j

εiεj g(Tei ej , Tei ej ) =
∑
α,i

εiεαg(Tei eα, Tei eα),

div(E) =
∑

i

εi g(∇ei E, ei)+
∑
α

εαg(∇eα E, eα).

If X is an unitary horizontal vector and V is an unitary vertical vector
the sectional curvature of the 2-plane {X, V } is called the mixed sectional
curvature.

DEFINITION. A semi-Riemannian submanifold F of a semi-Riemannian
manifold (M, g) is said to be totally umbilic submanifold if the second

fundamental form � of F is given by �(U, V ) = g(U, V )
H

r
for every U ,

V tangent vector fields to F .

Notice that TU V is the second fundamental form of the fibres and AX Y is
a natural obstruction to integrability of horizontal distribution.

If the fibres of the semi-Riemannian submersion are totally umbilic

submanifolds then TU V = 1

r
g(U, V )H for every U , V vertical vectors fields

and g(T , T ) = 1

r
g(H, H).

By O’Neill’s equations [13] we get the following lemma.

LEMMA 1.3. If π : (M, g) → (B, g ′) is a semi-Riemannian submersion
with totally umbilic fibres then:

R(U, V,U, V ) = R̂(U, V,U, V )+ [g(U, V )2 − g(U,U)g(V, V )]g

(
H

r
,

H

r

)
a)

R(X,U, X,U) = g(U,U)

[
g

(
∇X

H

r
, X

)
− g

(
X,

H

r

)2
]
+ g(AXU, AX U)b)

R(X,Y, X,Y ) = R′(π∗X, π∗Y, π∗X, π∗Y )− 3g(AXY, AX Y )c)

Using a relation of R. Escobales and Ph. Parker [7], we have the following
proposition.
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PROPOSITION 1.4. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion with totally umbilic fibres and X , Y be basic vector fields. Then A X Y
is a Killing vector field along fibres if and only if g(∇Y H, X ) = g(∇X H, Y ).

Proof. Let U ,V be vertical vector fields. Since the fibres are totally
umbilic, for every X , Y basic vector fields we have (see [7])

g(∇U (AXY ), V )+g(∇V (AXY ),U ) = g(U, V )

r
(g(∇Y H, X )−g(∇X H,Y )).��

Corollary 1.5. Let π : (M, g) → (B, g ′) be a semi-Riemannian submer-
sion with totally umbilic fibres. We suppose that the mean curvature H is a
basic vector field. Then AX Y is a Killing vector field along fibres for every
X ,Y basic vector fields if and only if (π∗H)� is a closed 1−form on B.

Proof. Let ω = (π∗H)�, X ′,Y ′ be vector fields on B . We have

2dω)(X ′,Y ′) = g′(∇X ′π∗H, Y ′)− g′(∇Y ′π∗H, X ′).

Let X ,Y be basic vector fields such that π∗X = X ′, π∗Y = Y ′ . By lemma 1.2,
we have

(g′(∇X ′π∗H, Y ′)− g′(∇Y ′π∗H, X ′)) ◦ π = g(∇X H, Y )− g(∇Y H, X ).

Applying proposition 1.4 we get the conclusion. ��
In [3] we proved the following result.

PROPOSITION 1.6. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion from an (n + s)-dimensional semi-Riemannian manifold of index
s ≥ 1 onto an n-dimensional Riemannian manifold. If M is geodesically
complete and simply connected then

1) B is complete and simply connected;

2) we have an exact homotopy sequence

· · · → π2(B)→ π1( f ibre)→ π1(M)→ π1(B)→ 0;
3) If moreover B has non-positive curvature then the fibres are simply

connected.

The following proposition is a semi-Riemannian version of Ranjan’s
formula (see [15]) in the case with totally umbilic fibres.
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THEOREM 1.7. If the semi-Riemannian submersion π : (M, g)→ (B, g ′)
has totally umbilic fibres, then

(1.1) τ H V = div(H)+
(

1− 1

r

)
g(H, H) + g(A, A).

Proof. From O’Neill [13] , we have the following formula

R(eα, ei , eα, ei) = g( (∇eαT )ei ei , eα)+ g(Aeαei , Aeαei )− g(Tei eα, Tei eα)

g( (∇eαT )ei ei , eα) = g(∇eα(Tei ei), eα)− 2g(Tei (v∇eαei ), eα)

If we denote by qαi j = g(v∇eαei , ej ), it is easy to see that qαj i + qαi j = 0.
Since Tei ej = Tej ei we get

∑
j
εj g(Tej (v∇eαej ), eα) =∑

i, j
εiεj qαj i Tej ei = 0.

Then

τ H V =
∑
α,i

εiεαR(eα, ei , eα, ei) =
∑
α

εαg

(
∇eα

(∑
i

εi Tei ei

)
, eα

)
+

∑
α,i

εαεi g(Aeαei , Aeαei)−
∑
α,i

εαεi g(Tei eα, Tei eα)

We get the semi-Riemannian version of Ranjan’s formula

τ H V = div(H)+ g(H, H)+ g(A, A)− g(T , T ).

Since the fibres of the semi-Riemannian submersion π are totally umbilic we

have g(T , T ) = 1

r
g(H, H). ��

2. Integral formulae.

As a consequence of theorem 1.7, we have the following proposition.

PROPOSITION 2.1. If the semi-Riemannian submersion π : (M, g) →
(B, g′) has totally umbilic fibres and M is a compact and orientable manifold,
then

(2.2)
∫
M

τ H V dvg =
(

1− 1

r

)∫
M

g(H, H)dvg +
∫
M

g(A, A)dvg
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Proof. We use the relation (1.1) and
∫
M

div(H) = 0. ��

COROLLARY 2.2 If π : M → B is a Riemannian submersion with totally

umbilic fibres and M is a compact and orientable manifold then
∫
M

τ H V dvg≥0.

By proposition 2.1, we have the following splitting theorem, which is a
generalization of proposition 3.1. of R. Escobales [6].

THEOREM 2.3. Let π : M → B be a Riemannian submersion with totally
umbilic fibres. We suppose that M is a compact and orientable manifold
with non-positive mixed sectional curvature (i.e. K (X,V ) ≤ 0 for every X
horizontal vector field and for every V vertical vector field ). Then

a) R(X,U, Y, V ) = 0 for every X , Y horizontal vector fields and for every
U , V vertical vector fields;

b) the horizontal distribution is integrable (this is equivalent with A ≡ 0);
c) the fibres are totally geodesic.

Proof. Since τ H V ≤ 0 , g(A, A) ≥ 0 and g(H, H) ≥ 0, we
get the relations τ H V = ∑

i ,α
R(eα, ei , eα, ei ) = 0 , g(A, A) = 0 and(

1− 1

r

)
g(H, H) = 0, by formula (2.2). Hence A ≡ 0.

Let X be a horizontal vector and V be a vertical vector, X �= 0, V �= 0.
We can choose a local field e1, ..., em of orthonormal frames adapted to the

Riemannian submersion such that e1 = V

‖V‖ , er+1 = X

‖X‖ . Since τ H V = 0

and R(eα, ei , eα, ei ) ≤ 0 for all i, α we get R(eα, ei , eα, ei ) = 0 for all i, α.
Therefore R(X, V, X,V ) = 0 for every X horizontal vector field and for
every V vertical vector field.

We shall prove that the fibres are totally geodesic.
Since A ≡ 0, R(X, V, X, V ) = 0, we have, by lemma 1.3,

(2.3) g

(
∇X

H

r
, X

)
= g

(
X,

H

r

)2

for every X horizontal vector field. Let p be an arbitrary point in M and
γ : R → M a horizontal geodesic in M , γ (0) = p. We denote by h(t) =
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g

(
H

r
, γ̇ (t)

)
. Rewriting formula (2.3), for every t ∈ R we get

(2.4)
dh

dt
(t) = h(t)2

The differential equation (2.4) has the solution h(t) ≡ 0 or h(t) = − 1

t + A
for some A ∈ R. But the domain of the maximal solution is the entire real line,

only for the null solution. Hence g

(
H

r
, γ̇ (t)

)
≡ 0 for every γ horizontal

geodesic. Therefore H ≡ 0. ��
PROPOSITION 2.4. Let B be an n-dimensional Riemannian manifold,

π : M → B be a semi-Riemannian submersion with totally umbilic fibres and
M be an m-dimensional compact, orientable semi-Riemannian manifold of
index r = m − n. Then

(2.5)
∫
M

(
τ H V −

(
1− 1

r

)
g(H, H)

)
dvg ≤ 0,

we have equality in (2.5) if and only if the horizontal distribution is integrable;

(2.6)
∫
M

(τ H V − g(A, A))dvg ≥ 0,

we have equality in (2.6) if and only if either r = 1 or the fibres are totally
geodesic.

Proof. Since π sends isometrically the horizontal spaces into the tangent
space of B , and B is a Riemannian manifold, it follows that the fibres are
semi-Riemannian manifolds of indices r and g(H, H) ≥ 0. Since g(A, A) =∑
α,β

εαεβg(Aeαeβ, Aeαeβ), εα = 1 for all α , and the induced metrics on fibres

are negative definite, we obtain g(A, A) ≤ 0. By formula (2.2) we have the
conclusion. ��

Applying proposition (2.4) for a Lorentzian total space we get the follow-
ing obstruction.

THEOREM 2.5. Let B be a n-dimensional Riemannian manifold. If M is a
compact, orientable (n + 1)-dimensional semi-Riemannian space of index 1,
with positive mixed curvature then there are no π : M → B semi-Riemannian
submersions.
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Proof. We suppose that there is such a semi-Riemannian submersion.

Since r = 1 the inequality (2.5) implies
∫
M

τ H V ≤ 0, which is a contradiction

with the stated condition of positive mixed curvature. ��
PROPOSITION 2.6. If M is a (r + 1)-dimensional semi-Riemannian man-

ifold of index r , with negative mixed curvature and B is a one dimensional
Riemannian manifold then there are no π : M → B semi-Riemannian sub-
mersions with compact, orientable total space and totally umbilic fibres.

Proof. We suppose that there is such a semi-Riemannian submersion.

Since dim H =1 we have A ≡ 0 . By relation (2.6) we obtain
∫
M

τ H V ≥ 0,

which is a contradiction with negative mixed curvature condition. ��
DEFINITION. The total scalar curvature of a compact manifold (M, g) is

Sg =
∫

M

sgdvg , where sg is the scalar curvature of (M, g).

In what follows we give some obstructions to the existence of semi-
Riemannian submersions in terms of total scalar curvatures of the total space
M , the base space B and of the fibres.

We denote by S, S ′, Ŝ the total scalar curvature of (M, g), (B, g ′) and
(π−1(x), ĝ) respectively.

By lemma 1.3 and formula (1.1), we get immediately the following
proposition.

PROPOSITION 2.7. If π : M → B is a semi-Riemannian submersion with
totally umbilic fibres, then

(2.7) s = s ′ ◦ π + ŝ + 2div(H)+
(

1− 1

r

)
g(H, H) − g(A, A)

Integrating formula (2.7) we get

PROPOSITION 2.8. If π : M → B is a semi-Riemannian submersion with
compact and orientable total space M and with totally umbilic fibres, then

(2.8) S − (S ′ ◦ π + Ŝ) =
(

1− 1

r

)∫
M

g(H, H)dvg −
∫
M

g(A, A)dvg
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COROLLARY 2.9. Let B be an n-dimensional Riemannian manifold,
π : M → B be a semi-Riemannian submersion with totally umbilic fibres and
M be an m-dimensional compact and orientable semi-Riemannian manifold
of index r = m − n. Then S ≥ S ′ ◦ π + Ŝ. We have equality if and only if the
horizontal distribution is integrable and either r = 1 or the fibres are totally
geodesic.

Proof. We have g(H, H) ≥ 0, g(A, A) ≤ 0. Hence, by formula (2.8), we
get the conclusion. ��

PROPOSITION 2.10. If π : M → B is a Riemannian submersion with
compact and orientable total space M and with fibres of dimension 1 then
S ≤ S′ ◦ π We have equality if and only if the horizontal distribution is
integrable.

Proof. We have g(A, A) ≥ 0, S − (S′ ◦ π + Ŝ) = −
∫
M

g(A, A)dvg and

ŝ = 0. Hence, by (2.8), we get S ≤ S ′ ◦ π . ��
Let sH =∑

α

εαρ(eα, eα), where ρ is the Ricci tensor of M (see [12]).

PROPOSITION 2.11. If π : (M, g) → (B, g ′) is a semi-Riemannian sub-
mersion with totally umbilic fibres then

(2.9) sH − s ′ ◦ π = div(H)+
(

1− 1

r

)
g(H, H)− 2g(A, A)

Proof. By lemma 1.3 we have

sH − s ′ ◦ π =
∑
α,i

εαεi R(eα, ei , eα, ei )+
∑
α,β

εαεβR(eα, eβ, eα, eβ)

=
∑
α

εα(g(∇eα H, eα)− 1

r
g(eα, H)2)+ g(A, A)− 3g(A, A)

=div(H)−
∑

i

εi g(∇ei H, ei )

− 1

r
g

(
H,

∑
α

εαg(eα, H)eα

)
− 2g(A, A)

= div(H)+
(

1− 1

r

)
g(H, H) − 2g(A, A) ��
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Integrating formula (2.9) we get

PROPOSITION 2.12. If π : (M, g)→ (B, g ′) is a semi-Riemannian submer-
sion with totally umbilic fibres and if M is a compact and orientable manifold
then

(2.10)
∫
M

(sH − s ′ ◦ π)dvg =
(

1− 1

r

)∫
M

g(H, H)dvg − 2
∫
M

g(A, A)dvg

COROLLARY 2.13. Let B be an n-dimensional Riemannian manifold,
π : M → B be a semi-Riemannian submersion with totally umbilic fibres and
M be an m-dimensional compact and orientable semi-Riemannian manifold
of index r = m − n. Then ∫

M

(sH − s ′ ◦ π)dvg ≥ 0

We have equality if and only if the horizontal distribution is integrable and
either r = 1 or the fibres are totally geodesic.

Proof. We have g(H, H) ≥ 0 and g(A, A) ≤ 0. Therefore, by (2.10), we
get the conclusion. ��

3. Mean curvature vector field.

We denote by ρ , ρ ′ and ρ̂ the Ricci tensors of the manifolds M , B and of
the fibre π−1(b), b ∈ B . The letters U , V denote vertical vector fields and X ,
Y horizontal vector fields. We introduce the following notations (cf. [4]):

g(AX, TU ) =
∑
α

εαg(AX eα, TU eα) =
∑

i

εi g(AXei , TU ei ),

δ̌A = −
∑
α

εα(∇eα A)eα , δ̂T = −
∑

i

εi (∇ei T )ei

where εiδik = g(ei , ek) for all i, k , εαδαβ = g(eα, eβ) for all α, β .

PROPOSITION 3.1. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion with totally umbilic fibres. Assume that the dimension of fibres r ≥ 2.
Then the following conditions are equivalent:

i) the mean curvature vector field H is a basic vector field;
ii) g((δ̂T )U, X ) − g(AX, TU ) = 0 for every U vertical vector field and for

every X horizontal vector field;
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iii) ρ(X,U )+ g((δ̌A)(X ),U )+ (r + 1)g(TU, AX) = 0 for every U vertical
vector field and for every X horizontal vector field.

Proof. i)⇔ii)
Since the fibres are totally umbilic we have

g((δ̂T )U, X ) = − 1

r
g(∇U H, X )

and

g(AX, TU ) = 1

r
g(AXU, H)

for every U vertical vector field and for every X horizontal vector field.
Let X be a basic vector field. By lemma 1.2, we have AXU = h∇U X .

Then

g((δ̂T )U, X )− g(AX, TU ) = − 1

r
g(∇U H, X )− 1

r
g(h∇U X, H)

= − 1

r
Ug(H, X ).

Hence, by lemma 1.1, H is a basic vector field if and only if the function
g(H, X ) is constant along fibres for every X basic vector field.

i)⇔ iii)

Let X be a basic vector field. Using (9.36b) in [4], we compute

ρ(U, X ) = g((δ̂T )U, X )+ g(∇U H, X )− g((δ̌A)(X ),U )− 2g(TU , AX)

= g((δ̂T )U, X )− g(TU , AX )+Ug(H, X )− g(H, AXU )

− g((δ̌A)(X ),U )− 1

r
g(H, AXU )

=
(

1− 1

r

)
Ug(H, X )− r + 1

r
g(H, AXU )− g((δ̌A)(X ),U ).

Then

(3.11) ρ(X,U )+g((δ̌A)(X ),U )+(r+1)g(TU , AX) = (1− 1

r
)Ug(H, X )

Applying again lemma 1.1, we get the conclusion. ��
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Remark 3.2. By proposition 3.1 and theorem 2.2 in [2], H is a basic vector
field if and only if the contractions (1, 3) and (2, 4) of the Riemann tensor of
the Vrânceanu connection are equal.

The following proposition is well known (see Proposition 9.104 in [4]).

PROPOSITION 3.3. If B, F are semi-Riemannian manifolds and f : B → R

is a positive function then π : B × f F → B is a semi-Riemannian submersion
with totally umbilic fibres, A ≡ 0 and H a basic vector field.

Conversely, if π : (M, g) → (B, g ′) is a semi-Riemannian submersion
with totally umbilic fibres A ≡ 0 and H a basic vector field then M is a
locally warped product.

COROLLARY 3.4. If π : (M, g) → (B, g ′) is a semi-Riemannian submer-
sion with totally umbilic fibres, if M is an Einstein manifold, r ≥ 2 and the
horizontal distribution H is integrable then M is a locally warped product.

Proof. Since A ≡ 0, ρ(X,U ) = 0, we have H is a basic vector field, by
proposition 3.1. By proposition 9.104 in [4] we have M is a locally warped
product. ��

DEFINITION. A semi-Riemannian submanifold is said to be an extrinsic
sphere if it is totally umbilic and the mean curvature vector field H is nonzero
anywhere and parallel in the normal bundle.

COROLLARY 3.5. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion. If the mean curvature vector field H is basic, dim B = 2, and the
fibres are extrinsic spheres then the horizontal distribution H is integrable
and M is a locally warped product.

Proof. Since H is a basic vector field and h∇U H = 0 for every U vertical
vector field, it follows A H ≡ 0, by lemma 1.2. By dim H= 2 and Hp �= 0 for
every p ∈ M we have A ≡ 0. Therefore, by proposition 9.104 in [4], M is a
locally warped product. ��

We would like to know how much a semi-Riemannian submersion with
totally umbilic fibres is different to be a locally warped product. For this
purpose we assume that R(X,Y, X,Y ) is constant along fibres for every X ,Y
basic vector fields and the mean curvature vector field H is parallel in the
horizontal bundle along fibres.

First, we give equivalent conditions to these assumptions.
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PROPOSITION 3.7. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion. Then the following conditions are equivalent:

i) R(X,Y, X,Y ) is constant along fibres for every X , Y , Z basic vector
fields;

ii) the function g(A XY, AX Z) is constant along fibres for every X , Y , Z
basic vector fields;

iii) h R(X,Y )Z is a basic vector field for every X , Y , Z basic vector fields.

Proof. i)⇒ i i) Let X , Y be basic vector fields. By lemma 1.3, we have

R(X,Y, X,Y ) = R′(π∗X, π∗Y, π∗X, π∗Y ) ◦ π − 3g(AXY, AX Y )

If R(X,Y, X,Y ) is constant along fibres then g(AXY, AX Y ) is constant along
fibres. By polarization, we get g(A XY, AX Z) is constant along fibres.

i i) ⇒ i i i) If g(A XY, AX Z) is constant along fibres for every X , Y , Z
basic vector fields then AX AX Y is basic for every X , Y basic vector fields,
by lemma 1.1. Therefore, by polarization, A X AY Z + AY AX Z is basic for
every X , Y , Z basic vector fields. By O’Neill’s equations (see [13]), we have
h R(X,Y )Z = R′(X,Y )Z−2AZ AX Y+AX AY Z−AY AX Z , where R′(X,Y )Z
is the horizontal lifting of R ′(π∗X, π∗Y )π∗Z . Rewriting this formula we get

h R(X,Y )Z = R′(X,Y )Z − (AZ AX Y + AX AZY ) + (AZ AY X + AY AZ X ).

Hence h R(X,Y )Z is a basic vector field for every X , Y , Z basic vector fields
��.

Let ρV(E) =∑
i
εi R(E, ei)ei for every E tangent vector field to M .

PROPOSITION 3.7. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion with totally umbilic fibres. If r ≥ 2 then the following conditions are
equivalent:

i) the mean curvature vector field H is parallel in the horizontal bundle
along fibres,

ii) ρV(U ) is vertical for every U vertical vector field.

Proof. By O’Neill’s equation (see [13]), we have

R(ei ,U, ei , X ) = g((∇U T )ei ei , X )− g((∇ei T )U ei , X ).
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Then∑
i

εi g((∇U T )ei ei , X ) =
∑

i

εi [g(∇U Tei ei , X )− g(T∇U ei ei , X )

− g(Tei∇U ei , X )]

=g(∇U H, X )−
∑

i

2εi g(∇U ei , ei)g

(
H

r
, X

)

=g(∇U H, X )−
∑

i

εiU (g(ei, ei)) g

(
H

r
, X

)
=g(∇U H, X )

Since the fibres are totally umbilic, we also have∑
i

εi g((∇ei T )ei U, X ) = 1

r
g(∇U H, X ).

Replacing these in O’Neill’s equation, we obtain

g(ρV(U ), X ) =
∑

i

εi R(ei ,U, ei , X ) =
(

1− 1

r

)
g(∇U H, X ).

Therefore ρV(U ) is a vertical vector field for every U vertical vector field if
and only if H is parallel in the horizontal bundle along fibres. ��

THEOREM 3.8. Let π : (M, g) → (B, g ′) be a semi-Riemannian submer-
sion with totally umbilic fibres. We suppose that R(X,Y, X,Y ) is constant
along fibres, H is parallel in the horizontal bundle along fibres, s−s ′ ∈ {0, r}.
Then H is a basic vector field if and only if h R(X,Y )A X Y is a basic vector
field for every X , Y basic vector fields.

Proof. a) We suppose that h R(X,Y )AX Y is a basic vector field for every
X , Y basic vector fields. Let X , Y , Z be basic vector fields.

Using O’Neill’s equation (see [13]) we get

R(X,Y, X, AX Y ) =g((∇X A)X Y, AX Y )+ 2g(AXY, TAX Y X )

=g(∇X AX Y, AX Y ))−g(A∇X X Y,AX Y )−g(AX∇X Y,AX Y )

+ 2g(AXY, TAX Y X )

= 1

2
X (g(AXY, AX Y ))− g(AY h∇X X , AY X )

− g(AXh∇X Y, AX Y ) + 2g(AXY, TAX Y X ).
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By proposition 3.6, the function g(A XY, AX Z) is constant along fibres. If

h R(X,Y )AX Y is basic then g(AXY, TAX Y X ) is constant along fibres. Let U

be a vertical vector field. Then

0 = U (g(TAX Y X, AX Y )) = − 1

r
U (g(X, H)) g(AXY, AX Y )

− 1

r
g(X, H) U (g(AXY, AX Y )),

thus, we get

(3.12) 0 = U (g(X,H)) g(AXY, AX Y )

for every X , Y basic vector fields.
Let p in M be an arbitrary point. Let Y be a basic vector field such that

Yp = Hp .
The relation (3.12) in point p become

(3.13) 0 = Up(g(X,H)) gp(AXp Hp, AXp Hp)

We have two possible situations:

Case. 1. AXp Hp �= 0.
Since the metrics of fibres are negative definite for s − s ′ = r or positive

definite for s − s ′ = 0 we have gp(AXp Hp, AXp Hp) �= 0. By relation (3.13),
we get Up(g(X, H)) = 0.

Case. 2. AXp Hp = 0
Since H is parallel in the horizontal bundle along fibres we have

U (g(H, X )) = −g(AX H,U ). Using the hypothesis of Case 2, A Xp Hp = 0,
we get Up(g(H, X )) = 0

In both cases we proved that Upg(H, X ) = 0 for an arbitrary p ∈ M
and for every X basic vector field. By lemma 1.1, it follows that H is a basic
vector field.

b) We suppose H is a basic vector field and we shall prove h R(X,Y )AX Y
is basic for every X , Y basic vector fields.
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By O’Neill’s equation, we get

R(X,Y, Z , AX Y ) = 1

2
Z(g(AXY, AX Y ))− g(AY h∇Z X , AY X )

− g(AXh∇Z Y, AX Y )− g(AXY, AX Y )g(
H

r
, Z)

− g(AY Z , AY X )g(
H

r
, X )− g(AX Z , AX Y )g(

H

r
,Y ).

Hence g(h R(X,Y )AX Y, Z) is constant along fibres for every X , Y , Z
basic vector fields. Therefore, by lemma 1.1, h R(X,Y )AX Y is basic. ��

We apply the theorem 3.8 in two particular cases, when the total space
is either a constant curvature semi-Riemannian manifold or a generalized
complex space form.

COROLLARY 3.9. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion with totally umbilic fibres. If M is a semi-Riemannian manifold with
constant curvature and if r ≥ 2, s − s ′ ∈ {0, r} then H is a basic vector field
and AH ≡ 0.

Proof. If M has constant sectional curvature c then for every X , Y basic
vector fields and for every U vertical vector field we get:

1) R(X,Y, X,Y ) = c(g(X, X )g(Y,Y )− g(X,Y )2) is constant along fibres;

2) R(X,Y )AX Y = c(g(AXY, X )X − g(AXY, Y )Y ) = 0;

3) ρV(U ) =∑
i
εi R(U, ei)ei =∑

i
εi c(g(ei, ei)U −g(U, ei)ei) = c(r−1)U

is a vertical vector field. Therefore, by theorem 3.8 and proposition 3.7,
H is a basic vector field. Hence, by lemma 1.2, AH ≡ 0 ��.

The totally umbilic submanifolds of generalized complex space forms
was classified by L. Vanhecke in [16] (see also survey paper [10]). Applying
theorem 3.8 we get

COROLLARY 3.10. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion with totally umbilic fibres from a generalized complex space form
onto an almost hermitian manifold. If π is a holomorphic map, r ≥ 2,
s − s ′ ∈ {0, r} then H is a basic vector field and A H ≡ 0.

Proof. If (M, J ) is a generalized complex space form of constant holo-
morphic sectional curvature μ and of type α then the curvature tensor field
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satisfies (see [10])

R(E, F,G,G ′) = 1

4
(μ+ 3α){g(E,G)g(F,G ′)− g(E,G ′)g(F,G)}

+ 1

4
(μ−α){g(E, J G)g(F, J G ′)−g(E, J G ′)g(F, J G)}

+ 1

2
(μ− α)g(E, J F)g(G, J G ′).

Since π is a holomorphic map, we get J X is basic for every X basic
vector field. Hence R(X,Y, X,Y ) is constant along fibres, g(ρV(U ), X ) = 0
and R(X,Y, Z ,U ) = 0 for every X , Y , Z basic vector fields and for every
U vertical vector field. Therefore, by theorem 3.8 and proposition 3.7, H is a
basic vector field. ��

PROPOSITION 3.11. Let π : (M, g) → (B, g ′) be a semi-Riemannian
submersion with totally umbilic fibres. If R(X,Y, X,Y ) is constant along
fibres for every X , Y basic vector fields, H is basic and B is a compact and
orientable manifold then τ H V is constant along fibres and

(3.14)
∫
B

τ ′H V = − 1

r

∫
B

g′(π∗H, π∗H)dv′g +
∫
B

g′(A, A)dv′g

where g′(A, A), τ ′H V are the functions on B satisfying g ′(A, A) ◦ π =
g(A, A) and τ ′H V ◦ π = τ H V .

Proof. By theorem 1.7 we have

τ H V = div(H)+
(

1− 1

r

)
g(H, H)+ g(A, A).

Using lemma 1.2 we get

div(H)+ g(H, H) =
∑
α

εαg(∇eα H, eα)+
∑

i

εi g(∇ei H, ei)+ g(H, H)

=
∑
α

εαg′(∇′
π∗eα
π∗H, π∗eα) ◦ π

+
∑

i

εi [g(Tei H, ei)+ g(H, Tei ei )]

=div′(π∗H) ◦ π
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Since the function g(Aeαeβ, Aeαeβ) is constant along fibres we can con-
sider the function g ′(A, A) on B given by g ′(A, A) ◦ π = g(A, A). Then

(3.15) τ H V =
[

div′(π∗H)− 1

r
g′(π∗H, π∗H) + g′(A, A)

]
◦ π.

and τ H V is constant along fibres. Let τ ′H V be the function on B such that

τ ′H V ◦ π = τ H V . Since
∫
B

div′(π∗H) = 0, it follows the formula (3.14). ��

COROLLARY 3.12. Let π : (M, g) → (B, g ′) be a semi-Riemannian sub-
mersion with totally umbilic fibres. If M is a semi-Riemannian manifold with
constant curvature c, r ≥ 2, s−s ′ ∈ {0, r} and B is a compact and orientable
manifold then

(3.16 rnc vol (B) = − 1

r

∫
B

g′(π∗H, π∗H)dv′g +
∫
B

g′(A, A)dv′g

where g′(A, A) is the function on B satisfying g ′(A, A) ◦ π = g(A, A).

Proof. Since M is a semi-Riemannian manifold with constant curvature
c, we get R(eα, ei , eα, ei) = εiεαc. So τ H V = rnc.

THEOREM 3.13. Let B be an n-dimensional compact and orientable
Riemannian manifold, π : M → B be a semi-Riemannian submersion with to-
tally umbilic fibres. We suppose that M is an m-dimensional semi-Riemannian
manifold of index r = m − n with non-negative mixed curvature,
R(X,Y, X,Y ) is constant along fibres, for every X , Y basic vector fields,
and H is basic. Then

i) K (X,V ) = 0 for every X horizontal vector field and for every V vertical
vector field;

ii) the fibres are totally geodesic and the horizontal distribution is integrable,
hence M is a locally warped product.

Proof. Since εα = 1, the metrics induced on fibres are negative definite,
we have

g(A, A) =
∑
α , β

εαεβg(Aeαeβ, Aeαeβ) ≤ 0.

By proposition 3.11,
∫
B

τ ′H V ≤ 0.
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But the mixed curvature is non-negative, hence τ ′H V ≥ 0. Therefore
K (X,V ) = 0 for every X horizontal vector field and for every V vertical
vector field and A ≡ 0, T ≡ 0. ��

COROLLARY 3.14. Let B be an n-dimensional compact and orientable
Riemannian manifold, π : M → B be a semi-Riemannian submersion with
totally umbilic fibres. We suppose M is an m-dimensional semi-Riemannian
manifold of index r = m − n with constant curvature c and r ≥ 2. Then

i) c ≤ 0;
ii) If c = 0 then the fibres are totally geodesic and the horizontal

distribution H is integrable.

Proof. If we suppose c > 0 then, by theorem 3.13, we get c = K (X,V ) =
0, which is a contradiction with our assumption. Therefore c ≤ 0 ��.

COROLLARY 3.15. Let B be an n-dimensional simply connected Rieman-
nian manifold, π : M → B be a semi-Riemannian submersion with totally
umbilic fibres. If M is an m-dimensional semi-Riemannian manifold of index
r = m − n ≥ 2 with constant curvature c then B is not compact.

Proof. If we suppose that B is a compact Riemannian manifold then B is
complete. By corollary 3.14, we get c ≤ 0. It follows K ′ ≤ 0, by lemma 1.3.
By Hadamard’s theorem, we have B is diffeomorphic to R

n . Therefore B is
not compact.

We introduce the notion of Clairaut semi-Riemannian submersion
(see [1]).

DEFINITION. Let B be an n-dimensional Riemannian manifold,
π : (M, g) → (B, g ′) be a semi-Riemannian submersion, M be an m-dimen-
sional semi-Riemannian manifold of index r = m − n and γ be a timelike
geodesic in M. We denote the velocity vector field of γ by E = γ ′ and its
vertical part by V . At each point γ (s) we define ϕ(s) to be the hyperbolic
angle between E and V , i.e. ϕ ≥ 0 is the number satisfying:

g(E,V ) = −‖E‖ · ‖V‖ coshϕ,

where ‖E‖2 = −g(E, E) and ‖V‖2 = −g(V, V ).
π : (M, g) → (B, g ′) is said to be a Clairaut semi-Riemannian submer-

sion if there is a positive function w: M → R such that for every timelike
geodesic γ in M, w coshϕ is constant along γ . We call r the girth of the
submersion.
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The following characterization of Clairaut semi-Riemannian submersion
given by D.Allison [1] for 1-dimensional fibres has a similar proof for r -
dimensional case

PROPOSITION 3.16. Let B be an n-dimensional Riemannian manifold,
π : (M, g) → (B, g ′) be a semi-Riemannian submersion and M be an m-
dimensional semi-Riemannian manifold of index r = m − n. Then π is a
Clairaut semi-Riemannian submersion with girth w = exp f if and only if the
fibres are totally umbilic with a gradient H = −grad f as mean curvature
vector field. Furthermore for a Clairaut semi-Riemannian submersion having
connected fibres f = f∗ ◦ π for some f∗: B → R and H is a basic vector
field obtained by lifting H∗ = −grad f∗ horizontally.

LEMMA 3.17. Let π : (M, g) → (B, g ′) be a semi-Riemannian submer-
sion with totally umbilic fibres. We suppose that H is a basic vector field and
parallel in the horizontal bundle along fibres and there is a constant c ∈ R

such that g(ρV(
H

r
), X ) = cg(H, X ) for every X horizontal vector field.

Then:

(3.17)
1

2
grad

(
c + g

(
H

r
,

H

r

))
=
(

c + g

(
H

r
,

H

r

))
H

r

Proof. Let X ,Y be horizontal vector fields and U be a vertical vector field.
By O’Neill’s equation [13] we have

R(X,U, Y,U ) =g(U,U )

[
g

(
∇X

H

r
, Y

)
− g

(
X,

H

r

)
g

(
Y,

H

r

)]
+ g((∇U A)X Y,U )+ g(AXU, AY U )

Let Y = H

r
. Since H is a basic vector field and parallel in the horizontal

bundle along fibres we get AH ≡ 0. Therefore

g((∇U A)X H,U ) + g(AXU, AHU ) = 0

Since ∑
εi R

(
X, ei ,

H

r
, ei

)
= g

(
ρV

(
H

r

)
, X

)
= cg(H, X )

we obtain

g

(
X,

H

r

)
c = g

(
∇X

H

r
,

H

r

)
− g

(
X,

H

r

)
g

(
H

r
,

H

r

)
;



270 GABRIEL BĂDIŢOIU - STERE IANUŞ

g

(
X,

H

r

)(
c + g

(
H

r
,

H

r

))
= g

(
∇X

H

r
,

H

r

)
= 1

2
Xg

(
H

r
,

H

r

)
;

g

(
X,

1

2
grad g

(
H

r
,

H

r

)
−
(

c + g

(
H

r
,

H

r

))
H

r

)
= 0

for every X horizontal vector field.
This implies

1

2
h

(
grad g

(
H

r
,

H

r

))
=
(

c + g

(
H

r
,

H

r

))
H

r
.

Since H is parallel in the horizontal bundle along fibres, it follows that
g(H, H) is constant along fibres. Hence

vgrad

(
g

(
H

m
,

H

m

)
+ c

)
= 0. ��

LEMMA 3.18. Let π : M → B be a semi-Riemannian submersion. If either
i) M has constant curvature, or

ii) M and B are Einstein manifolds and A H ≡ 0
then there is c ∈ R such that

g

(
ρV

(
H

r

)
, X

)
= cg(H, X )

for every X horizontal vector field.

Proof. i) If M has constant curvature c then

g

(
ρV

(
H

r

)
, X

)
=
∑

i

εi R

(
H

r
, ei , X, ei

)
= cg(H, X )

for every X horizontal vector field.
ii) We define

ρH(E) =
∑
α

εαR(E, eα)eα

for every E vector field on M . We have

ρ

(
H

r
, X

)
= g

(
ρV

(
H

r

)
, X

)
+ g

(
ρH

(
H

r

)
, X

)
.
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Since M and B are Einstein manifolds, for some λ, λ′ ∈ R we have

ρ

(
H

r
, X

)
= λg

(
H

r
, X

)
and

ρ ′
(
π∗

H

r
, π∗X

)
= λ′g

(
π∗

H

r
, π∗X

)

for every X horizontal vector.
By lemma 1.3, we get

ρ ′
(
π∗

H

r
, π∗X

)
=
∑
α

εα

(
R

(
H

r
, eα, X, eα

)
+ 3g

(
Aeα

H

r
, Aeα X

))

=g

(
ρH

(
H

r

)
, X

)
It follows

g

(
ρV

(
H

r

)
, X

)
= (λ− λ′)g

(
H

r
, X

)

for every X horizontal vector field. ��
THEOREM3.19. Let π : (M, g)→ (B, g ′) be a semi-Riemannian submer-

sion with totally umbilic fibres. We suppose that H is a basic vector field and
parallel in the horizontal bundle along fibres and there is a constant c ∈ R

such that

g

(
ρV

(
H

r

)
, X

)
= cg(H, X )

for every X horizontal vector field. If

g

(
Hp

r
,

Hp

r

)
�= −c

for all p ∈ M then

H

r
= 1

2
grad

(
ln

∣∣∣∣c + g

(
H

r
,

H

r

)∣∣∣∣
)
.

If moreover B is an n-dimensional Riemannian manifold, and M be an m-
dimensional semi-Riemannian manifold of index r = m − n then π is a
Clairaut semi-Riemannian submersion.
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Proof. Since g

(
Hp

r
,

Hp

r

)
+ c �= 0 for every point p ∈ M , we have, by

formula (3.17),

H

r
= 1

2
grad

(
ln

∣∣∣∣g
(

H

r
,

H

r

)
+ c

∣∣∣∣
)
.

By proposition 3.16, we get π is a Clairaut semi-Riemannian submersion. ��
COROLLARY 3.20. Let B be an n-dimensional Riemannian manifold,

π : (M, g) → (B, g ′) be a semi-Riemannian submersion with totally umbilic
fibres and M be an m-dimensional semi-Riemannian manifold of index r =
m − n ≥ 2 with constant curvature c. If g

(
Hp

r
,

Hp

r

)
�= −c for all p ∈ M

then

H

r
= 1

2
grad

(
ln

∣∣∣∣c + g

(
H

r
,

H

r

)∣∣∣∣
)

and π is a Clairaut semi-Riemannian submersion.

Proof. By lemma 3.18 and by theorem 3.19 we get the conclusion. ��
By corollaries 3.9 and 3.12 and use of [11], we get more information

about curvature of total space, in the constant curvature case.

PROPOSITION 3.21. Let π : (M, g) → (B, g ′) be a semi-Riemannian
submersion with totally umbilic fibres. We assume that B is an n-dimensional
Riemannian manifold, M is an m-dimensional semi-Riemannian manifold of

index r = m − n ≥ 2 with constant curvature c. If g

(
H

r
,

H

r

)
+ c ≥ 0

everywhere, g

(
Hp0

r
,

Hp0

r

)
+c > 0 at some point p0 ∈ M, and if each fibre

is a compact manifold then the horizontal distribution is integrable and M is a
locally warped product. If moreover B is a compact and orientable manifold
then c < 0, n �= 1 and M is not a compact and orientable manifold.

Proof. If M has constant curvature, then for every U vertical vector field
we have

ρ̂(U,U ) = (r − 1)g(U,U )

(
g

(
H

r
,

H

r

)
+ c

)
.

Since the metrics of the fibres are negative definite we have ρ̂(U,U ) ≤ 0
everywhere and ρ̂ is negative definite in p0. By corollary 3.9, we have H is a
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basic vector field. Therefore, by the theorem in [11], the horizontal distribution
is integrable and M is a locally warped product. If B is compact and orientable
then, by corollary 3.12,

(n − 1)c vol (B) = −
∫
B

(
g′
(
π∗H

r
,
π∗H

r

)
+ c

)
dvg.

Hence (n − 1)c < 0. If we suppose M is a compact and orientable manifold
then by proposition 2.1 we have

(n+r−1)c vol (M) = (r−1)
∫
M

(
g

(
H

r
,

H

r

)
+ c

)
dvg+ 1

r

∫
M

g(A, A)dvg

By g

(
H

r
,

H

r

)
+ c > 0 in p0 and g(A, A) ≡ 0 we get c > 0, which is a

contradiction with corollary 3.14. ��
PROPOSITION 3.22. Let B be an n-dimensional compact and orientable

Riemannian manifold, π : (M, g) → (B, g ′) be a semi-Riemannian submer-
sion with totally umbilic fibres and M be an m-dimensional semi-Riemannian
manifold of index r = m − n with constant curvature c. If each fibre is a
compact manifold, r ≥ 2, n ≥ 3, and if

(3.18) g

(
Hp

r
,

Hp

r

)
+ c ≥ 0

(3.19) 3g

(
Hp

r
,

Hp

r

)
+ nc − 1

r
gp(A, A) ≥ 0

for all p ∈ M then g

(
H

r
,

H

r

)
+ c ≡ 0.

Proof. We denote by �B f = div(grad f ) the Laplacian of B defined on
functions f : B → R.

Let f be the function on B given by

f = g′
(
π∗H

r
,
π∗H

r

)
+ c
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By lemma 3.17 we have the equation
1

2
grad f = f

π∗H

r
. We get

1

2
�B f = 1

2
div(grad f ) = div

(
f
π∗H

r

)

=
(
π∗H

r

)
( f )+ f div

(
π∗H

r

)

=g′
(

grad f,
π∗H

r

)
+ f div

(
π∗H

r

)

=2 f g′
(
π∗H

r
,
π∗H

r

)
+ f div

(
π∗H

r

)

Using relation (3.15) we have

div

(
π∗H

r

)
= nc + g′

(
π∗H

r
,
π∗H

r

)
− 1

r
g′(A, A),

where g′(A, A) is the function satisfying g(A, A) = g ′(A, A) ◦ π . We obtain

1

2
�B f = f (3( f − c)+ nc − 1

r
g′(A, A))

=
(

g′
(
π∗H

r
,
π∗H

r

)
+ c

)(
3g′

(
π∗H

r
,
π∗H

r

)

+nc − 1

r
g′(A, A)

)
≥ 0

Since �B( f ) ≥ 0 and B is a compact and orientable manifold, we have
f is a constant function and �B( f ) ≡ 0, by Hopf’s lemma.

If we suppose

f = g′
(
π∗H

r
,
π∗H

r

)
+ c > 0

then, by corollary 3.20, A≡0, c<0. �B f ≡0 implies 3g ′
(
π∗H

r
,
π∗H

r

)
+

nc ≡ 0. From corollary 3.12, we obtain∫
B

(
g′
(
π∗H

r
,
π∗H

r

)
+ nc

)
dvg′ = 0.



SEMI-RIEMANNIAN SUBMERSIONS WITH TOTALLY UMBILIC FIBRES 275

Since g′
(
π∗H

r
,
π∗H

r

)
is a nonnegative constant function we have

g′
(
π∗H

r
,
π∗H

r

)
= 0. It follows H ≡ 0. Therefore c > 0. This is a contra-

diction with condition c ≤ 0 given by corollary 3.14.

All these imply g ′
(
π∗H

r
,
π∗H

r

)
+ c ≡ 0. ��

LEMMA 3.23. The condition 3g

(
Hp

r
,

Hp

r

)
+ nc ≥ 0 for every p ∈ M

implies the conditions (3.18) and (3.19) in proposition 3.22.

Proof. Since g(A, A) ≤ 0 and (n − 3)g

(
Hp

r
,

Hp

r

)
≥ 0 for every

p ∈ M we have the conditions (3.18) and (3.19) in proposition 3.22.

By lemma 3.23 and proposition 3.22, we have the following corollary.

COROLLARY 3.24. Let B be an 3-dimensional compact and orientable
Riemannian manifold, π : (M, g) → (B, g ′) be a semi-Riemannian submer-
sion with totally umbilic fibres and M be an m-dimensional semi-Riemannian
manifold of index r = m−3 with constant curvature c. If r ≥ 2, if each fibre is

a compact manifold and if g

(
H

r
,

H

r

)
+c ≥ 0 then g

(
H

r
,

H

r

)
+c ≡ 0.
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[5] Dragomir S., Wood J.C., Sotto varietà minimali ed applicatiozioni armoniche, Quaderni
U.M.I., 35, Pitagora Editrice, Bologna 1989.

[6] Escobales R., Riemannian submersions with totally geodesic fibers, J. Differential
Geom., 10 (1975), 253-276.

[7] Escobales R., Parker Ph., Geometric consequences of normal curvature cohomology class
in umbilic foliation, Indiana Univ. Math. J., 37 (1988), 389-408.

[8] Gray A., Pseudo-Riemannian almost product manifolds and submersions, J. Math.
Mech., 16 (1967), 715-737.

[9] Ianus S., Differential geometry with applications to the theory of relativity, (in romanian)
Ed. Academiei Române, Bucureşti 1983.
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