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Abstract. We classify the effective and transitive actions of a Lie group G on an n-dimensional non-

degenerate hyperboloid (also called real pseudo-hyperbolic space), under the assumption that G is a

closed, connected Lie subgroup of an indefinite special orthogonal group. Under the same assumption

on G, we also obtain that any G-homogeneous Einstein pseudo-Riemannian metric on a real, complex

or quaternionic pseudo-hyperbolic space, or on a para-complex or para-quaternionic projective space is

homothetic to either the canonical metric or the Einstein metric of the canonical variation of a Hopf

pseudo-Riemannian submersion.

1. Introduction and the main theorem

The homogeneous Einstein Riemannian metrics on spheres and projective spaces are, up to homothety,

the canonical metrics or the Einstein metrics of the canonical variations of the Hopf fibrations (see Ziller

[22]). Essentially, up to a scaling factor, S15 has 3 homogeneous Einstein Riemannian metrics, CP 2n+1

and S4n+3 have 2 homogeneous Einstein Riemannian metrics, and each of the remaining spaces S2n,

S4n+1, CP 2n, HPn has only one homogeneous Einstein metric (see Besse [3, Theorem 9.86] and Ziller

[22]).

Motivated by the recent classification of the pseudo-Riemannian submersions with totally geodesic

fibres from pseudo-hyperbolic spaces (see Bădiţoiu [1]), in this paper we obtain a pseudo-Riemannian

generalization of Ziller’s classification mentioned above (see Ziller [22]), and we prove the following main

result.

Theorem 1.1. Let G be a connected, closed Lie subgroup of SO0(n − r, r + 1). Any G-homogeneous

Einstein pseudo-Riemannian metric on one of the following sets: Hn
r , CH

n/2
r/2 , HH

n/4
r/4 , APn/2 (with

r = (n+ 1)/2), BPn/4 (with r = (n+ 1)/4) is homothetic to either the canonical metric or the Einstein

metric gt0 (t0 6= 1) of the canonical variation of a Hopf pseudo-Riemannian submersion. Therefore,

under the same assumption on G, the following hold:

(i) H2m
s , H4m+1

s , CH2m
s , CH2m+1

2s (with m 6= 2s), AP 2m, BPm have only one homogeneous Einstein

metric;

(ii) H4m+3
4s+3 (with m 6= 3 and m 6= 2s+1), CH4s+1

2s , CH2m+1
2s+1 (with m 6= 2s+1) and AP 2m+1 have 2

homogeneous Einstein metrics.

(iii) H15
15 , H

8s+7
4s+3 (with s 6= 1) and CH4s+3

2s+1 have 3 homogeneous Einstein metrics.

(iv) H15
7 has 5 homogeneous Einstein metrics.

The key ingredient of the proof of Theorem 1.1 is the classification of effective transitive actions of a

Lie group G on a real pseudo-hyperbolic space under the assumption of Theorem 1.1. Now, we give a

short review of well-known classification results of effective and transitive actions.
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The pioneering work is due to Montgomery and Samelson (see [14]) and Borel (see [5]), who classified

the compact Lie groups acting effectively and transitively on spheres. Using homotopic methods, On-

ishchik obtained the classification of the connected compact Lie groups G acting transitively on simply

connected manifolds of rank 1 (see Onishchik [16, 18]).

The case of transitive actions on non-compact spaces is a lot more challenging than the compact case

and therefore, one has to impose additional assumptions on the Lie group G. The case G reductive was

investigated by Onishchik in [17], where he studied the equivalent problem of finding decompositions

G = G′G′′ into two proper Lie subgroups G′ and G′′. Of special interest for us is his classification of

semisimple decompositions of so(n−r, r+1), simply because it solves our problem of finding all transitive

and effective actions onHn
s in the case of a semisimpleG ⊂ SO0(n−r, r+1). Using the Borel-Montgomery-

Samelson classification of effective transitive actions on spheres, Wolf obtained a classification of the

connected, closed Lie subgroups of SO0(n − r, r + 1) acting transitively both on (a) a component of a

non-empty quadric {x ∈ R
n+1
r+1 | ||x||

2 = a} (a 6= 0) and (b) the light cone {x ∈ R
n+1
r+1 | ||x||

2 = 0, x 6= 0}

(see Wolf [21, Theorem 3.1]). In our Theorem 3.1, we drop (b) and the assumption on the semisimplicity

of G.

2. The Hopf pseudo-Riemannian submersions and their canonical variations

First, we introduce some standard definitions and notation that shall be needed throughout the paper.

Definition 2.1. Let 〈·, ·〉
R

n+1

r+1

be the standard inner product of signature (n− r, r+1) on Rn+1 given by

〈x, y〉
R

n+1

r+1

= −
r

∑

i=0

xiyi +
n
∑

i=r+1

xiyi(2.1)

for x = (x0, · · ·, xn), y = (y0, · · ·, yn) ∈ Rn+1. For any c < 0 and any positive integer r ≤ n, the set

Hn
r (c) = {x ∈ Rn+1 | 〈x, x〉

R
n+1

r+1

= 1/c} is called the real pseudo-hyperbolic space of index r and dimension

n. The hyperbolic space is defined as Hn
0 (c) = {x = (x0, x1, · · · , xn) ∈ Rn+1 | x0 > 0, 〈x, x〉

R
n+1

1

= 1/c}.

For convenience, we write Hn
r = Hn

r (−1).

Notation 1. We define

SO(n− r, r + 1) = {g ∈ SL(n+ 1,R) | 〈gx, gy〉
R

n+1

r+1

= 〈x, y〉
R

n+1

r+1

}.

When K is a Lie group, we shall always denote by K0 its connected component of the identity.

Let C, H, A, B be the algebras of complex, quaternionic, para-complex and para-quaternionic num-

bers, respectively. For F ∈ {A,B}, we denote by z̄, as usual, the conjugate of z ∈ F . For any

z = (z1, · · · , zm), w = (w1, · · · , wm) ∈ Fm, we define the standard inner product 〈z, w〉Fm on Fm

by

〈z, w〉Fm = Re(

m
∑

i=1

z̄iwi).(2.2)

The group Uπ(m) = {g ∈ GL(m,A) | 〈gz, gw〉Am = 〈z, w〉Am} is called the para-unitary group (see [6,

Prop. 4] or [12, p. 508]). Let Spπ(m) = {g ∈ GL(m,B) | 〈gz, gw〉Bm = 〈z, w〉Bm} be the para-symplectic

group (see [12, p. 510]). We have a natural inclusion Spπ(m) ⊂ Uπ(2m) and some identifications Uπ(m) =

GL(m,R) (see [12, p. 508]), and Spπ(m) ∼= Sp(m,R) (see [12, p. 510, Prop. 1.4.3]). Here, our convention

is that Sp(m,R) denotes the group of 2m× 2m-symplectic matrices with entries in R.

Definition 2.2. We define (see [1], [7, 8] for APm, [4] for BPm):

CHm
s (c) = H2m+1

2s+1 (c/4)/U(1), CHm
s = CHm

s (−4), HHm
s (c) = H4m+3

4s+3 (c/4)/Sp(1), HHm
s = HHm

t (−4);

APm = {z ∈ A
m+1 | 〈z, z〉Am+1 = 1}/{t = x+ ey ∈ A | tt̄ = 1, x > 0} = H2m+1

m /H1, (with e2 = 1);

BPm = {z ∈ B
m+1 | 〈z, z〉Bm+1 = 1}/{t ∈ B | tt̄ = 1} = H4m+3

2m+1/H
3
1 .
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Any Hopf pseudo-Riemannian submersions can be written as a homogeneous map π : G/K → G/H

with K ⊂ H closed Lie subgroups in G (see [1], for (10) see also Krahe [12, p. 518, Example 2.2.1], for

(7) see also Harvey [9, p. 312]):

(1) πC : H2m+1
2s+1 = SU(m− s, s+ 1)/SU(m− s, s) → CHm

s = SU(m− s, s+ 1)/S(U(1)U(m− s, s)),

(2) πA : H2m+1
m = SUπ(m+ 1)/SUπ(m) → APm = SUπ(m+ 1)/S(Uπ(1)Uπ(m)),

(3) πH : H4m+3
4s+3 = Sp(m− s, s+ 1)/Sp(m− s, s) → HHm

s = Sp(m− s, s+ 1)/Sp(1)Sp(m− s, s),

(4) πB : H4m+3
2m+1 = Spπ(m+ 1)/Spπ(m) → BPm = Spπ(m+ 1)/(Spπ(1)Spπ(m)),

(5) π1
O
: H15

15 = Spin(9)/Spin(7) → H8
8 (−4) = Spin(9)/Spin(8),

(6) π2
O
: H15

7 = Spin0(8, 1)/Spin(7) → H8(−4) = Spin0(8, 1)/Spin(8),

(7) πO′ : H15
7 = Spin0(5, 4)/Spin0(4, 3) → H8

4 (−4) = Spin0(5, 4)/Spin0(4, 4),

(8) πC,H : CH2m+1
2s+1 = Sp(m−s, s+1)/Sp(m−s, s)U(1)→ HHm

s = Sp(m−s, s+1)/Sp(m−s, s)Sp(1),

(9) πC,B : CH2m+1
m = Spπ(m+ 1)/Spπ(m)U(1) → BPm = Spπ(m+ 1)/Spπ(m)Spπ(1),

(10) πA,B : AP 2m+1 = Spπ(m+ 1)/Spπ(m)Uπ(1) → BPm = Spπ(m+ 1)/Spπ(m)Spπ(1),

here the pseudo-Riemannian metrics on Hm
s and Hm

s (−4) are the ones with constant curvature c, with

c = −1 for Hm
s , and c = −4 for Hm

s (−4); the pseudo-Riemannian metrics on CHm
s , HHm

s , APm, BPm

are the ones with constant holomorphic, quaternionic, para-holomorphic or para-quaternionic curvature

−4; and we call these metrics the canonical ones.

2.1. The Einstein metrics of the canonical variation. Let π : (M, g) → (B, g′) be a pseudo-

Riemannian submersion. We denote by ĝ the metrics induced on fibres. The family of metrics gt, with

t ∈ R \ {0} and gt given by

gt = π∗g′ + tĝ,

is called the canonical variation of π. To find the values of t for which gt is an Einstein metric, we use

the following pseudo-Riemannian version of a theorem obtained in the Riemannian case by Matsuzawa

[13], and independently by Berard-Bergery, see Besse [3, Lemma 9.74]. First, we introduce the notation:

λ′ = s′/n and λ̂ = ŝ/p, where s′ and ŝ are the scalar curvatures of g′ and ĝ, respectively, and n = dimM

and p = dim fibre.

Lemma 2.3. Let π : (M, g) → (B, g′) be a pseudo-Riemannian submersion with totally geodesic fibres.

Assume that g, g′ and ĝ are Einstein and the O’Neill integrability tensor A 6≡ 0. Then the following two

conditions are equivalent:

(i) t0 = λ̂
λ′−λ̂

is the unique nonzero value different from 1 such that gt is also Einstein

(ii) λ̂ 6= 1
2
λ′ and λ̂ 6= 0.

Remark 2.4. Note that λ̂ = 0 when the fibres are one-dimensional. Therefore, the canonical variations

of πC and πA do not provide any non-canonical Einstein metrics on the real pseudo-hyperbolic space.

Remark 2.5. For the Hopf pseudo-Riemannian submersions (3-10), the value t0 6= 1 for which gt0 is an

Einstein metric is the following:

(a) For πH and πB, we see that λ′ = −(4m+ 8), λ̂ = −2, and hence t0 = 1
2m+3

.

(b) For π1
O
, π2

O
and πO′ , we have λ′ = −28, λ̂ = −6 which gives t0 = 3

11
.

(c) For πC,H, πC,B, πA,B we have λ′ = −(4m+ 8), λ̂ = −4 and thus t0 = 1
m+1

.

Clearly, the Einstein metrics gt0 (with t0 6= 1) of the canonical variations of the Hopf pseudo-Riemannian

submersions (3-10) are neither isometric to each other, nor to the canonical metrics.

Definition 2.6. The pseudo-Riemannian manifold (M, g) is called a G-homogeneous manifold if G is a

closed Lie subgroup of the isometry group I(M, g).

Note that (M, g) is a G-homogeneous manifold if and only if G acts effectively and transitively on

M and g is a G-invariant metric on M . To show that all G-homogeneous Einstein metrics are the ones
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claimed in Theorem 1.1, we shall first classify the closed, connected groups G ⊂ SO0(n− r, r+ 1) acting

effectively and transitively on those spaces.

3. The classification of the groups acting transitively on pseudo-hyperbolic spaces.

Throughout this section, we shall denote by H the isotropy group of an action of G on M .

Theorem 3.1. A closed, connected subgroup G of SO0(n− r, r + 1) acts effectively and transitively on

Hn
s if and only if G is contained in Table 1.

Table 1
No. G H G/H

(1) SO0(n− r, r + 1) SO0(n− r, r) Hn
r

(2) Spin(9) Spin(7) H15
15 = S15

(3) Spin(7) G2 H7
7 = S7

(4) G2 SU(3) H6
6 = S6

(5) Spin0(8, 1) Spin(7) H15
7

(6) Spin0(5, 4) Spin0(4, 3) H15
7

(7) Spin0(4, 3) G∗
2 H7

3

(8) G∗
2 SU(2, 1) H6

2

(9) G∗
2 SL(3,R) = SUπ(3) H6

3

(10) SU(m− s, s+ 1) SU(m− s, s) H2m+1
2s+1

(11) Sp(m− s, s+ 1) Sp(m− s, s) H4m+3
4s+3

(12) Sp(m− s, s+ 1)Sp(1) Sp(m− s, s)Sp(1) H4m+3
4s+3

(13) SL(m+ 1,R) = SUπ(m+ 1) SL(m,R) = SUπ(m) H2m+1
m

(14) Sp(m+ 1,R) = Spπ(m+ 1) Sp(m,R) = Spπ(m) H4m+3
2m+1

(15) Sp(m+ 1,R)Sp(1,R) = Spπ(m+ 1)Spπ(1) Sp(m,R)Sp(1,R) = Spπ(m)Spπ(1) H4m+3
2m+1

(16) SU(m− s, s+ 1)U(1) = U(m− s, s+ 1) SU(m− s, s)U(1) = U(m− s, s) H2m+1
2s+1

(17) Sp(m− s, s+ 1)U(1) Sp(m− s, s)U(1) H4m+3
4s+3

(18) GL+(m+ 1) = SUπ(m+ 1)Uπ
0 (1) = Uπ

0 (m+ 1) GL+(m) = SUπ(m)Uπ
0 (1) = Uπ

0 (m) H2m+1
m

(19) Sp(m+ 1,R)R∗
+ = Spπ(m+ 1)Uπ

0 (1) Sp(m,R)R∗
+ = Spπ(m)Uπ

0 (1) H4m+3
2m+1

(20) Spπ(m+ 1)U(1) Spπ(m)U(1) H4m+3
2m+1

Proof. If G is compact, then so is H and G/H = Hn
r . Hence n = r and G/H is a sphere. By the

Borel-Montgomery-Samelson classification of the compact groups acting effectively and transitively on

spheres, we have that G is one of the following groups: Spin(9), Spin(7), G2, SO(m), SU(m), U(m),

Sp(m), Sp(m)U(1), Sp(m)Sp(1) (see [5, 14, 16]) and these correspond to the cases (2-4) , (1, with n = r),

(10-12, 16-17, with m = s) in Table 1.

When G is not compact (that is equivalent to r < n), we split the proof into two cases: (a) G

semi-simple and (b) G non-semisimple.

3.1. G semisimple. In the case G semisimple, we shall obtain the cases (5–15) of Table 1 from a

classification theorem due to Onishchik (see [17, Theorem 4.1]). We first recall some facts on transitive

actions from Onishchik [17]. Let K ′ and K ′′ be two closed Lie subgroups of K, and let k′, k′′ ⊂ k

be their associated Lie algebras. The subgroup K ′ acts transitively on K/K ′′ if and only if K can be

written as a product K = K ′K ′′. In the case of a semisimple triple (k, k′, k′′), that is also equivalent to

k = k′ + k′′. Additionally, one has K/K ′′ = K ′/(K ′ ∩K ′′). Specializing to our case, a closed, connected

subgroup G of SO0(n − r, r + 1) acts transitively on Hn
r = SO0(n − r, r + 1)/SO0(n − r, r) if and only

if so(n − r, r + 1) = so(n − r, r) + g. By Onishchik’s classification of the semisimple decompositions of

so(n− r, r + 1) with r < n (see [17, Theorem 4.1 and Table 1]), we get the cases (5–15) in our table.
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3.2. G non-semisimple. We proceed by splitting this case into two subcases: (b1) G acts irreducibly

on Rn+1 and (b2) G does not act irreducibly on Rn+1.

3.2.1. G acts irreducibly on Rn+1. In [2, p. 321, Theorem 6], Berger obtained that the subgroups G of

GL(n + 1,R) acting effectively and transitively on Hn
r , with G acting irreducible on Rn+1, are, except

a finite number, in the cases (1), (10-12), (16-17) of Table 1. To see that all excepted Lie groups are

semisimple, we shall now recall from Wolf [21, Proof of Theorem 3.1] the construction of the compact

form G∗ associated to G and his proof of the fact that G∗ acts transitively on a sphere.

If G acts irreducibly on Rn+1, then so does its Lie algebra g ⊂ gl(n+1,R). Hence, by [10, Proposition

19.1], g is reductive and dimZ(g) ≤ 1, which correlated to our working assumptions: (i) G ⊂ SO0(n −

r, r + 1), and (ii) G non-semisimple, it gives G = (G,G)U(1) (see [21, Lemma 1.2.1]). There exists a

Cartan involution T of so(n− r, r + 1) such that g is T -invariant (see [15, Theorem 6]).

Let Hx = {g ∈ SO0(n− r, r + 1) | gx = x} ≡ SO0(n− r, r) be the isotropy group at x ∈ Hn
s and let h

be its Lie algebra. Changing x, we may assume that h is also T -invariant (see [15, Theorem 6], or [21]).

The transitivity of G on Hn
r = SO0(n− r, r + 1)/Hx simply implies that so(n− r, r + 1) = g+ h. Let

s− = {X ∈ so(n− r, r + 1)|T (X) = −X}, s+ = {X ∈ so(n− r, r + 1)|T (X) = X},

g± = s± ∩ g, h± = s± ∩ h.

The associated compact forms of so(n− r, r + 1), g and h, defined by

so(n− r, r + 1)∗ = s+ + is−, g∗ = g+ + ig−, h∗ = h+ + ih−,

naturally satisfy the relation

so(n+ 1) = so(n− r, r + 1)∗ = g∗ + h∗ = g∗ + so(n).

Hence, the connected compact Lie group G∗ (with Lie(G∗) = g∗) acts transitively and effectively on the

sphere Sn = SO(n+ 1)/SO(n) (see Wolf [21, Proof of Theorem 3.1]), and thus, the non-semisimple Lie

groups G∗ belong the infinite families U(m) or Sp(m)U(1). It follows that G must be one of the groups

in the cases (16-17).

3.2.2. G does not act irreducibly on R
n+1
r+1 . Let V be a proper G-invariant subspace of Rn+1

r+1 . By Wolf [20,

Lemma 8.2], we have that 2(r+ 1) ≤ n+ 1 and W1 = V ∩ V ⊥ is a G-invariant maximal totally isotropic

subspace of dimension r + 1.

Let W2 be a totally isotropic space such that W1 ⊕ W2 ⊕ U = R
n+1
r+1 , dimW2 = dimW1 = r + 1,

U⊥ = (W1⊕W2)
⊥ and U does not contain any isotropic vector. The decomposition W1⊕W2⊕U = R

n+1
r+1

is called a Witt decomposition (see [19, p. 160, Exercise 9]). Let Q be the quadratic form on R
n+1
r+1 given

in the standard basis by Q(x, y) = 〈x, y〉
R

n+1

r+1

. Clearly, there exists an orthonormal basis {e1, · · · , en+1}

of Rn+1
r+1 with Q(ei, ei) = −1 for i ∈ {1, · · · , r+ 1}, Q(ej , ej) = 1 for j ∈ {r+ 2, · · · , n+1} and such that

{w1, · · · , wr+1} , {wr+1, · · · , w2r+2}, {w2r+3, · · · , wn+1} are bases of W1, W2 and U respectively, with

wi =
1

2
(ei − ei+r+1), wi+r+1 =

1

2
(ei + ei+r+1), wk = ek,

for any i ∈ {1, · · · , r + 1} and k ∈ {2r + 3, · · · , n + 1}. Any g ∈ G ⊂ SO0(n − r, r + 1) is a linear

transformation on R
n+1
r+1 , which can be written with respect to the basis {w1, · · · , wn+1} in the form

g =





A 0 0

0 B 0

0 0 D



 ,

with A,B ∈ GL(r + 1,R) and D ∈ GL(n− 2r − 1,R). By our assumption of g ∈ SO0(n − r, r + 1), we

easily get that B = (A−1)t and D ∈ O(n − 2r − 1). By the connectedness of G, we naturally have that
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A ∈ GL+(r + 1,R). The effectivity of G simply implies n = 2r + 1. If follows that G is a Lie subgroup

of Uπ
0 (r + 1). Let

G1 =

{

A ∈ GL+(r + 1,R)
∣

∣

∣

(

A 0

0 (A−1)t

)

∈ G

}

.

With respect to the basis {wi}, the quadratic Q writes as Q(z1, · · · , z2r+2) = z1zr+2+ · · ·+ zr+1z2r+2.

Hence, for any (z1, · · · , zr+1) 6= 0, we obviously have Q(z1, · · · , zr+1,−
z1
R , · · · ,− zr+1

R ) = −1 with R =

z21 + · · ·+ z2r+1. It follows that G1 acts effectively and transitively on W1 \ {0} = Rr+1 \ {0}. Clearly,

the Lie group G1 ⊂ GL(r + 1,R) acts irreducibly on Rr+1 and, hence, by [10, Proposition 19.1] its Lie

algebra g1 is reductive and dimZ(g1) ≤ 1. Thus, G is reductive and dimZ(g) ≤ 1. The non-semisimple

Lie group G decomposes as G = (G,G)(Z(G))0, where (G,G) is its semisimple part, and (Z(G))0 is the

connected component containing the identity of the center of G.

Like in § 3.2.1, we see that the associated compact form G∗ acts transitively and effectively on a sphere

S2r+2 and hence G∗ ∈ {SU(r + 1)U(1), Sp((r + 1)/2)U(1)}. It follows that (i) the abelian part (Z(G))0

of the reductive non-semisimple Lie group G is either U(1) or Uπ
0 (1) and (ii) the only possibilities for the

semisimple part (G,G), with (G,G) ⊂ SUπ(r+1) are: (G,G) = Spπ((r+1)/2) or (G,G) = SUπ(r+1).

If (Z(G))0 = U(1), then there exists a complex structure I ∈ U(1) ⊂ G on R2r+2. Moreover, there

exists a para-complex structure J ∈ (G,G) ⊂ G on R2r+2 because (G,G) ∈ {SUπ(r+1), Spπ((r+1)/2)}.

Thus {I, J, IJ} ⊂ G is a para-quaternionic structure on R
2r+2, and, in consequence, the only possibility

for G is G = Spπ((r + 1)/2)U(1), that is, the case (20) in Table 1.

When (Z(G))0 = Uπ
0 (1), we get 2 possibilities forG: G = Spπ((r+1)/2)Uπ

0 (1) orG = SUπ(r+1)Uπ
0 (1),

which correspond to the cases (18-19) in Table 1. �

Unlike in the real pseudo-hyperbolic case, the groups SU(m− s, s+1), Sp(m− s, s+ 1), Spπ(m+ 1),

SUπ(m+1), Spπ(m+1), Sp(m−s, s+1) and Spπ(m+1), act only almost effectively on CHm
s , CH2m+1

2s+1 ,

CH2m+1
m , APm, AP 2m+1, HHm

s and BPm, respectively. In order to make these actions effective, one has

to consider the action of the quotient of each group by its center (see [3, §7.12 Note on effectivity]). Let

Zm+1 = {exp(2πik/(m+ 1) | k = 0, · · · ,m}. Note that

Z(SU(m− s, s+ 1)) = Zm+1, Z(Sp(m− s, s+ 1)) = Z2,

Z(Spπ(m+ 1)) = Z(Sp(m,R)) = Z2,

Z(SUπ(m+ 1)) = Z(SL(m+ 1,R)) = {x ∈ R | xm+1 = 1}.

Theorem 3.2. Let G be a connected Lie group. One of the following holds:

(1) G is a closed subgroup of SO0(2n− 2r, 2r + 2) acting on CHn
r ,

(2) G is a closed subgroup of SO0(n+ 1, n+ 1) acting on APn,

(3) G is a closed subgroup of SO0(4m− 4s, 4s+ 4) acting on HHm
s ,

(4) G is a closed subgroup of SO0(2m+ 2, 2m+ 2) acting on BPm,

and the action is effective and transitive if and only if G is contained in Table 2.

Table 2

No. G H G/H

(1) SU(m− s, s+ 1)/Zm+1 S(U(1)U(m− s, s))/Zm+1 CHm
s

(2) Sp(m− s, s+ 1)/Z2 U(1)Sp(m− s, s)/Z2 CH2m+1
2s+1

(3) Spπ(m+ 1)/Z2 Spπ(m)U(1)/Z2 CH2m+1
m

(4)
SUπ(m+ 1)/Z2, if m is odd

SUπ(m+ 1), if m is even

S(Uπ(m)Uπ(1))/Z2, if m is odd

S(Uπ(m)Uπ(1)), if m is even
APm

(5) Spπ(m+ 1)/Z2 Spπ(m)Uπ
0 (1)/Z2 AP 2m+1

(6) Sp(m− s, s+ 1)/Z2 Sp(m− s, s)Sp(1)/Z2 HHm
s

(7) Spπ(m+ 1)/Z2 Spπ(m)Spπ(1)/Z2 BPm
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Proof. Clearly, if G is one of the groups in Table 2, then G acts effectively and transitively on the

corresponding space. We shall prove that if G is a subgroup satisfying (1-4) and acting transitively and

effectively, then it is contained in Table 2.

The transitivity of G on CHn
r = H2n+1

2r+1 /U(1) implies that GU(1) acts transitively on H2n+1
2r+1 . There

exists a complex structure I on R2n+2 such that I ∈ Z(GU(1)) (e.g. take I = iId2n+2 ∈ GU(1) ⊂

SO0(2n − 2r, 2r + 2)), and therefore, GU(1) ⊂ U(m − s, s + 1). By the transitivity of GU(1) on

H2n+1
2r+1 = SU(n− r, r + 1)U(1)/SU(n− r, r)U(1), we get

su(n− r, r + 1) + u(1) = su(n− r, r) + u(1) + g+ u(1) = su(n− r, r) + u(1) + g.

It follows that G acts transitively on H2n+1
2r+1 = SU(n−r, r+1)U(1)/SU(n−r, r)U(1). On the other hand,

the effectivity of G on CHm
s clearly implies that G acts also effectively on H2n+1

2r+1 and G ∩ U(1) = {e}.

Hence, by Table 1 of Theorem 3.1, G ∈ {SU(m− s, s+ 1)/Zm+1, Sp(m− s, s+ 1)/Z2, Sp
π(m+ 1)/Z2}.

We now repeat the argument above for the other cases. The transitivity of G on APn = H2n+1
n /Uπ

0 (1),

implies the transitivity of GUπ
0 (1) on H2n+1

n . The existence of a para-complex structure I on R2n+2 such

that I ∈ Z(GUπ
0 (1)), implies that GUπ

0 (1) is a subgroup of SUπ(n+ 1)Uπ
0 (1). It follows that

sl(n+ 1) + R = sl(n) + R+ g+ R = sl(n) + R+ g.

Therefore, G acts transitivity on H2n+1
n = GL+(n+ 1,R)/GL+(n,R). Obviously, the effectivity of G on

APn implies the effectivity on H2n+1
n and G∩Uπ

0 (1) = {e}. Hence, by Table 1, G falls in the cases (4-5)

of Table 2.

Analogously, we get that if G acts effectively and transitively on HHm
s = H4m+3

4s+3 /Sp(1) or BPm =

H4m+3
2m+1/Sp

π(1), then G = Sp(m− s, s+ 1)/Z2 or G = Spπ(m+ 1)/Z2, respectively. �

4. The proof of the main theorem

Proof of Theorem 1.1. Let (G,H) be a pair of Lie groups contained in Tables 1 or 2. We denote by

g, h their associated Lie algebras and by ad : g → gl(g) the adjoint representation of g. When h is not

semisimple, then the isotropy representation χ = ad : h → gl(g) is completely reducible simply because the

center Z(h) ∈ {U(1), Uπ
0 (1)} acts by semisimple endomorphisms. When h is semisimple, ad : h → gl(g)

is always completely reducible (see [10, Theorem 6.3]). It follows that there exits a subspace m in g such

that g = h⊕m and [h,m] = m. Such a homogeneous space G/H is called reductive.

Let (·, ·) be an ad(h)-invariant symmetric non-degenerate bilinear form on m, associated to a G-

invariant pseudo-Riemannian metric g on G/H . Let m = m+ ⊕m− be an orthogonal decomposition of m

such that (·, ·) is positive definite on m+ and negative definite on m−. There exists a Cartan involution

T of g such that m+ ⊂ g+ and m− ⊂ g−, where

g+ = {X ∈ g |T (X) = X}, g− = {X ∈ g |T (X) = −X}.

As in §3.2.1, changing the point where the isotropy is computed, we may assume that the isotropy Lie

algebra h is T -invariant. We have T (h) = h and thus, T (m) = m. Letting h± = g± ∩ h, we note that

h = h+ ⊕ h−.

Now, we define the compact forms g∗ = g+ + ig−, h
∗ = h+ + ih−; let m

∗ = m+ + im−, and take G∗

and H∗ to be the connected analytic Lie groups, with Lie(G∗) = g∗ and Lie(H∗) = h∗. Clearly, G∗/H∗

is a compact homogeneous space, and the associated bilinear form (·, ·)∗ on m∗ is positive definite and

its associated G∗-invariant metric g∗ is Riemannian (see [11] for the definition of (·, ·)∗). Moreover, m∗
+

and m∗
− are orthogonal to each others with respect to (·, ·)∗. It means that (g, h,m, (·, ·)) is a T -dual to

(g∗, h∗,m∗, (·, ·)∗) (see Kath [11, Definition 3.1]).

The compact dual triples (G∗, H∗, G∗/H∗) of all triples (G,H,G/H) of Tables 1 and 2, with a non-

compact G, are listed in the next table.
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Table 3
No. G H G/H G∗ H∗ G∗/H∗

(1) SO0(n− r, r + 1) SO0(n− r, r) Hn

r
SO(n+ 1) SO(n) Sn

(2) G∗

2 SU(2, 1) H6
2 G2 SU(3) S6

(3) G∗

2 SL(3,R) H6
3 G2 SU(3) S6

(4) Spin0(4, 3) G∗

2 H7
3 Spin(7) G2 S7

(5) SU(m− s, s+ 1) SU(m− s, s) H2m+1

2s+1 SU(m + 1) SU(m) S2m+1

(6) U(m− s, s+ 1) U(m− s, s) H2m+1

2s+1 U(m+ 1) U(m) S2m+1

(7) SUπ(m+ 1) SUπ(m) H2m+1
m

SU(m + 1) SU(m) S2m+1

(8) Uπ

0 (m+ 1) Uπ

0 (m) H2m+1
m

U(m+ 1) U(m) S2m+1

(9) Spin0(8, 1) Spin(7) H15
7 Spin(9) Spin(7) S15

(10) Spin0(5, 4) Spin0(4, 3) H15
7 Spin(9) Spin(7) S15

(11) Sp(m− s, s+ 1) Sp(m− s, s) H4m+3

4s+3 Sp(m+ 1) Sp(m) S4m+3

(12) Sp(m− s, s+ 1)U(1) Sp(m− s, s)U(1) H4m+3

4s+3 Sp(m+ 1)U(1) Sp(m)U(1) S4m+3

(13) Sp(m− s, s+ 1)Sp(1) Sp(m− s, s)Sp(1) H4m+3

4s+3 Sp(m+ 1)Sp(1) Sp(m)Sp(1) S4m+3

(14) Spπ(m+ 1) Spπ(m) H4m+3

2m+1 Sp(m+ 1) Sp(m) S4m+3

(15) Spπ(m+ 1)U(1) Spπ(m)U(1) H4m+3

2m+1 Sp(m+ 1)U(1) Sp(m)U(1) S4m+3

(16) Spπ(m+ 1)Uπ

0 (1) Spπ(m)Uπ

0 (1) H4m+3

2m+1 Sp(m+ 1)U(1) Sp(m)U(1) S4m+3

(17) Spπ(m+ 1)Spπ(1) Spπ(m)Spπ(1) H4m+3

2m+1 Sp(m+ 1)Sp(1) Sp(m)Sp(1) S4m+3

(18) SU(m− s, s+ 1) S(U(m− s, s)U(1)) CHm

s
SU(m + 1) S(U(m)U(1)) CPm

(19) Sp(m− s, s+ 1) Sp(m− s, s)U(1) CH2m+1

2s+1 Sp(m+ 1) Sp(m)U(1) CP 2m+1

(20) Spπ(m+ 1) Spπ(m)U(1) CH2m+1
m

Sp(m+ 1) Sp(m)U(1) CP 2m+1

(21) SUπ(m+ 1) S(Uπ(m)Uπ(1)) APm SU(m + 1) S(U(m)U(1)) CPm

(22) Spπ(m+ 1) Spπ(m)Uπ

0 (1) AP 2m+1 Sp(m+ 1) Sp(m)U(1) CP 2m+1

(23) Sp(m− s, s+ 1) Sp(m− s, s)Sp(1) HHm

s
Sp(m+ 1) Sp(m)Sp(1) HPm

(24) Spπ(m+ 1) Spπ(m)Spπ(1) BPm Sp(m+ 1) Sp(m)Sp(1) HPm

By Kath [11, Corollary 4.1], the G-homogeneous Einstein pseudo-Riemannian metrics on G/H are in

one-to-one correspondence to the G∗-homogeneous Einstein Riemannian metrics on G∗/H∗. Thus, by

Ziller’s classification of homogeneous Einstein Riemannian metrics on sphere and projective spaces (see

Ziller [22]), we get the following:

(i) for the cases (1-8) of Table 3, the only G-homogeneous Einstein pseudo-Riemannian is the con-

stant curvature metric,

(ii) for each of cases (9-11, 14) of Table 3, we have only two G-homogeneous Einstein pseudo-

Riemannian metrics: the constant curvature one and the Einstein metric of the canonical varia-

tion,

(iii) for each of (19, 20, 22), we have only two G-homogeneous Einstein pseudo-Riemannian on G/H ,

(iv) the cases (12-13) are special cases of (11), and the cases (15-17) are special cases of (14),

(v) for the cases (18, 21, 23, 24), we have only one G-homogeneous Einstein pseudo-Riemannian on

G/H .

�

Remark 4.1. We recall from Ziller [22] that the homogeneous Einstein Riemannian metrics on S4n+3

(associated to the canonical variation of the Hopf fibration S4n+3 → CPn) are normal homogeneous,

but the homogeneous Einstein Riemannian metrics on S15 (associated to the Hopf fibration S15 → S8)

and on CP 2n+1 are not even naturally reductive. Since the notions of normal homogeneity and natural

reductivity are preserved under duality, it follows that 2 homogeneous Einstein metrics on H15
7 , namely

the Sp(2, 2) and Spπ(4)-invariant metrics, and the Einstein metrics on H4m+3
4s+3 are normal homogeneous,

but the non-canonical homogeneous Einstein metrics on CH2m+1
2s+1 , AP 2m+1 and the other 2 non-canonical

Einstein metrics on H15
7 (the Spin0(5, 4) and Spin0(8, 1)-invariant metrics) are not naturally reductive.
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16. A. L. Onǐsčik, Transitive compact transformation groups, Eleven papers on topology and algebra, American Mathe-

matical Society Translations. Series 2, vol. 55, American Mathematical Society, Providence, R.I., 1966, pp. 153–194.

MR 0155935 (27 #5868)
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