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Abstract

In the theory of integrable systems, a solution to a Lax pair equation associated
to a coadjoint orbit of a semisimple Lie group is given by a Birkhoff factorization.
By the work of Connes-Kreimer, there is a Birkhoff factorization of characters on
the Kreimer Hopf algebra of Feynman diagrams. In this thesis, we reverse the usual
procedure in integrable systems by producing a Lax pair equation % = [M, L] whose
solution is given precisely by the Connes-Kreimer Birkhoff factorization. The main
technical issue, that the Lie algebra of infinitesimal characters is not semisimple,
is overcome by passing to the double Lie algebra with the simplest possible Lie
algebra structure. In particular, the Lax pair gives a flow for the character ¢ given
by Feynman rules in dimensional regularization. We work out an explicit example
of the theory on a finitely generated subalgebra of the Hopf algebra of Feynman

diagrams.
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Chapter 1

Introduction

In the theory of integrable systems, writing a system in Lax pair form is very im-
portant for showing the complete integrability of the system. All known examples
in the classical theory that can be written in Lax pair form are integrable. As the
resulting integration by quadrature is not easy to perform in the most cases, one can
alternatively use a Birkhoff decomposition to produce solutions of a system in Lax
pair form. As a third approach for matrix systems the geometric data of the sys-
tem is controlled by the spectral curve. In particular, the coefficients of the spectral
curve give invariants of motion of the system, so one can hope to prove complete
integrability from the spectral curve.

In |7, 8], Connes-Kreimer discovered a Birkhoff factorization of characters on
Kreimer’s Hopf algebra of Feynman diagrams. In this thesis, we reverse the usual
procedure in integrable systems by producing a Lax pair equation whose solution is
given precisely by the Connes-Kreimer Birkhoff factorization (Theorem EEZ3). The
main technical issue, that the Lie algebra of infinitesimal characters is not endowed
with an ad-invariant nondegenerate symmetric product, is overcome by passing to
the double Lie algebra with the simplest possible Lie algebra structure. In particular,
the Lax pair gives a flow for the character ¢ given by Feynman rules in dimensional
regularization. It would be very interesting to know if this flow has physical signifi-
cance.

The thesis is organized as following: Chapters[@and Blare background material on
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the two main fields of the thesis: Hopt algebras in QFT and integrable systems asso-
ciated to Lie algebras. In Chapter B, we briefly present the notions of Hopf algebras,
the Kreimer Hopf algebra of Feynman graphs, and its group of characters. At the
end of the second chapter we introduce the Connes-Kreimer Birkhoff decomposition.
In this chapter we follow the references [, 8, I8, T9].

Chapter Bl covers background material on integrable system on Lie algebras. In
particular, we introduce Poisson structures, integrable systems, Poisson-Lie struc-
tures and Lie bialgebras, and give the equivalence between the category of Lie bial-
gebras and connected and simply connected Poisson-Lie groups. We also discuss a
specific example of the Toda lattice and discuss the associated spectral curve. This
chapter uses the references [2, 4, 20, 23)].

In Chapter B, we introduce a method to produce a Lax pair on any Lie algebra
from the equations of motion on the double Lie algebra. In Section L4l we apply
this method to the particular case of the Lie algebra of infinitesimal characters of the
Hopf algebra of Feynman diagrams, and produce a Lax pair equation whose Birkhoff
factorization coincides with the Connes-Kreimer factorization. The main result of
Connes-Kreimer factorization and Lax pair equations is Theorem According
to this theorem, we can start with any infinitesimal character and use the Connes-
Kreimer factorization to give a flow of infinitesimal characters. By adjusting the
initial condition, we can find the Connes-Kreimer factorization of a specific infinites-
imal character as part of this flow. We also discuss the flow of the beta function
associated to the flow of (exponentiated infinitesimal) characters.

In Chapter Bl we work out an explicit example of the theory on a finitely generated
subalgebra of the Hopt algebra of Feynman diagrams. We discuss how this example
can be generalized to many other finitely generated Hopf algebras; the only constraint

is the amount of available computing power. We also discuss the spectral curve



technique for our example.

It is natural to look for invariants of Lax pair equations by spectral curve tech-
niques, and to linearize the flow on the Jacobian of the spectral curve. Unfortunately,
in the worked example of Chapter B, the spectral curve is highly reducible, and the
only invariants we find are trivial. We hope to find examples with nontrivial invari-
ants in the future.

Chapters Bl and Bl contain the results from [3].

Appendices A, B, C, D and E contain the Mathematica files with some comments

to support the results from Chapter



Chapter 2

A Hopf algebra of Feynman diagrams

In this chapter we recall some basic definitions and notation and present a Hopf
algebra of Feynman diagrams. Closely following the presentation from [I9] and the
ideas from [, 8], we introduce the Birkhoff decomposition for a connected filtered
Hopf algebra H of a character ¢ : H — A where A is a unital algebra that admits
a renormalization scheme, i.e. a splitting into two subalgebras A = A_ & A, with

le Ay

2.1 Hopf algebras

Let k£ be a field. A k-vector space H with an associative bilinear map u: HQ H — H
is called a k-algebra. Associativity is equivalent to the commutativity of the following

diagram:
H +—— H®H
m

/] [ asu

H®H «— H®H®H
p®id

The k-algebra is called unital if it has a unit 1. We denote by n : k — H the map
given by n(c) = ¢- 1 for any ¢ € k. We shall assume that all our algebras are unital

and morphisms between two unital algebras are unital.

Definition 2.1.1. A coalgebra is a triple (H, A, ¢), where H is a vector space and
e:H—kand A: H— H® H are linear maps, such that the following diagrams

cominute.



Coassociativity
H -2 HoH
AJ lM®A
HoH 22 HeHeH
Counity

koHE HoH Y Hek

N A

H

Definition 2.1.2. (H, u,n, A, ¢) is called a bialgebra if
i) (H,p,n) is an algebra,
ii) (H,A,¢) is a coalgebra and
iii) A and e are morphisms of algebras.

We recall Sweedler’s sigma notation:
Ax) = Z e
(z)

Let (H,u,n, A, ) be a bialgebra. We introduce the following convolution on £(H),

the set of linear maps from H to C:

(f*g)(x) =) fla))g(a"),
@

for f,g € L(H).

Definition 2.1.3. Let (H, pu,n,d,e) be a bialgebra. A linear map S : H — H is



called an antipode of H if
S*idH :idH*S:no&‘.

A bialgebra (H, pu,n,0,¢) endowed with an antipode is called a Hopf algebra.
We introduce the notion of graded bialgebra.

Definition 2.1.4. Let k be a field of zero characteristic. A graded bialgebra on k is

a graded k-vector space

H=EEPH.

n>0

which is endowed with a bialgebra structure and satisfies the following:
Hy - Hg C Hpsg

AM,) C P H,®H,.

p+q=n
A graded Hopf algebra is a graded bialgebra H = € H, endowed with an antipode
n>0
S :'H — 'H such that
S(H,) C Hy.

For a graded bialgebra one can construct a filtration
HcH'c---cH ' cH" M -+

by setting

Definition 2.1.5. A graded bialgebra is called connected if 'Hy is one-dimensional.



Proposition 2.1.6. Any connected filtered bialgebra H is a filtrated Hopf algebra.

The antipode is given by S(1)=1 and the recursive formula
S(x) =—x— Z S(a")a".
(@)

2.2 The Hopf algebra of rooted trees

Definition 2.2.1. A rooted (non-planar) tree t is a connected and simply connected
one dimensional simplicial complex with a point base *(t), which is called the root of
t. We denote by V(t) the set of vertices and by E(t) the set of edges, each of which

will be assumed oriented.
The convention for drawing the rooted trees is to put the root in the uppermost
position.

Ezxzample 1. The following are examples of rooted trees:

it

Definition 2.2.2. The set of trees is denoted by 7. The empty tree is consider a
tree and will be denoted by 17. Any finite subset of 7 is called a forest. The set of
all forests is denoted by F (7).

In what follows we shall introduce a Hopf algebra structure on the set on F(7).

First we define the multiplication and the unit.

Definition 2.2.3.
m:F(T)F(T)— F(T),

m(tiy - by, @t - ty,) =ty -t by o,



where ¢;, -+ t;,,t;, -+ t; € F(T). 17 is defined to be the unit element in F(7).

To define a grading on F(7) we set the degree deg(t) of a tree ¢ to be the number

of vertices and the degree of a forest ¢, - - -¢,, is given by

deg(ty---t,) = Z deg(t;),
1

the number of vertices of the forest.

The algebra generated by F(7) with the natural multiplication given above is
also denoted by F(7). F(7) is a graded commutative algebra. Notice that F(7) is
an algebra freely generated by 7.

To define the comultiplication on F(7), we need to define the notion of an ad-

missible cut of a tree.

Definition 2.2.4. Let t be a tree. An admissible cut is a subset ¢ of E(t) with at
least one element and such that any unique path from the root to any vertex of ¢
one has at most one element in c¢. Removing the elements of ¢ from E(t), we split ¢
into several several connected components. The connected component containing the
root will be denoted by R.(t), while the set of all the other connected components
not containing the root will be denoted by P.(¢). Notice that P.(t) is in general a
forest, while R.(t) is a tree. Let C; be the set of all admissible cuts of ¢. Notice that

the empty and the full cuts are excluded, (i.e. we don’t allow P.(t) =t or R.(t) = 0).
Now, we define the coalgebra structure on F(7).

Definition 2.2.5. We consider the following maps:

1) the counity: ¢ : F(T) — k, e(x) =0 for any x € F(7T) \ {17} and (17) = 1.



2) the comultiplication: A : F(7T) — F(7) ® F(7T) is given on generators by

Ally) =17 @17, Alt)=t@1r+1r@t+ > Pult) ® Re(t),

ceCl
Proposition 2.2.6. (F(7),m, 17, A, ¢) is a bialgebra.

Notice that

deg(t) = deg(P.(t)) + deg(Rc(t)),

and this implies that the bialgebra (F (7)), m, 17, A, ¢) is graded.

By Proposition BT, the grading of the bialgebra gives recursively the antipode:

S(t) = ~t = 3 S(P() ().

ceCt

Notice that the only tree of degree zero is 17, so the bialgebra of rooted trees is

connected. Summarizing, we state the following result.
Theorem 2.2.7. (F(7),m,17,A ¢) is a graded connected Hopf algebra.

Now we given some computations for A and S.

Ezample 2.
A(o):o®1']'+1’]'®o, S(o):_o

A =Ilolr+1rol+.0@. SO=-1+.
AN =A17+178 A+ 2.0+ w®., SN)=-A+2]-..
Al = ADA() = 0@ 17+ 17 ® e+ 2.0 .

The construction in this section can be extended to the Hopf algebra of decorated

rooted trees. In the next section we introduce the Hopf algebra of 1Pl Feynman
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graphs. Since any Feynman diagram has an associated decorated rooted tree the
Feynman graph Hopf algebra can be considered as a Hopf algebra of decorated rooted

trees.

2.3 The Hopf algebra of Feynman graphs

In this section we recall the construction of Hopf algebras of Feynman graphs, based

on [I8, 19].

Definition 2.3.1. A Feynman graph (diagram) is a non-oriented, non-planar graph
with a finite number of vertices and edges. An internal edge is an edge connected to
both ends to a vertex. An external edge is an edge with one open end and with the

other end connected to a vertex.
To construct a Hopf algebra of Feynman graphs we consider the set of 1PI graphs.

Definition 2.3.2. A one-particle irreducible graph (1PI graph) consists of edges and
vertices, without self-loops, such that the graph remains connected upon removal of
any one edge. Its set of vertices is denoted by ' and set of edges by 'Y, The set
(1]

ext*

of internal edges is denoted by I Ei}t and the set of external edges by I

Definition 2.3.3. A Feynman subgraph of a 1PI graph I" is defined to be a graph

with v ¢ T and containing all vertices adjacent to v,

Definition 2.3.4. The residue of a connected graph is the graph obtained by shrink-
1]

ing all internal edges and vertices to a point (i.e. the set T UT} ) is replaced by a

point).

For any Feynman subgraph ~ of I', we define I'/7 to be the contracted graph obtained

by replacing all connected components of v with their residues inside I'.
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Definition 2.3.5. For any connected graph I" with V(I') vertices and with I(I)

internal edges, the loop number is given by

Definition 2.3.6 (|2I), p. 309|). The superficial degree of divergence of graph I' is
dL — 21, where d is the dimension of the configuration space, L is the loop number
of I' and I is the number of internal edges of I'. We say I' is superficially divergent

if the superficial degree of divergence is positive.

Definition 2.3.7. Let 'H be the algebra generated by 1PI graphs. The multiplication
of two elements in H is given by the disjoint union, the unit element 1 is the empty
set (), and the sum is formal addition. Notice that H is a commutative algebra.

Let A : ' H — H ® H be the comultiplication given on any generator I" with
L(T') > 0 by

AM)=T®1+10T+> y®I/y
yCI'

where the sum is over all unions of superficially divergent 1PI proper subgraphs 7,
and A(l) =1® 1.
Let € : H — k be the linear map given by £(I') = 0 for any I' # 1 and (1) = 1.

Proposition 2.3.8. H defined above is a connected commutative Hopf algebra. The

antipode S : H — H is given by S(1) =1 and
SI) =~ = SO /vy
v

for any I' # 1. Here the sum is over all unions of 1PI superficially divergent proper

subgraphs .
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Example 3.

MO ={ret+ie >+ re{r

Following [[7], we shall discuss various gradings and filtrations of H. To construct
gradings on H, we start by associating to any 1PI graph I', an integer n(I") and then

naturally extend the function n to the entire Hopf algebra H is given by

deg(T Zn i), deg(1) =0.

We are particularly interested in a grading that is compatible with the coproduct,
ie.

deg(y) + deg(I'/v) = deg(T). (2.3.1)
This will give a grading and in consequence a filtration on the Hopf algebra.

Proposition 2.3.9. The following three gradings satisfy the compatibility condition

I(T") = number of internal edges of T,
v(I') = V(T') — 1 = number of vertices of I — 1,
L(T)=I(T)—o)=I1(T)-V()+1,
L(T") is the loop number.

In all following chapters, we shall consider the Hopf algebra of 1PI Feynman

graphs H graded with respect to the loop number L(T").

Proposition 2.3.10. 'H defined above is a connected filtrated commutative Hopf

algebra.
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We have the following property, which is also valid for any graded connected Hopf

algebra:

Proposition 2.3.11. If H is the Hopf algebra of 1PI Feynman graphs then for any

homogeneous element I' € 'H,, we have

AT =T@l+1eT+> I'el”,
)

where I, T are homogeneous elements of degree less than n.

2.4 The group of characters and the Connes-Kreimer

Birkhoft decomposition

Let H = (H,1,u,A,¢,5) be a Hopf algebra over C with unit element 1.

Definition 2.4.1. The character group G = Char(H) of a Hopf algebra H is given
by

G={¢:H— C| ¢isalinear map, (1) =1, ¢(zy) = ¢(x)o(y) for any =,y € H}.
The group law is given by the convolution product and the unit element is e:

(V1 % 12)(h) = (Y1 @ 1o, Ah),

e(1)=1, e(h) =0 for any h € H\ {0}.

The inverse of an element ¢ € Char(H) is given by



(z),2'#x

Definition 2.4.2. An infinitesimal character of a Hopf algebra H is a C-linear

map Z : H — C satisfying
(Z,hky = (Z h)e(k)+e(h){Z, k).

The set of infinitesimal characters is denoted by 0Char(H) and is endowed with a

Lie algebra bracket:
2, Z'\=ZxZ' —Z'xZ, for Z, Z' € OChar(H).

Note that g = dChar(H) is the Lie algebra of Char(H) and that for any infinites-
imal character Z we have Z(1) = 0.
Let A be an algebra that admits a renormalization scheme i.e. a splitting into

two subalgebras:

A=A_d A,

FEzample 4. We can take A to be the algebra of Laurent series over C

AZ{ZCiAi|m€Z, ¢; € C},

i=m

-1
A= {Zcz-)\i |mezZ, ¢ eC},

i=m

A+:{Zci)\i | mEZ, C; GC}

=0

Notice that A= A_ & A,.
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Similar to the definitions of G and g, we define GG 4 to be the group of characters

given by

Ga={¢: H— A|¢isalinear map, ¢(1) = 1, ¢(zy) = ¢(x)p(y) for any z,y € H}.

and Lie algebra of infinitesimal characters

ga=1{Z:H — A| Zis alinear map, (Z, hk) = (Z, h)e(k) + c(h)(Z, k)}.

Let 7 : A — A_ be the projection onto A_, let P_ = —m. Let P, : A — A, be

the projection onto A, . Notice that P, =id + P_.

Definition 2.4.3. A map 7 : A — A with 72 = 7 is said to satisfy the Rota-Baater
equation if

m(@)m(y) + w(2y) = (7 (2)y + 27 (y)),
for any z,y € A.

Ezample 5. If A is the algebra of Laurent series from ExampleH], then the projection

m: A— A_ satisfies the Rota-Baxter equation.

Theorem 2.4.4 ([19)). Let H be a connected graded Hopf algebra and let A be an
algebra with a splitting A= A_® Ay, 1 € A.. Then any ¢ € G4 admits a unique

Birkhoff decomposition:

o= " *xp,,

where p_(1) =14, p_(Ker €) C A_ and p(H) C A,.

Moreover p_ and @ are given by

p—(x) = —m(R()),
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() = R(z) — m(R(x)),

where R is the Bogoliubov-Parasiuk-Hepp preparation map given by
R(z) = p(x)+ D _ ¢ (2)p(a")
(@)

If the algebra A is commutative and w satisfies the Rota-Bazter equation, e.g.

Example [J) of Laurent series, then both ¢_ and ¢ are characters.

The Hopf algebra of rooted trees and the Hopf algebra of 1PI Feynman graphs
are the most important examples of connected graded Hopf algebras. By Theorem
EZA one gets the Connes-Kreimer Birkhoff decomposition in [7]. In fact the proof

of Theorem EZZA in [T9] follows the ideas from [7].

Example 6.

2.5 The (-function

Following [8, [T}, M9], we shall introduce the S-function of a character ¢. In a later
section, we shall find relations between [-functions and our Lax pair equations.
Everywhere in this section, A will denote the algebra of Laurent series (given in
Example H).

Let H = @ H,, be a connected graded Hopf algebra. Let Y be a biderivation on

‘H given on homogeneous elements by

Y :H, — Hn, Y(z) =nx for x € H,.
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Notice that ¢ — p oY is a derivation of G 4.

Let {0, }iec be the one-parameter group of H given by
0,(x) = e™x, for x € H,.

Then ¢ — o6, is an automorphism of G 4. Now, we define a different action of C

on Gy4. Fort € C and ¢ € G4 we define ¢'(x) on an homogeneous element x by

P'(2)(N) = eMlp(a)(N),

for any A € C, where |z| is the degree of x € H. Let
@ d,
Ga={peGu| (¢ =0},

be the group of characters with the negative part of Birkhoff decomposition indepen-

dent of t. The dimensional regularized Feynman rule character ¢ is in G%. Referring

to |8, [[1]|, the physical meaning is that the counter term ¢_ does not depend on the
Op_

mass parameter p, i.e. o = 0.

Proposition 2.5.1. Let ¢ € G% and let hy = o' % p'. Then the following limit

Fy(z) = lim hy(z) ()

A—0

exists and it is a one-parameter subgroup in G4 N G of scalar valued characters of

H.

Notice that h(z) € Ay as by = o7 x o x ()2 % (') 1 = 03! * (¢h)4.
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Definition 2.5.2. For any ¢ € G9%, the beta-function of ¢ is defined to be

d

8¢) = 2| Fl)

for any x € 'H.

Using the Connes-Kreimer scattering formula, we show that ¢_ can be given in

terms of its residue.

Definition 2.5.3. We define R : G4 — g by

R(p) = ' x(poY).

Notice that R is well defined. Indeed

R(zy) = ¢ '@y )e"y") (12" + 1¥"])

= ¢ (@)p@)|2"e(y) + o W)y |e(x) = R(z)e(y) + Ry)e().
Let g4 be the semidirect product
g4 = gax C.Z,

where the action of C.Z; on g4 is given by Zp(X) = X oY.

Let G4 be the semidirect product
G_A = GA X (C,

with the action of C on G 4 given by ¢.t = p o #,. G4 has Lie algebra g4.

Notice that R is bijective and its inverse is given by the following theorem.
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Theorem 2.5.4 ([19)). Let X € g4. Then
exp(—tZy) exp(t(Zo+ X)) € G4 for any t € R, (2.5.1)

where exp : §a — G is the exponential of §. The following limit exists and we have

R™(X) = lim exp(—tZy) exp(t(Zy + X)) (2.5.2)

t—o00

Let G4 ={pe G| p(Kere)C A_}.

By [, we have various formulas for the beta-function:
B(¢) = Res R(p) = Res R(¢~') = Res(p~t o V).
On the other hand, for any ¢ € G%_ we have (see [19])

R(p) = %Res(@b oY),

Then ¢='(\) = R} (1Res(p=' 0 Y)) = R7(2). Therefore by Theorem I3 we get

the Connes-Kreimer scattering formula:

Theorem 2.5.5. If H is a connected graded Hopf algebra and o € G, then

o (N = tlggo exp(—t(Zo + §>> exp(tZp)

Thus the beta function encodes the "divergent" piece piece of ¢_ of the character ¢.
In particular if 5 = 0 then ¢_ is trivial. ¢_ is determined by its residue, namely we

have the following result.
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Corollary 2.5.6. If ¢ € G%, then

p-(A) = lim exp <—t(Zo - w)) exp(tZo)

2.6 The exponential map of gy

Let 'H be a connected graded Hopf algebra. Let
ga=1{Z:H — C| Zis linear, Z(1) = 0}

and
Ga={p:H — C|pislinear, p(1) = 1}
Let exp : ga — G4 be the exponential map of g4.
Theorem 2.6.1 ([T9]). The exponential exp : g4 — G 4 is bijective,

[e.9]

1 n
exp(2) = 37",

n=0
and the inverse log : G4 — g4 is given by

(-1

log(1+2) =) Z",

n=1

Recall that Manchon’s proof in [I9, p. 32| uses the fact that the Hopf algebra is
filtrated which implies that both the exponential and logarithm series evaluated on
a given element are in fact finite sums.

This implies the following result which will be used in the main Theorem 23

Corollary 2.6.2 (|19, p. 35|). The exponential exp : g4 — G 4 is bijective and it is

the restriction of the exponential on g.4.



Chapter 3

Poisson-Lie structures and Lie bialgebra structures

In this chapter we review background material which will be needed for the results in
the next chapter. We present the concepts of Poisson, Poisson-Lie and Lie bialgebra
structures and discuss the relations among them. A Lie bialgebra is an infinitesimal
analogue of a Poisson-Lie structure.

We also discuss integrable systems and an example the generalized open Toda
lattice of a semisimple Lie algebra. We sketch how affine loop algebras of semisimple
Lie algebras can be treated analogously to the semisimple case. The references for this
chapter are the books by Adler, van Moerbeke & Vanhaecke [I], Babelon, Bernard &
Talon [2], Chari & Pressley [4] and Suris [23] and the survey paper by Reyman and

Semenov-Tian-Shansky [20]. In section §84] we briefly discuss the spectral curve.

3.1 Poisson structures

Definition 3.1.1. Let M be a smooth manifold. A Poisson bracket (or Poisson
structure) on M is a bilinear operation {-, -} on the set C*°(M) of smooth functions

on M which satisfies the following properties:

1. Skew-symmetry:

{e1, 02} = —{p2, 01}

for 1,0 € C(M);

21
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2. Jacobi identity

{01, {2, 3t} + {02, {@s, 01} } + {3, {w1, 21} =0

fOI' 90179027 §03 € COO(M)7

3. Leibniz rule:

{01, 02003} = {@1, P2} 03 + {01, p3}a

for ©1, P2, P3 € COO(M)
(M, {-,-}) is called a Poisson manifold.

Definition 3.1.2. A smooth map F': (M, {-,-}y) — (N, {:, -} ) between two Pois-

son manifolds is called a Poisson map if

{1, 02}n o F ={p10F,p30 F}y

for 1,02 € C*(N).

In local coordinates (z1, xo,- -+ ,x,), the Poisson bracket can be written as
. Op1 Oy
{@17@2}(25) _i]z::lc ( )axz ax]

where ¢;;(z) = {z;, z;}.

Let W be the skew-symmetric 2-tensor given by
0
W, = cii(
2]21 J 8{1;’Z 8%

W is independent of local coordinates. W is called the Poisson bivector. Notice that

{9017 902} = <d§01 ® dpa, W)
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Ezample 7. Let (M,w) be a symplectic manifold. Then the bracket given by

{1, 02} = XAO1(‘P2)7

for @1,y € C°(M), is a Poisson structure. Here X, is the vector field given by
Z'me = d(pl
Ezample 8. Let (My,{-, }ar), (Ma,{-,-}rn) be two Poisson manifolds. The product

Poisson structure {-, -}y« 18 given by

{e1, 2t san (21, 12) = {@1(+, m2), 02 (-, 22) bary (21) + {p1(21, ), pa(@1, ) b sy (72)

Definition 3.1.3. Let (M, {-,-}) be a Poisson manifold and let f : M — R be a

smooth function on M. Xy is called the Hamiltonian vector field of f if

Xi(g) = {9}

forallg € C°(M). fis called the Hamiltonian function of X;. The flow ¢, : M — M

of Xy is called the Hamiltonian flow of f.

Note that any function on a symplectic manifold is Hamiltonian.

In local coordinates (21, - ,x,), the Hamiltonian vector field X of f is given by
- of o
Xi(x) =S e (0) 2L 2

Let B : T*M — T'M be the map given by

B(df) = X;.

Notice this map is well defined.
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If the Poisson structure {-,-} is non-degenerate, then B is bijective and w =
(B~'® B7')(W) is a closed two-form on M. The Jacobi identity for {-,-} translates
into dw = 0. Conversely a symplectic structure on M gives a non-degenerate Pois-
son structure on M (see Example [). We call a non-degenerate Poisson structure

symplectic.

Definition 3.1.4. Let (M, {-,-}) be a symplectic structure on a manifold M of
(real) dimension 2n. Let H be a Hamiltonian function (i.e. a function on M). The

Hamiltonian system

F={H F}

is called completely (Liouville) integrable if it has n independent conserved quantities
F,: M — R (i.e. {H,F;} = 0) that are in involution (i.e. {F}, F;} = 0). Here
independent means that dF},...,dF, are linearly independent 1-forms everywhere

except possibly on a set of measure zero.

In the next section we give a more general definition and state the Arnorld-

Liouville Theorem.

3.2 The Kirillov bracket on g* and Lax pair equation

In this section we introduce a natural Poisson bracket on the dual g* of a Lie algebra
g. We also show that the equations of motion on a Lie algebra with an ad-invariant
non-degenerate bilinear form can be put in Lax pair form.

For F € C*(g*) and L € g* we define VF(L) € g as follows:

d(F(L + X))
de e=0

(VE(L), X) =

for any X € g*, where (-,-) is the natural pairing between g and g*. Notice that
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dF (L) = VF(L) via the natural identification g** = g.

Definition 3.2.1. For any two functions F,G € C*°(g*) and L € g* we define
{F,G}(L) = (L, [VF(L),VG(L))).

Then {-, -} is a Poisson bracket on g*, called the Kirillov (Lie-Poisson) bracket.

The equations of motion F' = {H, F} of a Hamiltonian function H with respect

to the Kirillov bracket can be written as

F=ad (VH(L))(L),

which we will write as F' = ad*"VH (L) - L. Here ad” is the coadjoint representation
given by ady (Y*)(Z) = =Y *(adx(Z)) for X, Z € gand Y € g*.

Definition 3.2.2. A Casimir function on g* is a function C' : g* — R satisfying the
following identity
ad*"C(L)- L =0.

The equations of motion are trivial for a Casimir function.
Proposition 3.2.3. An Ad*-invariant function is a Casimir function.

If g is endowed with an ad-invariant non-degenerate symmetric bilinear form, then
we can identify g with g* and ad® with —ad, so the Hamiltonian equation becomes
a Lax pair equation

L=[L,VH(L).
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3.3 Integrable Systems: Liouville Integrability

Definition 3.3.1. Let (M,{-,-}) be a Poisson manifold of rank 2r and let F' =
(F1,...,Fs) be in involution (i.e. {F}, F;} = 0) and independent (i.e. dFy,...,dF,
are linearly independent on a dense set), with s = dim M — r. We say that [F is
completely integrable and that (M,{-,-}, F') is an integrable system or a completely
integrable system. The vector fields Xp, are called integrable vector fields and the
map F' is called the momentum map. r is the degree of freedom of the integrable

system and 2r is its rank.

Let X, be the Hamiltonian vector field corresponding to F;. Let D the distribu-
tion generated by {Xp,,... Xg }. The maximal integral manifold F) of D through
m is called the invariant manifold of F' through m.

Now we state the Arnorld-Liouville Theorem for real integrable systems. The
Arnorld-Liouville Theorem is considered a good motivation for introducing the pre-

vious definition.

Theorem 3.3.2 (Arnorld-Liouville). Let (M, {-,-}, F') be a real integrable system of
rank 2r, where F' = (Fy,..., Fy). Let m € M such that dFy,...,dFs are linearly

independent at m and F!, be the invariant manifold of F' that passes through m.

1) If F! is compact then there exists a diffeomorphism from F)  from F,, to the
torus T" = (R/Z)", under which the vector fields Xg,,...Xp, are mapped to

s

linear vector fields

2) If F! is not compact but the flow of each X, is complete on F), then there
exists a diffeomorphism from F! to R""9 x T (0 < g < r), under which the

vector fields Xp,, ... Xp, are mapped to linear vector fields.

We will specially be interested in non-degenerate Poisson structures.
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Now we present the generalized open Toda lattice associated to an arbitrary

semisimple Lie algebra following [20].

Ezample 9. Let g be a semi-simple Lie algebra, a its Cartan subalgebra, A its root
system, P C A the set of simple roots. Let g, the corresponding root space of a € A.
Let g be the root decomposition of g = a + G}Aga. Ifg=>
4(8) = k. h

Let gi= @ gaifi#0and go=a. Let g, =P,>, and g = D, ;-

d(a)=t
We denote by (+,-) the Killing form of g. Set

aep ko we denote by

H(X) = 5(X,X)

and f = > e_,, where e, is a root vector. Let O be the g;-orbit of f in a+ g_;.
acP

Then
Oy ={p+ Zc_aea, p € a},

aeP

where e, 18 a root vector.
The Lie-Poisson bracket is given by {pg, co} = (o, B)ca, {Ca, s} = {Pa,ps} = 0.

A parametrization of Oy is given by

l

§=2 phit Y ep(Y_aleg)

aeP =1

Here {h;} is a basis of a, {¢;} is its dual basis with respect to the Killing form i.e.
(hi,9i) = 0 ;. Let q; = (q, h;) and p; = (p, g;). Let O = Oy + ¢, where e =) _peq.
Computing the previous Hamiltonian for an element L € O we get the Toda

lattice Hamiltonian

H(L) = 5(0.0) + D (e ca)e®,

acP
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When {h;} is a orthogonal basis in a, the Toda lattice Hamiltonian is
1 2
H(L) =5 > pi+ Olezpexp(; g, €)).

The Lax pair equation of the Toda lattice is:

dL
dt [ ) :|:]>

where

L=p+ Z e@De_ + e,
acP

M+:p—|—€’ M_:M+—L.

Notice that the generalized Toda lattice Hamiltonian is Liouville (completely) inte-
grable.
The ordinary nonperiodic Toda lattice is system of n interacting particles on a

line with exponential interactions, the Hamiltonian is given by:

n n—1
1
=3 > v+ g expl(2(g; — gjs2)].
Jj=1 j=1

The equation of motions when we set g; = 1 are:

q; = Py, j:]-a"'anv

p1=—2exp2(q1 — @)], Pn = 2exp[2(¢n-1 — @n)],

Pj =2 exp[Q(qj - Qj—l)] + 2€XP[2(QJ—1 - qj)]v j=2,...,n—1L
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Affine Lie algebras

The periodic Toda lattice of a semisimple Lie algebra can written as a Lax pair
equation on an affine Lie algebras. The theory of semisimple Lie algebras extends to
the affine Lie algebras.

Let g be a semisimple Lie algebra. Let a be a Cartan Lie subalgebra. Let £(g)

be the loop algebra of g, i.e.

N
L(g)={) LN |MNeZ, L € g}

=M

is the algebra of Laurent polynomials in A\ with coefficients in g.

Let g =a+ € g. be the root decomposition of g. We have
acA

E(g):@a)\i+ @ g\

1€EZ a€A, i€Z

To keep track of the power of A we need to add an extra element d to the loop algebra.
This element is the analogue of the grading operator added to the infinitesimal Lie
algebra g4 introduced in Chapter
Set
[d, L\"] = iL; \".

Let g = L(g) + Cd, and let a = a + Cd be the extend Cartan subalgebra. Then

where A given below is called the affine root system:

~

A={(a,i)|acAU{0},icZ (a,i)#(0,0)).
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Let

A ={(a,i | either i >0 or « € Ay,i =0}.

The affine root systems are given in terms of (affine) Dynkin diagrams and these
affine Dynkin diagrams are classified for all simple g. The periodic Toda lattice is a
good example of an affine Lie algebra and the construction is analogous to the open

Toda lattice discussed earlier.

3.4 Spectral curve

The presentation in this section follows [20] and [I]. Let g = gl(n,C). Let L(\) =

ST a; A\t € Lg. The spectral curve associated to L()) is the algebraic curve
Fo={(\,v) € C\ {0} x C | det(L(\) — vId) = 0}.

Assume L(A) has a simple spectrum for generic A\. For each nonsingular, non-
branching point p € I'y we have a one-dimensional eigenspace E(p) C C" associated
to the eigenvalue v(p). The disjoint union of E(p) over such p give a holomorphic
line bundle E over 'y \ {nonsingular points, non-branching points}. Let I be a
nonsingular compact model of I'y. One can extend the line bundle £ to a line bundle
over I' which will be denoted also by F£.

The evolution given by an equation of motion for a Casimir element on g induces a
flow of the line bundle E. Considered as a flow on the Jacobian of I' this flow is linear.
Thus spectral curve theory is an algebraic geometry analogue of the Arnord-Liouville
Theorem and in good cases the spectral curve method "solves" the integrable system.

Now we discuss Lax pairs with parameter and a simple and efficient way of

constructing some constants of motion.
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Definition 3.4.1. Let M be a finite-dimensional affine subspace of the loop algebra
L(g). A Laz pair with parameter A on M is given by a differential equation on M of

the form

d
) = [X(A), Y (V)]

where the coefficients Y; of Y are polynomial function of the coefficients X; of X.

Proposition 3.4.2. Let £X(\) = [X(X),Y(\)] be a Laz pair with parameter. Then
the coefficients of the characteristic polynomial (spectral curve) are constants of mo-

tion of the Lax pair equation. Moreover the curve
Iy ={(\,v) | det(X(\) —vId) = 0}
s preserved by the flow.

3.5 Poisson-Lie structures

Definition 3.5.1. Let (G, ) be a Lie group with multiplication map p: GxG — G,
and let {-, -} be a Poisson structure on G. Then (G, p, {-, -}) is called a Poisson-Lie

group if i : (G x G, {, }axa) — (G, {-, }¢) is a Poisson map.

Definition 3.5.2. Let (G, ug, {-, - }¢) and (H, py, {-, -} ) be two Poisson-Lie groups.
A smooth map F' : (G, pe, {-,-}¢) — (H, pu,{-,-}u) is called a homomorphism of

Poisson-Lie groups if it is a morphism of Lie groups and a Poisson map.

Let L, : G — G be left multiplication L,(¢') = g¢' and R, : G — G be right
multiplication Ry (g) = gg’. We denote by d(Ly)y : TyG — T,,G the differential of

L, at g'.

Proposition 3.5.3. Let (G, u) be a Lie group. (G,u,{, }) is a Poisson-Lie group
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if and only if its Poisson bivector W satisfies the following relation:

ng’ = (d(Lg)g’ ® d(Lg>g’)(Wg’) + (d(Rg’)g ® d(Rg’)g)(Wg)- (3-5-1)

Remark 3.5.4. Let G be a Poisson-Lie group with Lie algebra g. Then the Poisson

structure induces a Lie algebra structure on g* :

[Un, U2]g* = ({1, p2})e

for any Uy, U, € g* and with (dy;). = Uy and (dys). = Us. Here e is the unit element
of GG.

Remark 3.5.5. Let W : G — g® g be given by

WR(g) = (d(Rg—l)gﬂ & d(Rg—l)gﬂ)(Wg).

Let v : g — g ® g be the differential of W at g = e. Then

(U1, Us)g = 7" (U1 @ Uy)

Applying (d(R(gg)-1) (g1 ® d(Rgg)-1)(g9)-1) to relation [BEI) we get

Wh(gg') = (Ady ® Ady)(W"(g") + W (g) (3.5.2)

Then taking its derivative at e we get (see [@ p. 25|):

vz, yl = (ad, ® 1 + 1 ® ad,)y(y) — (ady, ® 1 + 1 ® ady)v(z) (3.5.3)

for any x,y € g.
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These two remarks motivate introducing the concept of a Lie bialgebra structure

below.

3.6 Lie bialgebra structures

We recall the definition of a Lie bialgebra structure.

Definition 3.6.1. A Lie bialgebra is a Lie algebra (g, [-,]) with a linear map ~ :
g — g ® g such that

a) ‘v:g*®g" — g* defines a Lie bracket on g*,

b) v is a 1-cocycle of g, i.e.
ad? (v(y)) — ad? (v(x)) — y([z,y]) = 0,
where adgf) ' g®g— g®gis given by

ad?(y @ 2) = ad,(y) ® 2 + y @ ad, (2) = [1,9] © 2 + y @ [z, 2].

Definition 3.6.2. Let (g,7,) and (h,7,) be two Lie bialgebras. A homomorphism

of Lie algebras F': g — b is called a homomorphism of Lie bialgebras if
(F® F)o~yg =0 F.

Remark 3.6.3. A Lie bialgebra (g, [-,-],7) induces an Lie algebra structure on the
double Lie algebra g @& g* by

[Xv Y]g@g* = [Xv Y]v

[X*v Y*]B@B* = tfy(X ® Y>7
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(X, Y] = ady(Y"),

for X, Y €gand X*, Y* € g*.

The following theorem gives the relation between Poisson-Lie groups and Lie
bialgebras. Moreover, we have an equivalence of categories between the category of
connected simply-connected Poisson-Lie groups and the category of Lie bialgebras

structures.

Theorem 3.6.4 ([]). Let G be a Lie group with Lie algebra g.

i) If G is a Poisson-Lie group, then g has a natural Lie bialgebra structure, called
the tangent Lie bialgebra of G. A homomorphism of Poisson-Lie groups induces a
homomorphism of Lie bialgebras between their corresponding tangent Lie bialgebras.

i) If G is connected and simply-connected then every Lie bialgebra structure on
g is the tangent Lie bialgebra of a unique Poisson structure on G which makes G
a Poisson-Lie group. A homomorphism of Lie bialgebras induces a homomorphism
of Poisson-Lie groups between their corresponding connected simply-connected Lie

groups.

The proof of i) follows from the construction in Remarks and B0
Conversely, the connectness and simply-connectness of G imply that the 1-cocycle
condition (B23) at the Lie algebra level can be lifted to a 1-cocycle condition (B2

at the Lie group level.



Chapter 4

Main results on Lax pair equations

In this chapter we combine the material from Chapters 2 and 3 to relate the Connes-
Kreimer factorization to Lax pair equations. The main result, Theorem EEZ3 gives
a Lax pair equation whose solution is provided by this factorization.

If the Lie algebra of infinitesimal characters were semisimple, this process would
be straightforward. There is a well known method to associate a Lax pair equation
to a Casimir element on the dual g* of a semisimple Lie algebra g [20]. The semisim-
plicity is used to produce an Ad-invariant, symmetric, non-degenerate bilinear form
on g, allowing an identification of g with g*.

The Lie algebra of infinitesimal characters is not semisimple. For a general Lie
algebra g, there may be no Ad-invariant, symmetric, non-degenerate bilinear form.
To produce a Lax pair, we need to extend g to a larger Lie algebra with such a bilinear
form. We do this by constructing a Lie bialgebra structure on g and extending g to
(g g [, |gog+), where [-,-|geq is the Lie bracket induced by the Lie bialgebra.

Once we have a Lax pair equation for infinitesimal characters, it is natural to
exponentiate this flow to a flow of characters and to ask how the beta function

changes along the flow. This is discussed in Section 4.5.

35
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4.1 The double Lie algebra and its associated Lie
Group

Since it is difficult to construct explicitly the Lie group associated to the Lie algebra
g®g*, we will choose the trivial Lie bialgebra given by the cocycle v = 0 and denote
by 0 = g @ g* the associated Lie algebra. Let {Y;,i = ., 1} be a basis of g, with
dual basis {Y;*}. The Lie bracket [-,-|s on ¢ is given by

[}/;7}/;] [}/;71/3] [}/;*7}/;*]5 =0, Y;,Y;k ZCZkYI:v
k

where the ¢/, are the structure constants: [V;,Y;] = >, ciY;.

The main point of this construction is that the natural pairing (-,-) : 6 ® 6 — C
given by (Y;,Y}") = 0;; is an Ad-invariant symmetric non-degenerate bilinear form
on 9.

In the case of the trivial Lie bialgebra structure v = 0, a Lie group naturally

corresponding to the double Lie algebra ¢ is given by the following proposition.

Proposition 4.1.1. Let 0 : G x g* — g* be the coadjoint representation 0(g, X) =
Ad%(9)(X). Then the Lie algebra of the semi-direct product G = G xg g* is the

double Lie algebra 0.

Proof. The Lie group law on the semi-direct product G is given by

(ga h) ' (g/a h/) = (ggla h + eg(h/))
Let § be the Lie algebra of G. Then the bracket on § is given by

(X, Y =di(X,Y"), [ X,Y];=[X,Y], [X"Y"];=0,
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for left-invariant vector fields X, Y of G and X*, Y™ € g*. We have
dO(X,Y™) = dAd;(X)(Y™) = [X,Y"]s
since dAdg = adj. O

4.2 The loop algebra of a Lie algebra

Following [I], we consider the loop algebra

N
Lo ={L(\) =Y NL;| M,N€ZL; €}

j=M

The natural Lie bracket on Lé is given by

[Z)\iLi,Z)\jL;] ZAk S (L. L),

i+j=k

Set

N
Loy = {L(\)=>_ NL;| Nez'u{o},L; € 5}
=0
—1
Li- = {L(\) = Y NL;j|MeZ" L€}
j=—M
Let P, : L0 — Léy and P_ : Lo — Ld_ be the natural projections and set R =
P, —P_.

The natural pairing (-, -) on ¢ yields to an Ad-invariant, symmetric, non-degenerate

pairing on Ld by setting

<Z NL;, AJ’L;.>: > (L L.
j=M’

itj=—1
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We denote by Lo* the loop algebra of §* and by Lé_ = P_(L(6*)). For our choice

of basis {Y;} of g, the pairing induces an isomorphism
[:L6" — L§ (4.2.1)
with

I (Z L{ij') =Y niypa

The identification I induces the following identifications:
Lé, = L(6")_ and Lé_ = L(6"),.
The following lemma gives a procedure to obtain Casimir functions on the loop

algebra.

Lemma 4.2.1. [2l], Lemma 4.1] Let ¢ be an Ad-invariant polynomial on 6. Then
Pmn[L(A)] = Resr—o(A™"@(A™L(A)))

is an Ad-invariant polynomial on L for m,n € Z.

As a double Lie algebra, 6 has an Ad-invariant polynomial, the quadratic poly-

nomial
p(Y)=({Y)

associated to the natural pairing. Let Y, = Y* for i € {1,...,(}, so elements of Lo

2 N
can be written L(\) = > > LI!Y;\'. Then the Ad-invariant polynomials
J=1li=—M

Umn(L(A)) = Resrzo(A"Y(A™L(N))), (4.2.2)
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defined as in Lemma L2l are given by
l . .
Y LN) =2 > LIt (4.2.3)
j=1 i+h—n+2m=—1

Note that powers of ¥ are also Ad-invariant polynomials on ¢, so

Upn(L(V)) = Resymo (A" (A L(N))) (4.2.4)

m,n

are Ad-invariant polynomials on LJ.

It would be interesting to classify all Ad-invariant polynomials on L¢ in general.

4.3 The Lax pair equation

From |20, Theorem 2.1, if we have endomorphisms P, and R = Py — P_ on a Lie

algebra h such that
[Xv Y]R = [P+X7 P—l-Y] o [P—Xv P—Y]

is a Lie bracket on h then the equations of motion induced by a Casimir function ¢

on the dual of a Lie algebra b are given by

dL

= = —ad;M - L, (4.3.1)

where L € h*, M = LR(dp(L)) € b.

)
Now we take h = (Ld)* = L(6*). Here (L0)* denotes the graded dual. Let Py be

the projections of Ld* onto Lé%. After identifying Lo* = Lé and ad® = —ad via the
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map [ in (X)), the equations of motion ([E3)) can be written in Lax pair form

dL
= [M, L], (4.3.2)

where M = IR(I(dp(L())))) € Lé, and ¢ is a Casimir function on Lé* = L.
Finding a solution for ({Z32) reduces to the Riemann-Hilbert (or Birkhoff) fac-

torization problem. The following theorem is a corollary of |20, Theorem 2.2|.

Theorem 4.3.1. Let ¢ be a Casimir function on Lo and set X = I(de(L(N))) €
L6, for L(\) = L(0)(\) € Ld. Let g+(t) be smooth curves in LG which solve the

factorization problem

exp(—tX) = g_(t)"'g4(t),

with g+(0) = e, and with g, (t) = g+(t)(\) holomorphic in A € C and g_(t) —e a
polynomial in 1/X with no constant term. Here e is the identity element of LG. Let

M = LR(I(dp(L(N)))) € L. Then the integral curve L(t) of the Lax pair equation

dL

s given by

L(t) = Ad% g2 (t) - L(0).

Notice that at ¢ = 0 we have g, (0) = g_(0) = e.

This Lax pair equation projects to a Lax pair equation on the loop algebra of the
original Lie algebra g. Let m be either the projection of G onto G or its differential
from ¢ onto g. This extends to a projection of Ld onto Lg. The projection of (32
onto Lg is
= [ (L), m (M), (4.3.3)
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since m = dm commutes with the bracket. Thus the equations of motion (32
induce a Lax pair equation on Lg, although this is not the equations of motion for a

Casimir on Lg.

Theorem 4.3.2. The Lax pair equation of Theorem [[.3.1] projects to a Laz pair

equation on Lg.

When ,,,, is the Casimir function on L§ given by [ZZ), X can be written

nicely in terms of L(\).

Proposition 4.3.3. Let X = I(d{y,,(L()\))). Then
X = 207N, (4.3.4)

Proof. Write L(\) = 3. L\Y;. By @EZ3), we have
i,J

oLt it t <,
%@": oy (4.3.5)
p 2Lf11l1_2m_p, if ¢>1.
Therefore
87~pm,n 1= *
X = I(dwm,n(L()‘))): oLt A py;
Pt p

1 21
= 2)\_"+2mZ(Z Lf:r_ll_2m_pyz+z)\n_l_2m_p + Z LZ__ll_gm_pK—M"_l_2m_p)
p

t=1 t=I+1

= 2ATEML()),
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4.4 The main theorem for Hopf algebras

In this section we prove the main result Theorem relating our Lax pair equation
with the Connes-Kreimer decomposition.

Let (H,1 = 0,u,A,¢e,S) be a connected graded Hopf algebra, in particular we
can take H to be the Hopt algebra Feynman graphs or the Hopf algebra of rooted
trees introduced in Chapter 1 In these cases, for later computations in Chapter Bl
we also consider a Hopf subalgebra H; generated by a finite number of Feynman
graphs Ag = 0, Ay, Ao, ..., AL

Let G be the Lie group of characters of H, and let GG; be the Lie group of char-
acters of H;. The Lie algebra of infinitesimal characters g, g; of H, H; are precisely
the Lie algebras of G, Gy, respectively.

Forany T' € {Ay, ..., A;}, let Zr be the infinitesimal character given by Zp(7") =
Or . The Lie algebra g is generated by Za,,..., Za,. SetY; = Z4, fori e {1,...,1}.

Let G be the semi-direct product G; x C given by

(gvt) ’ (g/vt/> = (g : 9t(9/>7t+t/)7

where 0,(g)(I') = e#Tg(T) for T' € Hy, and #(T) is the number of independent

loops of I'. Set Z, = % , SO [Zo, Za,) = #(A;)Z4,. The Lie algebra gy of G is

generated by Zy, Za,,..., Za

s

In the next lemma, G refers either to Gy xg gy as in Prop. Tl or to G x¢ g*.

Lemma 4.4.1. Let (g,a) be an element in LG. If (g,0) = (g_,a_)"" (g4, o)) then

g=9""g4 and o = Ad*(¢g"") (—a_ + ay).

Proof. We recall that (g1, a1)(g2, a2) = (9192, 1 + Ad*(g1)(az)). Notice that
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(9-,-)"" = (9=, —Ad"(9~")(a-)), so

(9, ) Mg, ap) = (9= g4, —Ad*(g=") (az) + Ad*(9=") (s ).

We prove the existence of a Birkhoff decomposition for any element (g, a) € LG.

Theorem 4.4.2. Every (g,) € LG has a Birkhoff decomposition

(gv Oé) = (g—v a—)_l(g+7 Oé+)

with (g, ) a polynomial in X and (g9_,a_) — (e,0) a polynomial in \™' without

constant term.

Proof. Let g = g_'g, be the Birkhoff decomposition of g in LG given in [9]. Let
ay =Py (Ad*(g-)(«)) and o = —P_(Ad"(g_)(«)). Then, by LemmaEZT], (g, o) =

(g_,oz_)_l(g+,oz+). O

In [7, Connes and Kreimer give a Birkhoff decomposition for the character group
of the Feynman graph Hopf algebra, and in particular for the normalized loop char-
acter @(\, q) of dimensional regularization.

Here

(N, q)
@

o\ q) =

where (], q) is the usual character given by dimensional regularization and Feynman

rules. We consider the algebra of Laurent series with coefficients in ¢:

Q5 ={L(\)= > NL;|L;edMeZ,}.

j=—M
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The natural Lie bracket on €4 is
[Z NLL Y AJ‘L;] =3NS (L, L),
k itj=k

Set

O, = {L(N) =Y NL; | L;€d}
=0

-1
O5_ = {L(N)= > NL;j|Lje6McZ.}.

j=—M

Recall that m; denotes either the projection of the double Lie group G to its first
factor G, its differential, or its extension to the loop group and loop algebra. We

denote the image of an element by adding a tilde, e.g. 7 (L(\)) = L(\).

Theorem 4.4.3. Let H be a connected graded Hopf algebra, e.q. the Hopf algebra of
1PI Feynman graphs (or the Hopf algebra of rooted trees). Let 1, ,, be the Casimir

function on Q0 given by
Umn(L(A)) = Resx—g (A" (A"L(X), A"L(X))).

For Ly(\) € Qg, set X = I(dmn(Lo(N))). Then the solution of

=ML, M = LRI (L)) (44.1)

with initial condition L(0) = Lg is given by
L(t) = Ad*g+(t) - Lo, (4.4.2)

where exp(—tX) has the Connes-Kreimer Birkhoff factorization



45

exp(—tX) = g_(t)"tg.(t). The same results hold for any finitely generated Hopf
subalgebra Hy of H.

Proof. By Proposition we have
X = I(dhmn(Lo(N))) = 227" Ly (N).

Since 2A7"T2M L (\) € Qg = g, we get exp(—tX) € G4 and therefore by Proposition
2T there exists a unique Connes-Kreimer Birkhoff decomposition of exp(—tX) €
G 4. The theorem then follows from Theorem 3Tl and ([33) applied to the natural

pairing on 0 and the uniqueness of the Birkhoff factorization. O

Remark 4.4.4. a) In this theorem, the initial infinitesimal character is arbitrary.
We can find the Birkhoff factorization of the Feynman rule character (or any fixed
character) ¢ itself within this framework by adjusting the initial condition. Namely,

set

LX) = 322" exp™ ().

Since the exponential is bijective exp~'(@())) is well defined and Ly € Qg. Then
exp(X) = ¢ by Proposition EE33 so the solution of (Al involves the Birkhoff

factorization of @(\):

¢ =g (=1)""g:(=1).
b) As a special case, if —n + 2m = 0, then

1

Ly = 5 eXp_l(@).

This gives a Lax pair flow of (half) of exp~'(¢) with solution determined by the
Birkhoff factorization of exp(—texp '(®)). In particular, at time ¢ = —1, the

Birkhoff factorization of ¢ solves the flow: Li— 1 = Ad*g.(—1)exp~ ().
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c) In the special case —n + 2m = 0 to get the flow of exp~ @, we can set
Lo =exp ' .

Then exp(—tX) = exp(—2texp~*(¢)). In particular at t = —%, the Birkhoff factor-
ization of @ solves the flow: L,_ 1 = Ad*ge (=) exp~!(9).
d) We can also replace G by Gy = G x C in Theorem I3

Remark 4.4.5. It would interesting to know whether there exists a bigger connected
graded Hopf algebra H having the original Hopf algebra H as a Hopf subalgebra and
whose infinitesimal Lie algebra is the double 9, associated to a connected graded Hopf
algebra, in particular for the Kreimer Hopf algebra of 1PI Feynman graphs or the
Hopt algebra of rooted trees. This would provide a Lax pair equation, which comes
from an equation of motion, on the infinitesimal Lie algebra of H. The most natural
candidate, the Drinfeld double D(H) of H, does not work since the dimension of the

Lie algebra associated to D(H) is larger than the dimension of 4.

4.5 The g-function

In this section we get relations between our Lax pair equations and the S-function. In
fact, we consider two flows for S-function. First, we extend the (scalar) beta function
to a meromorphic function of the character. Under the condition that the minus part
of the meromorphic beta function is independent of loop scaling, the meromorphic
beta function is an infinitesimal character (Lemma EE5Tl), and we can use it as an
initial condition for a Lax pair flow. For certain Casimir elements, we show that the
meromorphic beta function is a fixed point of the flow (Theorem EL3)).

It is more natural to consider a second flow for the beta function. Namely, given

the Lax pair flow ¢(s) of infinitesimal characters, we have a corresponding curve of
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characters ¥ (s) = exp(#(s)). We would like to understand the corresponding beta
functions By(s). In Theorem B33, we give a differential equation for SBys).
We recall from Section 23 the definition of 8(¢)-function of a character p € G%,

where A is the algebra of Laurent series:

Be)e) = S| m(e x @),

t=0 A—0

where ! (x) = e**lp(z). To relate the 3-function to Lax pair equations, we need an

element in the loop algebra. For ¢ € G%, set

d

~ _dhy B
=0 dt

Be(@)(A) = —- (™ * ") (@) (V).

t=0

The following lemma establishes that 3 is an infinitesimal character. Later we

shall consider the flow associated to our Lax pair.

Lemma 4.5.1. If ¢ € GY, then i) /éeo s an infinitesimal character in g4.

ii) B, is holomorphic (i.e. B,(x) € AL ).

Proof. 1) For two homogeneous elements x,y € H, we have:

€t|m|)\

o' (zy) = e™Pp(ay) = ePo(2)ePo(y) = ' ()¢ (y).

Therefore o x o' € G 4. Since ¢! % o = e we get

d o xp Ega
dt lt=0 )

ii) Since (") =0, we get

Bo = (o) x oo (")) H ()4 = (¢4)

* () +
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Then

Therefore ,(z) € A,. 0O
Now we can apply Theorem for Lo = 6}0.

Proposition 4.5.2. If ¢ € G then the Lax pair equation in Theorem 1.3 for

LO = 6§0 18
d -~
Eﬁcp(s) = [M> ﬁcp(s)]a

where M = %R(A"‘Qmﬁw(s)) and the solution is given by
Bo(s) = Ad*(9+(5))5,(0)
where g4 (s) are given by the Birkhoff decomposition
exp(sA" 2" B,) = g=' (s) * g4 (s).

The next theorem shows that the G-function is a fixed point of the Lax pair flow

for certain Casimirs.

Theorem 4.5.3. B}, and therefore (3, = B¢ R are constant under the Lax flow if
=0

n—2m > 0.

Proof. If n —2m > 0 then
1 —2m 3 1 n—2m Q
M = R(§>\" M Bo) = §>\ B,

since B¢ is holomorphic by Lemma L5l So the Lax pair equation becomes
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d ~ 1 ~ o~ 1 - .
Eﬁso = [5)‘n_2mﬁwﬁw] = 5)‘n_2m[f6w 5@] = 0.
]

Now, we consider the more interesting case of the flow 3, for the beta function
of exponentiated infinitesimal characters, as defined in the beginning of this section.
We first establish some simple and useful properties of ¢’ that which be used to

characterize the second flow involving the S-function.
Lemma 4.5.4. Let ¢ € G4. Then

1) (px ) = ¢ x4,

2) (™)' = ("),

Proof. We have

(pxv)(z) = e pxp)(a) = e Pp(a)p(a")
o)

_ Z€t(‘xl|+‘x”‘)>\(p(l’/)1/}(l’//) _ 6t‘xl|>\(p(fl,’/) €t|m”|)\w(x//> _ (pt(l’/)wt(l’//)
(z)
= (¢ *¥")(2).

Therefore

s0 (™) = (") 0

In the next theorem we study the beta-function (3, of the flow of characters

p(s) = exp(¥(s)), with 1(0) = log p.
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Theorem 4.5.5. Let o € GY. Let ¢ = logp and

b = [M, ]

be the Laz pair from Theorem [[.7.3 and ¥(0) = 1. Let p(s) = exp(¢(s)). For

B = 2| s % ()

we have

d -

%ﬁcp(s) = [Bg&(s)v 90_1 * dexp[M, lOg 90]] + A((p_l * deXp[Mu lOg (P]) oY.

Moreover if we assume that o(s) € GY for every s (so the S-function of p(s) is well
defined for each s), then

d

Z5Pe) = [Bos): 0~ (s)*d exp[M, log ¢]]+ ‘AZOJrReS ((¢7"(s) x dexp[M,logp]) o V) .

Proof. We have

Do) = L) () (5 )
= e ) e vlsle ()6 () ) e exp (s))()
= % tzO(—so*(s)cl exp () ot (s) + o7 (s)(dexpai(s))!) ()
(o () dexp[M, ¥ + | o (s) (dexp[M, v (s))) ().

dt lt=0
(4.5.1)
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The second term in (LT is

)(dexp[M,¥(s)))") ()
(7 ()p(9)" (p(5)) " (dexp[ M, ¥(s)])') ()
(e )e()) ((p(s)) ™ (dexp[M,w(s)]))

ool 4

@)
(el (dexplM, v(s))) (@)
D) @)+ 5], () dexpld Lo s))) (o)
s) Mdexp[M, (s)))) (2) + [#]A ((5) " (dexp[M, v (s)) ()
s) "' dexp[M, 6(5)])) (2) “Hdexp[M, ¢(s)])) oY) ()

(4.5.2)

(s
d
dt =
d
dt =
+

1deXp M, (s

Qt

(e
- (o
o

Substituting (L) back into (L)) gives

d -~ s -
T Do) (@) = [Bp, 07" % dexp[M, log ¢]] + A" x dexp[M, log g]) o Y.
It ©(s) € G for every s, then G, is well defined for every s. So at A = 0 we get
d P -
T3Pt = [Bor ™" x dexp[M, log ¢]] (A = 0) + Res ((p~" xdexp[M,logy])oY).

O

Thus the meromorphic S-function satisfies a Lax pair-type equation with an ad-

ditional term.

Remark 4.5.6. A simple example that satisfies the condition ¢(s) € G% from Theo-
rem LS50 is given by a holomorphic ¢ (i.e p(x) € A, ) with m—2n = 0. Indeed (¢")_
is the identity as (" is holomorphic, so (¢')_ does not depend on ¢. Using the Taylor

series of the exponential one can see that exp(—slog(y)) has only holomorphic part
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so g_(s) = e. Therefore the solutions of the Lax pair equation 1 (s) are constant, so
p(s) = »(0) € G

It is not clear that the condition ¢(s) € G% (for any s or for any s sufficiently
close to zero) in Theorem is satisfied in general or even in the particular case
of the flow of the Feynman rule character ¢. Notice that this condition is necessary

for the existence of the [g-function.



Chapter 5

A worked example

In Sections we discuss a specific example of the main theorem. In §5.9 we
discuss how a general finite dimensional example should work. The reader who wants
to skip the details of the worked example can just refer to §5.9. In §5.10 we discuss
the relevance of Lie algebra cohomology computations for a five dimensional Lie
algebra associated to specific Feynman diagrams. Then in Section 5.11 we approach
the spectral curve. Most of the computations are supported by Mathematica file

presented in appendices.

5.1 A finite dimensional group of characters

Let

PR B NPV Wy SR NE o SO N N SO B
Remark 5.1.1. Here we choose to divide the graphs Q ,@ , @ , Q ,

@ by their symmetry factors. The symmetry factor sym(I") is the rank of the
automorphism group of the graph. The advantage of dividing by their symmetry

factor would show up when we consider the Green function of an amplitude a; we

have (see [16])
G =1+ Z OK‘F‘ ¢(F)

rew, @)

where M, is the set of all 1Pl graphs containing the amplitude a. The Green
53



54

functions are not considered in this thesis.

For the computations given in this chapter we can work as well as with {} ,

@ , @ , Q , @ . For these graphs one can adjust some coefficients in

definition of the map [ from Proposition below, and then we can identify the
group of characters of the Hopf algebra generated by these graphs and () with the
group (C°, @) given below.

Let H be the Hopf algebra of 1PI Feynman graphs. Let H; be the Hopf subal-
gebra generated by Ag = (), Ay, Ay, Az, Ay, As. Notice that the graphs {} ,
Q , @ , Q , @ do not have overlapping divergences. In Section
we discuss how the computations from this chapter can be extended to a Hopf
subalgebras generated by a finite set of Feynman graphs.

Let G; be the Lie groups of characters of Hy. The Lie algebra of infinitesimal
characters g, of H; is the Lie algebra of G;. In particular, the Lie algebra g; of G,
is generated by Za,, Za,, Zas, Za,, Zas-

We identify G; with C® using the normal coordinates defined in [5]. The group

law induced on C® is given by the following lemma.

Proposition 5.1.2. Let & : C° x C° — C® be the group law on C° given by

(zla Lo, T3, T4, $5) D (y17 Y2,Ys3, Y4, y5)

= (21 + Y1, T2 + Y2, T3 + Y3, T4 + Ya + T1Y2 — ToY1, Ts + Y5).

Define F : G; — (C°,®) by

F(p) = (o(A), olds) — o(Ar), () — 2p(A1)pl(Aa) + 5 0(r),
P(AL) — (A () + (A1),

©(As) — 20(A1)p(A3) — ©(A2)” + 4p(A1)*p(A2) — 20(A1)Y).
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Then F is a group morphism.

Proof. Let (Fy, Fy, F3, Fy, F5) = F. Closely following [B], we set

4
Cleb C12:AA2_A41'141a C3:A3_2A1'A2+§A1'A1'A1

1
C4 = A4—A1'A2—|—§A1'A1'A1, C5 = A5—2A1'Ag—AQ'A2+4A1'Al'A2—2A1'A1'A1'A1.

Notice that F; = ¢(C;) for any i € {1,---,5}. Cy, Cy, C5, C5 are primitive, so
Fk(¢1 *gbg) = Fk(¢1) + Fk(gbg) for k € {1,2, 3,5} We have

AlCy) =Ci@1+120C,+Cr o0 — 0,0 0,
which implies
Fy(¢1 % ¢2) = (91 ® o, A(Cy)) = Ful¢n) + Fi(a) + F1(¢1) Fa(¢2) — Fa(¢1) Fi(¢2).
]
Identifying G with (C® &), we can identify Gy with (C® @), where
(21, T2, w3, T4, 5, 1) © (Y1, Y2, Y35 Ya, Ys, 1) =

(21 + €'yr, w2 + €yo, w3 + ¥ ys, 24 + €ys + ¥ a1y — €' wayr, w5 + e Mys, t + ).

The following lemma gives a basis of the left invariant vector fields on G, and the

structure constants of go.

Lemma 5.1.3. Let

0 0 0 0
yi—e (2,00 yz%(_+ —),
Lo <8y1 y28y4) 2= \ow " ou
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0 0
K’,Zegt@, Yzlzegt@, Ys=e¢"+, Zo = =
3 4

where (y1, Y2, Y3, Ya, Ys, t) are the standard coordinates on C°. Then {Y1, Ys, Y3, Yy,
Ys, Zo} is a basis of the left invariant vector fields on Go. We have [Y;,Y;] = 0 for
any (5,) # (1,2), (2,1), and [Yi, Y] = —[Y3, Yi] = 24, [Zo, Yi] = Vi, [Z0, Yi] = 2Y2,
[Z0, 3] = 3Y3, [Zo, Ya] = 3Yy and [Zy, 5] = 4Ys5.

Proof. This follows from the easily computed formulas

0 0 0 0 0 0
(L) =2l ) () = ()
(&m) ‘ (8y1 x23y4) (3?;2) “ \oy. " ow
0 0 0 0 0 0
Lm ) = 313_7 L:E <_) _ 3t_’ Lw (_) — 415_7
< 0y ) ‘ 0ys 0yy ‘ 0yy 0ys ‘ 0ys

0 0
L) = o

Here L, is left multiplication i.e. L,(¢") = gg’ for g, ¢’ € Go. O

5.2 The exponential map and the adjoint and coad-

joint representations

Lemma 5.2.1. The exponential exp : go — Go s given by

exp(a1Yy + aoYs + asYs + a, Yy + asYs + agZy) =

(a1,az,as,a4,as,0), if ag = 0,
— ai(e®6—1) a2(e2%6—1) as(e3*6—1)
ae ? 2a6 ) 3ag )

as(e36—1) aiay (€396 —1 2a6t agty as(et®6—1) .
3ag + 2a2 ( 3 —€ te )’ 4ag » a6 Zf a6 7& 0’

and exp s bijective.

Proof. Let Y € gy and let y(t) be the 1-parameter subgroup of Gy generated by Y.
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Set

Y = a1Y1+a2§/'2+a3Y},+a4Y}1+a5Y5+a6Zo,

Y(t) = (g1(t), 92(t), g3(t), 9a(t), g5(t), g6(t)).

To find 7(t) = exp(tY’), we solve the differential equation
Lyy-19(t) = arYy + a2Ys + asYs 4+ agYy + asYs + as 2o
with the initial condition v(0) = 0. First notice that
Lyy-13(t) = (g1€7%, goe™ 2% g3e ™% e (G192 — Gog1 + ), §se %, gs).-
Then aj, = gre=" for k € {1,2,3}, a5 = gse 2%, ag = g¢ and
as = (ga+ G192 — Gogn)e ™,
with the initial conditions
91(0) = g2(0) = g3(0) = g4(0) = g5(0) = g6(0) = 0.
Therefore g5 = agt, gp(t) = ap(e**t —1)/(kag) for k € {1,2,3},
95(t) = as (e — 1)/ (4as)

and

3agt __ 1 t agT 2a6r 1 t 2a6x asz _ |
ga(t) = —a4(e )—/0 aerag(e >dx+/0 aze (e )da:

3@6 2@6 ag
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_ as(e™ et — 1) 4 Qaa et — 1 _ oRast | gt
3(1,6 2@% 3 .

If ag # 0, then

5 ag 2a 3a
—1 6 — 1 6 1
exp (Z%Yk —I-GGZO) _ (al(e )’ as(e )’ as(e )’

k=1

3%_1 3%_1 4a6_1
a4(63a ) 21522(6 ; _ 2ast e“Gt), M’QG) .
6 6

If ag = 0 then
5
exp (Z akYk> = (a1, az, as, as, as, 0).
=1

O

The adjoint and coadjoint representations of GGy are given by the following lem-

mas.

Lemma 5.2.2. i) The adjoint representation Adg, : Go — GL(go) is given by

eJ6 0 0 0 0 -0
0 296 0 0 0 —205
0 0 e 0 0 3
AdGo(gh -5 95, g6) =
—2g2€9 2g1e*95 0 €3 0 —gigo — 304
0 0 0 0 el —4gs
0 0 0 0 0 1

i) The coadjoint representation Adg, : Go — GL(g) is given by

AdZO(gl,--wgs,gG) =
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e96 0 0 2goe 396 0 0
0 e 296 0 —2g €39 0 0
0 0 e 390 0 0 0
0 0 0 e 396 0 0
0 0 0 0 e~

e g, 2e gy 3e gy —e gigy + 3e g, de gy 1

Proof. To show i), we straightforwardly compute Adg,(g) = dC, where Cy(h) =
ghg~!. In Appendix B we present a commented Mathematica file for the computation

of Adg,. Note that

—1 —1 —t —2t —3t —3t —4t
g = (21,19, 73,4, T5,1) " = (—€ ‘1, —€ Ty, —€ w3y, —€ wy,—€ x5, —t).

i) then follows from i) and Ad*(g) = (Ad(¢™1))". O

Lemma 5.2.3. 1) For the basis {Y1,...,Ys} of Lemma L3, ad : go — gl(go) is

given by

Co 0 0 0 —C

0 2 0 0

0
0
6
0 0 3¢6 0 0 =3¢
ad (Z ciY,) = ‘ ’
0

i=1 —2co 2c0 0 3cg —3¢4

—202

0 0 0 0 4 —4cs

0 o 0 0 O 0
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2) ad” : go — gl(g) is given by

—cg 0 0 2¢cy 0 0
0 —2¢¢ 0 —2¢¢ 0 O
6
0 0 —3c 0 0 0
ad” <Z ciYi) = 0
i=1 0 0 0 —3cq 0 0
0 0 0 0 —4cs O
1 2¢cy 3c3 3¢y 405 0

Since dAd = ad, the proof follows by differentiating the formulas in Lemma B2Z2]

5.3 The double Lie algebra and its associated Lie
group

The conditions a) and b) in Definition B:61] of a Lie bialgebra can be written in a
basis as a system of quadratic equations. Solving this system explicitly, in our case

via Mathematica, gives the following proposition.
Proposition 5.3.1. There are 43 families of Lie bialgebra structures v on gg.

Remark 5.3.2. In fact, the system of quadratic equations involves 90 variables. Re-
ferring Appendix A for a sample, using Mathematica we get 1 solution with 82 linear
relations (and so 8 degrees of freedom), 7 solutions with 83 linear relations, 16 solu-
tions with 84 linear relations, 13 solutions with 85 linear relations, 5 solutions with

86 linear relations, and 1 solution with 87 linear relations.

Remark 5.3.3. Since the Lie group G is connected and simply-connected, each family
of Lie bialgebras has a corresponding family of Poisson-Lie groups. It is possible that

some Lie bialgebras of our set of families are isomorphic as Lie bialgebras.
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As it is difficult to construct explicitly a Lie group corresponding to the Lie
algebra go @ g;, for an arbitrary choice of v, as in §&1] we take the simplest choice

v =0and let G = Gy x g; be the corresponding Lie group of 6 = g & g*.

Remark 5.3.4. The group law on G is given by
((glv 92,93, 94, g5, 96)7 (hlv h’27 h37 h’47 h’57 h6))

(91, 92, 95, 94> 95> 96)» (R, Iy, By, Iy, i, b)) =
(g1 + €% gy, ga + €2 gh, g3 + € gy, gu + €% gh + g% 195 — g gad, g5 + €* P g, g6 + g,
hi + €% R — 290 hly, hy + €296 Ry + 2g2€?9 B}, hy + €*hly, hy + €9}, hs + €' hL,

he — g1l — 2g2hy — 3gshi — 3g4hly — 4gshs + hy).

5.4 The adjoint representations ads and Adg

Let ads : § — gl(d) be the adjoint representation of 5. Computing ads explicitly, for

example via Mathematica, we get

12
ads (Z xiYi> =
i=1
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0

0

0
2710

0

0

0

—x7

—2332

0 0
226 0
0 3Te
221 0
0 0
0 0
—2x10 0
0 0
0 0
0 0
0 0
—2xg  —3x9

o o o o o o O

—3T10
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-1
—23}2

—3%3

o o o O

—3%4
43}6 —43}5
T
23}8
33}9

33310

o o o o o o

4ZE11

—43}11 0

where Yg,, =Y, for t € {1,...,6}.

Corollary 5.4.1. Ker(ads) = Span{Yi2}.

The adjoint and coadjoint representations of G are given in the following proposition.

Proposition 5.4.2.

Adg(g1, 92, - -

Adg(gh 92, - - -

,912) =

,g12) =

AdGo(glagQa s
H(gla927 s

Adzo(gl, gz, ...

0

o o o o o o

o o o O

I

796)

>912)

) gﬁ)

0 0
0 0
0 0
0 0
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where H(g1, g2, ..., g12) is a 6 X 6 matriz given by

and

0 —2€29 g1 0 0 0 4g1092 + g7
2e96 g1 0 0 0 0 —2g1910 + 2gs
0 0 0 0 0 399
0 0 0 0 0 3910
0 0 0 0 0 4911
€9 (691092 — g7) —2€*%(3g1g10 — g3) —3€*%gy —3e¥g1y —delgy z

2 = 39191092 + 991094 + 16¢1195 + 9197 + 49298 + 9g379-

The computations are given in Appendix B.

5.5 Some Adgz-invariant polynomials on 6 and Lo

We note that Tr(ad(a)¥),k € Z*, are Ad-invariant polynomials on 6. By Lemma

E2T] these induce Ad-invariant polynomials on L4, i.e. Casimir functions (constants

of motions) on Ld. Explicit computations in Chapter @ give the following lemma.

Lemma 5.5.1. Let ¢ : § — C be the map given by ¢(a) = Tr(ad(a)¥).

C(ag)* for some

positive integers k, ¢(a) = 0. For even positive integers k, p(a)

12
constant C = Cy, where a = > a;Y;.
i=1

This gives the following corollary, which can also be checked directly.

Corollary 5.5.2. For any even positive integer k and any constant C'

p(a) = C(ag)"

is an Adg-invariant polynomial on 6.

For odd
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Proof. Let mg : 0 — C be the projection given by

12
6 (Z al}/;> = Qg. (551)
j=1

Since
12
m6(Adg () a;Y7)) = ag,
j=1
we see that p(a) = C(ag)* is an Ad-invariant polynomial on 4. O
Example 1.

In the notation of ([ZZ2), for integers M and N we get Casimir elements on Lo

N 12
P (Z ngw) = Res\o(A"COM (X))

i=M j=1

-cy” sy

i tM4+1 c IN

for all nonnegative integers m, n, where
S={(irry--yin) | i > 0,...,in >0, dpg +ippi1 + ... Fin =k,
Miy + (M + 1)ippe1+ ...+ Niy = —14+n— km}.

Example 2.
The natural pairing (-, -) on 0 induces an Ad-invariant polynomial
6

@b(Y) = <Y> Y> = 2Zaiai+6

i=1
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12
for Y = 3" a;Y;. Then t,,, : L6 — C given by [ZZ) becomes

=1

6
Ymn(LN) =2 > L™
=1 i+k—n+2m=-—1

Example 3.

EZT) gives other Ad-invariant polynomials on Ld. An explicit computation gives

k e
Uhn(LO) = II @) mry-

s {laptape{—m, .N} | ape{—M,..N} j=1

S = {{iaptape-rr..ny | Y =k and ) igla+b)—n=-1}

5.6 The Lax pair equation in local coordinates

We can write the Lax pair equation

dL 1
— = [M, L], M = SR(I(dx(L(})))) (5.6.1)
in local coordinates when the Casimir function & is ¢,,, or 1,,, given above.
Note that
10(k(L(N)))

M= %R(I(dm(L(A)))) =g L), (562

where r(s) =1if s > 0 and r(s) = —1 if s < 0.
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The case kK = ¢,

Lemma 5.6.1. In local coordinates the Lax pair equation (G becomes

i,

dt

for 1 <j <12. Thus L(t) = L(0) for any t.

Proof.
N 12 .
Opmn (D D LiY;A')
i=M j=1 _
LS
k 6 \ins . 6\ip—1 6 \in
o @S G - (g,
S M tM41 N

where S is some set of multi-indices. Then

N 12 ,
Oomn( 25 37 LIY;AY)

i=M j=1
6
oL

M = R(I( )YeX) = r(=1 = p) f(L(A) Y12,

Since ad(Yi3) = 0, we have [L, M] = 0, and so C”:l_gt) —0.

Thus the Lax pair equation is trivial in this case.

The case k = ¢, .
By Proposition £33, M = R(X) = R(AT"T*™L(N)).

Let qu be the structure constants of J in the usual basis.

Theorem 5.6.2. In local coordinates the Lax pair equation (L) becomes

dLk

12 12
i+p—n+2m Jjrt k
L = r(—n+2m+p) ; ; L] L,q;
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forje{l,...,12} and all i,p, where r(s) =1 if s >0 and r(s) = —1 if s < 0.

Note that the Lax pair equation 71 (L(t)) = [m (L), 71 (M)] on Lgo given by ([EE33)

has the local coordinate form

dLk

6
i+p—n+2m Jrt k
e = r(—n+2m+ p) ;:1 tEZI L] Lyci;

for j € {1,...,6} and all 4, p.

5.7 The Birkhoff factorization of exp(—t.X)

We compute the factorization of exp(—tX) for the interesting case of

X = I(dbmn(L(N)),

for mg(L(A\)) = 0, where mq is the extension to LJ of mg in (BLJ]). Then X =
)\_n+2mL()\) _ Z(Lg)\i—n-mm)}/j’ and

Vi
12

exp(—tX) = eXp(Z(— Z LNy,

j=1 i

Let z; = — S) LIN—"+2m for j € {1,...,12}.
Our assumption is that zg = 0, as the exponential of L(\) has a simpler form
in this case; in fact this is the only case needed for our main theorem below. The

exponential of Ld on zg = 0 is given by (see Appendix B)
eXp(tZl, tZ27 tZ37 tZ47 tZ57 07 tZ?? t287 tZg, tZ107 tlev tZ12) =

(tZl, tZQ, tZg, tZ47 tZ57 07 t221022 + tZ?u —t221210 + tZSu tZgu tZlOv tle,
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_1 3 § 2 2 1 2 2 § 2
tZlg 3t 2121022 + 2t 21024 + 2t 21125 + 2t Z127 + 2928 + 2t Z3%9 | .

By Lemma EZT] the Birkhoff decomposition (g,a) = (9-,a_)"'(gs, @), with
g € Gy and o € g} is given by g = g”'g,, and —a_ + a, = Ad*(g_)a.

Let g;— and g¢;4+, 7 € {1,...,12}, be the components of g_ and g; respectively.
Therefore, for j € {1,2,3,4,5,9,10, 11}, we have

gy = — Z LgAi—n+2mt
i>n—2m
and
gim=— Y LIxTrm (5.7.1)
<n—2m
Then
givr = P+(t2i), gi— = —P_(tzl) (572)

for i € {1,2,3,5}. We also get

Gay = Py(tza + 2 (P-(21) Py (22) — P_(21) Ps(22))), (5.7.3)
g1 = P_(tzy + (P_(21)Ps () — P_(21)Pi (), (5.7.4)
96— =0,  ge+ =0, (5.7.5)
gr— = —P (2t92_210 + t22’102’2 + tZ7), (576)
gs— = —P_(—thl_zlo — t221210 + tZg), (577)
Jio— = —P_(—tgl_gg_zlo + Btg4_210 — 2t2g2_21210 + 4tg5_211 (578)
2 1 3 3 2 2
+t2’12 + g1-210<22 — —t 21210722 + —t 21024 + 2t 21125 + tgl_z7

3 2
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1 3
+§t22127 + 2tg2_28 + t22228 + 3tg3_29 + §t22329),

G+ = 2k + Gr—s

for k € {7,8,12}. Then g- = (¢1—,...,012-) and g+ = (g1+,...,g12+) satisfy
9-'g4 = exp(—tX).

We now assemble the final formulas needed to compute the solution to the Lax
pair equation given by Theorem 3Tl Let 7 : § — g and 6 : § — g* be the

projections onto g respectively g*. Then

m(Ad* (g1, ..., g12- ) L(N)) = Adg, (g1, - - -, g6-)T(L(N)) + H(g1—, - .., g12-)0(L(N))
(5.7.9)

and

OAd (g1, g12-)LON) = Aday (g1, - ., g6 )O(L(N), (5.7.10)

where H is given by Proposition A2 It is fortunate that Adj does not depend on

g12—, which by (BZ3) is difficult to compute explicitly.

5.8 The Feynman rules characters and the main re-

sult

For any graph ~y, the Feynman rules integral ¢(\, ¢)(7y) can be written in term of

[-functions. Some explicit formulas are as follows.

P a)(A) = ZE) B

P = Sr) BN B
O a)(4s) = e(a) BN By B

P DA) = ) DB B
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PN a)(4As) = %W”(qz)l‘“Bl(A)B2(A)B3(A)B4(A)

where Bj(\) = j,\(1—j,\)(2_—1j,\)(3—j,\) , J€41,2,3,4}.

Theorem 5.8.1. Let Hy be the Hopf subalgebra generated by Ay, Ay, Az, Ay, As,
0, and choose a character $(N) € QG with ws(p) = 0. Pick Lo(\) € Q5 and set
X = I(dmn(Lo(N))), where iy, is the Casimir function on Q5 given by

Umn(L(A)) = Resr—o (A" (A"L(A), A" L(A))).

Then the solution of

U IMLLL M = RO (L) (5.81)

with the initial condition L(0) = Ly is given by

with exp(—tX) = g_(t) g, (t) where g_ and g, are given by (Z21), (273), (ZZ4),
(Z77), (Z7Z3), and where the gy and gi components of Ad are given by (279) and

In the particular case where ¢ is the normalized Feynman rule characters (A, q) =
ﬂ;\f) and Lo(X) = A" exp 1 (@(N)), g-(t) and g, (t) are given by [(EZ3), [EZ3)
and @72). If in addition n —2m = 0, then the solution L(t) of (ZZ) is the flow

of half of the logarithm of Feynman rules.

This follows from Theorem EA33.
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5.9 Generalizations to arbitrary finitely generated

Hopf subalgebras

In this section we see how the previous computations can carried over to Hopf sub-
algebra generated by a finite number of Feynman diagrams.

Let Hy be the Hopf algebra generated by a finite number of Feynman graphs:
0, B1, By, Bs, ..., B

We shall denote this list by £. Recall that L(B;) is the loop number of B;. We

assume the following:
1) L(B;) < L(Bj) forany 1 <i < j <mn,
2) If L(B;) = L(B;) and B; is a ladder graph then i < j,
3) Any Feynman subgraph of a graph B; € £ is contained in the list L.

Notice that condition 3) is essential. Let G5 be the group of characters of Hs.

5.9.1 Normal coordinates and the character group

To follow the construction in Section Bl we need to construct normal coordinates
(see [B]).

To associate to any B;, i € {1,...,l} an element B, we start by associating to
any B; € L its decorated rooted tree T; = T'(B;) (if B; has overlapping divergences
one needs to associate its sum of decorated rooted trees instead (see [6])). To the
decorated rooted tree T; (or the sum of trees if overlappings occur) one can associate
a polynomial of rooted tree T/ following the normal coordinates construction in [5].

Finally to T/ we can associate B; € Hs.
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Notice that

B! = B; + a polynomial of B;,

with the loop number of each B;, less than the loop number of B;. The B]-graph
corresponding to a ladder graph B; is primitive. In particular, the group of characters
associated to a set of ladder graphs is abelian, so its Lie algebra has trivial bracket.
Notice that vertex graphs are excluded from our discussion.
Now, we give an example of computation of a B; for an overlapping divergences.

We do not adjust the computation by the symmetry factor.

Example 10. If B = @ € L then the corresponding B’-graph mentioned above

is given by
P= D - <O

Let F': Gy — (C!,®) be given by

F(p) = {SO(BZ{)}z'e{l,...,Z}-

Let @ : C' x C' — C' be the group law induced by the group law on G5. Then we
can identify Gy with (C!, ®).
We define the semidirect product Gy = C! x C given by the following action of
C on C:
t{ai}i = {e"P Y,

where L(DB;) is the loop number of B;. This corresponds in local coordinates to the
action #; defined in Chapter

We then compute the differential of the left translation and we get the left in-
variant vector fields on our Lie group. To get the infinitesimal Lie algebra structure,

we compute the bracket between the left invariants vector fields on the semi-direct
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group (C*!, @). We shall discuss at the end of this section an alternative way to

compute the Lie bracket of the infinitesimal Lie algebra.

5.9.2 The exponential map

The exponential of the Lie algebra gy can be obtained by solving a system of ordinary
differential equations since (t) = exp(tY’) is equivalent to Y = (L,)-1)., where
L, denotes the differential of the left translation of Gs.

The ODE Y = (L)1) is easily programmed and solved in Mathematica
as long as the dimensions of the dimension of the Hopf algebra is not to large.
To speed up Mathematica computations, one might want to split the system of
differential equations into partially decoupled subsystems, like in our worked example

(see Appendix B).

5.9.3 The adjoint and coadjoint representations on G,

The computations for the coadjoint representation Ad* are needed to define the law
group on the Lie group associated to the double Lie algebra.

The adjoint action Ad on the group G, is obtained by differentiating C,(h) =
ghg™t. The coadjoint action Ad* is the given by Ad*(g) = (Ad(g~'))!. Differentiating
Ad and Ad”*, one gets ad and ad”, respectively. All these computation can be carried
out by Mathematica. Notice that the matrix block in Ad obtained by removing the
last row and the last column (i.e the column corresponding to the grading element

Zyp) is lower triangular and the similar block corresponding to Ad* is upper triangular.

5.9.4 The double Lie algebra and its associated group

The computation to find all families of Lie bialgebra structures on gy can carried out

in a fashion similar to our worked example. However, as in the thesis it is easiest
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to choose the zero bialgebra structure (i.e. the abelian Lie algebra on g*). The
Lie algebra structure of the double Lie algebra 0 is then determined. The coadjoint
representation Ad* of G yields the group law on the associated Lie group of the

double Lie algebra.

5.9.5 The adjoint representation ad and Ad on ¢

The structure constants of § determines ad. Notice that Z; is still in the kernel of
ads. The adjoint representation Ad can be obtained using Mathematica as before by

taking the differential of C,, given by C,(h) = ghg™'.

5.9.6 Ad-invariant polynomials, Lax pair equations, Birkhoff

decomposition

Closely following the proof of Corollary B52, one can directly show that ¢(a) =
C(ay41)" is an Ads-invariant polynomial on d. The rest of the computation in Sections
5.5-8 can be easily adjusted to our case.

In summary, the techniques of this chapter extend to any finitely generated Hopf
algebra with conditions 1), 2), 3) up to the limits of machine computations

It is unclear whether results for the spectral curve (and Lie algebra cohomology)
change when we consider other Hopf algebra. In other several cases considered we
have computed the spectral curve and have always obtained a reducible spectral

curve.

5.9.7 A different approach to find the Lie group law

A different approach to compute the group law on Gy is given by Baker-Campbell-

Hausdorff formula (see [I0]). The bracket on the infinitesimal Lie algebra is given
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by the insertion of (decorated) rooted trees. Using this combinatorial approach, the
infinitesimal Lie algebra structure is much easier to find, but finding the group law
from the Baker-Campbell-Hausdorff formula seems more difficult than the approach
in .92

A different approach to find the normal coordinates in 29 would be a combina-

torial method that produces the independent generators B; of Hy with S(B]) = —B..

5.10 Lie algebra cohomology

In this section we compute the Lie algebra cohomology of the infinitesimal Lie al-
gebra of a Hopf algebra generated by a finite number of Feynman graphs. We also
discuss the possibility of producing a non-degenerate symmetric bilinear form on a
deformation of a semidirect product of the infinitesimal Lie algebra.

The underlying idea is that if we can deform the Lie bracket to one which has a
nondegenerate symmetric bilinear form, we can apply our Lax pair technique on the
deformed algebra without passing to the double Lie algebra.

From this point of view the motivation for calculating Lie algebra cohomology
is that the existence of non-trivial infinitesimal deformation and the obstruction to
integrating infinitesimal deformations are controlled by H?(g, g) and H?(g, g) respec-
tively. All computations rely on the Mathematica file given in Appendix E.

In this section we consider the Hopt algebra Hj generated by the empty set and
and the following Feynman graphs: O , @ , @ , Q :

Let g3 be the infinitesimal Lie algebra of Hs. Notice that g3 is a Lie subalgebra
of gy introduced in Section 5.1. We denote by Y7, Y5, Y3 and Y} the generators of g
introduced in Section 5.1. Let g = go x C.Z, given by [Zy,Y;] =Y, for i € {1,2,3}
and [Zy, Yy] = 3Y5.

The reason to restrict ourself to a lower dimensional Lie algebra is just for the
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economy of computations: Mathematica already takes an unreasonable amount of
time and computer resources in the five-dimensional case.

We begin by recalling the theory of deformations of Lie algebra following the
ideas from [I2]. Then we state the results obtained in Appendix E.

Let g be a Lie algebra. Let g[[t]] be the algebra of power series with coefficients
in g. Let f:gxg— g be the Lie bracket of g.

Let f; : g[[t]] x g[[t]] — g[[t]] be a bilinear map such that

fi(a,b) = f(a,b) +tFi(a,b) + t*Fy(a,b) + - - -, (5.10.1)

(g[[t]], fi) is called a deformation of the Lie algebra (g, f) if (g[[t]], f;) is a Lie algebra.
We denote by Fy = f.

By the definition of the Lie algebra we get the following:
F,(a,b) = —F,(b,a), (5.10.2)

> E(Fu(ab),c)+ FA(Eu(b.c),a) + FA(Fu(c,a),b) = 0. (5.10.3)

A p=v,\,u>0
Let
C"(g,g9) = {F :V®" — V| Bis a n-linear map}.

We define the coderivation 6" : C"(g,g) — C"" (g, g) by

(6" F(xo, 21,y 2n) = Y (=1)as, Flao, ..., &1, 2]

1=0
+ Z (—1)i+jF([ZL’Z’,ZL’j],ZL’0, cee ,ZIAZ'Z', cee ,ZIAZ']‘, .. .,Zl'n)

0<i<j<n
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Using (ET02), can be rewrite (BI03) as

(°F)(a,b,e)= > F(Fu(ab),¢)+ FA(Fu(b,c),a)+ Fy(Fu(c,a),b) (5.10.4)

In particular we have 62F; = 0 and
(0°Fy)(a,b,¢) = Fi(Fi(a,b),¢) + Fi(Fi(b,¢), a) + Fy(Fi(c,a),b)
For any integer n > 0, we denote by

Z"(g,g) =Ker 6",  B™(g,g) =Im "',  H"(g,9) = Z"(9,9)/B"(g.9),

with the convention 0" = 0 for n = —1.
The right hand side of ([EIL4) is always an element in Z3(g, g) and is called the

obstruction of F,,. We recall the following definition.

Definition 5.10.1. A deformation (g[[t]], f;) of a Lie algebra (g, f) is called trivial
if there exist the linear maps ¢; : g[[t]] — g[[t]], ¢ > 1 such that ¢; : g[[t]] — g][t]]
given by

di(a) = a+ tpi(a) +t2pe(a) + -+

is an linear isomorphism satisfying

fila,b) = & ([We(a), (D))

Proposition 5.10.2. If H?*(g,g) = 0 then any deformation of g is trivial.

Proposition 5.10.3. If H3(g,g) = 0 then the obstructions can be resolved, i.e. the
relation (BI0A) can solved for F,.

The significance of the previous proposition is that we can recursively choose
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Fy,...,F,. Namely, since Ker 6°> = Im 2 and the right hand side of equation (BIIL4)
is in Ker 03, we can pick a F,, such that doF, is equal to the right hand side of
equation (BI0A)). Thus we can find a deformation f; as in (EIOT).

In Appendix E, for our choice of five-dimensional Lie algebra g, we get the fol-

lowing results:
Theorem 5.10.4. dim H?(g,g) = 3.
Theorem 5.10.5. H3(g,g) = 0.

For notational convenience, let

FyoF, = F\(F,(a,b),c)+ F\(F,(b,c),a) + F\(F,(c,a),b)

Since we have too many choices for F,, we take the simplest choose

Fy=F =..=0. (5.10.5)

Then the equations (BI03)) become

52F2:F10F1, O:FloFg—l—FgOFl and():FgoFg.

This gives the quadratic deformations of our Lie algebra. In particular we can
additionally choose F, = 0 to obtain an affine deformation of our Lie algebra. Then
one can find the ad-invariant bilinear nondegenerate symmetric form on the deformed
Lie algebra. Even for the five dimensional algebra Hjz of Mathematica takes an
unreasonable time. This is the main reason we abandoned this approach.

Interesting questions and future directions are:

e How does the Lie algebra deformations of the five dimensional Lie algebra or

of the double Lie algebra relate to deformations of the initial Hopf algebra?
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e How does the Lie algebra cohomology relates to the Hopf algebra cohomology?

5.11 Spectral curve approach

Remark 5.11.1. To any Lax equation with a spectral parameter, one can associate a
spectral curve and study its algebro-geometric properties (see [20]). In our case, we
consider the adjoint representation ad : § — gl(d) and the induced adjoint represen-
tation of the loop algebra. The spectral curve is given by the characteristic equation

of ad(LA):

Ty = {(\,v) € C— {0} x C | det(ad(L(\) — vId) = 0}.

The theory of the spectral curve and its Jacobian usually assumes that the spec-
tral curve is irreducible. Unfortunately, for all 43 families of Lie bialgebra structures
on 9, on the associated twelve-dimensional Lie algebra ad ¢ all eigenvalues of the
characteristic equation are zero, and the zero eigenspace is eight dimensional. The
spectral curve itself is the union of degree one curves. Thus each irreducible compo-
nent has a trivial Jacobian, and the spectral curve theory breaks down.

Our solutions in §5.7 for the Lax pair flow for our example are relatively sim-
ple, in that they are polynomials in 2. For general Lax pair equations solvable
by spectral curve techniques, the solutions involve transcendental functions such as
Baker-Akhiezer functions, which are a type of theta function on the Jacobian of the
spectral curve [20]. Since our spectral curve is the union of degree one curves, the
associated Jacobians are just points, so there are no theta functions available.

We expect that the spectral curve is reducible for all examples of finitely generated
Hopt algebras. Looking at Lemma 5.2.2 and Proposition 5.4.2, we see that the
spectral curve is always reducible to a product of degree one curves. Therefore

spectral curve techniques do not seem promising.
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Appendix A

In this chapter we solve explicitly the system given by conditions a) and b) in Defi-
nition BGIl We prove Proposition 231 and Remark B3 from section §533, namely

we establish the following result.

number of solutions | number of linear relations | degrees of freedom
1 82 8
7 83 7
16 84 6
13 85 5
5 86 4
1 87 3
Let w(i, 7,1 with 4, j, k{1, -+ 6}, be the structure constants of the six-dimensional

Lie algebra go.

c= Arra"Y[w7 {67 6, 6}]7

Do[wli, 5, k] = 0, {3, 6}, {4, 6}, {k, 6}]; w[1,2,4] = 2;
w(2,1,4] = —-2;

Do[w([6, i, 4] = ¢, {4, 3}]; Do[w[i, 6, ] = —i, {4, 3}];

w[6,4,4] = 3;w[4,6,4] = —3; w[6, 5, 5] = 4; w[5,6,5] = —4;
80
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Let g be the Lie bialgebra structure, i.e. g[i, j, k] constants of gj. To deal with
condition a) of Definition B:6] i.e. Jacobi identity, we write it in coordinates.

First, we define

jacobicond[i, j, k, 1}Y; = [Yi, Y;], Yil] + [[¥;. Vi, Yi]] + [[¥i Y1 Y;]

ga = Array[g, {6,6, 6}];

Do[mmm = Sort[{il,i2}];

9[i1,i2,i3] = Signature[{il, i2}]¢g[mmm[[1]], mmm([2]],13],{il, 1, 6}, {i2, 1, 6}, {i3, 1, 6}]
jacobicond = Array/[jac, {6, 6,6,6}];

Doljacli, j, k, s| = Sum|(g[t, 5, l|g[l, k, s], {l, 1,6}]+ Sum(g[, k, l|g[l, %, 5], {1, 1,6}]+
Sum(g[k, i,1)g]l, 5, 8], {l,1,6}], {3, 1,6}, {j,1,6},{k, 1,6},{s,1,6}]

For the second condition b) of Definition BG.1l we define adcond|i,j,k,]].

adcond = Array[adc, {6,6,6,6}];
Dofadefi, j,m, q] = Sum{gl, g, lelf, L, m]] + glm, 1, Jelf. L gl - glLa, el m]
_g[m7 l, ’I,]C[[], la (I]] - g[m7 q, l]c[[z, Js l]]a {l7 1, 6}]a {7'7 1, 6}7 {.77 1, 6}’ {m’ 1, 6}’ {q’ 1, 6}]

Conditions a) and b) are equivalent to the following system.

Solve[jacobicond == 0&&adcond == 0]

Solve :: svars: Equations may not give solutions for all solve variables. More. ..
{{9[3,4,3] — 0,¢[2,5,5] — 0,¢[3,4,4] — 0,¢[2,5,2] — 0,¢[1,4,1] — 0,¢[4,5,5] —
0,

g[1,2,1] — 0,¢[3,5,5] — 0,¢[2,4,2] — 0,¢[1,3,1] — 0, ¢[3,5,3] — 0,¢[1,5,1] — 0,
g[1,5,5] — 0,¢[1,2,2] — 0,¢9[2,3,2] — 0,¢[2,4,4] — 0,¢9[1,3,3] — 0,¢[4,6,6] — 0,
9[2,3,3] — 0,9[3,6,6] — 0,¢9[4,5,4] — 0,¢[5,6,5] — 0, ¢9[1,4,4] — 0,¢[1,6,1] — 0,
9[3,6,3] — 0,¢[5,6,6] — 0,¢[2,6,6] — 0,¢[2,6,2] — 0,g[2,4,6] — 0,9[4,6,4] — 0,
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g[1,6,6] — 0,9[2,5,6] — 0,9[1,3,6] — 2¢(3,4,2],9[3,4,1] — 0,9[2,4,1] — 0,
g[3,4, 5] — O,g[Q, 3, 6] — 0,g[2,4, 5] — 0,g[2,4, 3] — 0,g[4, 9, 3] — O,g[l, 4, 3] — 0,
gl4,5,1] — 0,¢[1,4,2] — 0,¢9[2,5,1] — 0,¢[1,4,5] — 0,¢[2,3,1] — 0,

gl4,5,2] — —%9[1,5,6],9[2,3, 5] — 0,¢[3,5,1] — 0, ¢[3,5,2] — 0,9][1,2,6] — 0,
9[3,5,4] — 0,4[1,3,5] — 0,¢[1,5,2] — 0,¢[1,3,2] — 0,9[2,5,3] — 0,¢[3,6,5] — 0,
g]4,6,3] — 0,g[4,6,1] — 0,¢[2,6,1] — 0,¢[1,5,3] — 0,9[2,3,4] — 0,¢9[4,6,5] — 0,
g[1,2,5] — 0,¢[2,6,5] — 0,¢[1,2,3] — 0,¢[3,6,1] — 0, g[3,6,4] — 0,¢[2,5,4] — 0,
gl4,6,2] — 0,49[1,3,4] — 0, ¢[5,6,3] — 0,¢[2,6,3] — 0, g[5,6,1] — 0,

g[1,6,2] — 0,¢[1,6,5] — 0,¢9[1,2,4] — 0,¢[3,6,2] — 0, g[2,6,4] — 0,

g[1,6,3] — 0,¢[5,6,2] — 0, ¢[5,6,4] — 0,¢[1,5,4] — 0, ¢[1,6,4] — 0},

{9[3,4,3] — 0,¢[2,5,5] — 0,¢[3,4,4] — 0,¢9[2,5,2] — 0,¢[1,4,1] — 0,

gl4,5,5] — 0,¢[1,2,1] — 0,¢[3,5,5] — 0,¢[2,4,2] — 0,¢9[1,3,1] — 0,¢[3,5,3] — 0,
g[1,5,1] — 0,¢[1,5,5] — 0,¢[1,2,2] — 0,¢[2,3,2] — 0, 9[2,4,4] — 0,¢]1,3,3] — 0,
g]4,6,6] — 0,¢(2,3,3] — 0,¢[3,6,6] — 0,g[4,5,4] — 0, g[5,6,5] — 0,¢[1,4,4] — 0,
g[1,6,1] — 0,¢[3,6,3] — 0, ¢[5,6,6] — 0,¢[2,6,6] — 0, g[2,6,2] — 0,

gl4,6,4] — 0,9[1,4,6] — 0,¢[1,6,6] — 0,¢[2,5,6] — 3¢[4,5,1],4[1,3,6] — 0,

9[3,4,1] — —2¢[2,3,6],9[2,4,1] — 0,9[3,4,2] — 0,9[3,4,5] — 0, ¢[2,4,5] — 0,
9[2,4,3] — 0,9[4,5,3] — 0,¢9[1,4,3] — 0,9[1,4,2] — 0,9[2,5,1] — 0,¢][1,4,5] — 0,
9[2,3,1] — 0,9[4,5,2] — 0,¢[2,3,5] — 0,¢[1,5,6] — 0, ¢[3,5,1] — 0,¢[3,5,2] — 0,
g[1,2,6] — 0,¢[3,5,4] — 0,¢[1,3,5] — 0,¢[1,5,2] — 0,¢9[1,3,2] — 0,¢[2,5,3] — 0,
9[3,6,5] — 0,g[4,6,3] — 0,¢9[4,6,1] — 0,¢[2,6,1] — 0,¢9[1,5,3] — 0,¢[2,3,4] — 0,
gl4,6,5] — 0,¢[1,2,5] — 0,¢[2,6,5] — 0,¢[1,2,3] — 0,9[3,6,1] — 0,¢[3,6,4] — 0,
9[2,5,4] — 0,9[4,6,2] — 0,¢[1,3,4] — 0,¢[5,6,3] — 0, ¢[2,6,3] — 0,¢[5,6,1] — 0,
g[1,6,2] — 0,¢[1,6,5] — 0,¢9[1,2,4] — 0,¢[3,6,2] — 0, g[2,6,4] — 0,

g[1,6,3] — 0,¢[5,6,2] — 0,¢[5,6,4] — 0,¢[1,5,4] — 0, ¢g[1,6,4] — 0},
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--another 40 solutions here (the Mathematica output is shrunk) - - -
{9[3.4,3] — 0,9[2,5,5] — 0,¢[3,4,4] — 0,9[2,5,2] — 1¢[5,6,6], g[1,4,1] — 0,
gl4,5,5] — 0,¢[1,2,1] — 0,¢[3,5,5] — 0,¢[2,4,2] — 0,¢9[1,3,1] — 0,
9[3,5,3] — %g[5,6,6],g[1, 5,1 — ig[5,6,6],g[1, 5,5] = 0,¢9[1,2,2] — 0,

9[2,3,2] — 0,9(2,4,4] — 0,¢[1,3,3] — 0,¢[4,6,6] — 0, g[3,4,6] — 0,¢[2,3,3] — 0,
g[3,6,6] — 0,g[4,5,4] — 49[5,6,6],g[5,6,5] —0,9[1,4,4] — 0,¢[1,6,1] — 0,
9[3,6,3] — 0,¢[2,6,6] — 0,¢[2,6,2] — 0,¢[2,4,6] — 0, g[4,6,4] — 0, g[1,4,6] — 0,
[1,6,6] 2,5, 6]

[
9[1,6,6] — 0,9 [

—0,¢9[1,3,6] — 0,¢[3,4,1] — 0,9[2,4,1] — 0,¢[3,4,2] — 0,

4
, 2
g[3,4,5] — 0,¢(2,3,6] — 0,¢9[2,4,5] — 0,¢[2,4,3] — 0,9[4,5,3] — 0,
g[1,4,3] — 0,9[4,5,1] — 0,¢9[1,4,2] — 0,¢[2,5,1] — 0, g[1,4,5] — 0,

6
4
)
4
9[2,3,1] — 0,9[4,5,2] — 0,¢[2,3,5] — 0,¢[1,5,6] — 0, g[3,5,1] — 0,
9[3,5,2] — 0,9[1,2,6] — 0,¢[3,5,4] — 0,¢[1,3,5] — 0,¢9[1,5,2] — 0,
g[1,3,2] — 0,9[2,5,3] — 0,¢[3,6,5] — 0,¢[4,6,3] — 0, g[4,6,1] — 0,
9[2,6,1] — 0,¢[1,5,3] — 0,¢[2,3,4] — 0,¢[4,6,5] — 0, g[1,2,5] — 0,
9[2,6,5] — 0,¢[1,2,3] — 0,¢[3,6,1] — 0,¢[3,6,4] — 0, ¢[2,5,4] — 0,
gl4,6,2] — 0,49[1,3,4] — 0,¢[5,6,3] — 0,¢[2,6,3] — 0, g[5,6,1] — 0,
g[1,6,2] — 0,¢[1,6,5] — 0,¢[1,2,4] — 0,¢[3,6,2] — 0, g[2,6,4] — 0,

9[1,6,3] — 0, ¢[5,6,2] — 0,g[5,6,4] — 0,g[1,5,4] — 0,g[1,6,4] — 0}}



Chapter 7

Appendix B

In this chapter, we give the Mathematica file for the computations from sections
and B0 All Mathematica code is shown in bold fonts, all comments are in italic,
while the Mathematica output is given in roman fonts.

First, we define the group law on Gj.
FH{x1_,x2_,x3_,x4 ,x5 ,t_},{yl_,y2_,y3 ,y4 ,y5 ,y6_}}|:=

{x1 + Exp|t]yl,x2 + Exp|2t]y2, x3 + Exp[3t]y3,

x4 + Exp[3t]y4 + Exp[2t]x1y2 — Exp[t|x2y1, x5 + Exp[4t]y5,t + y6}

We find the inverse of an element.

Solve[f[{{x1,x2,x3,x4,x5,t}, {yl,y2,y3,y4,y5,y6}}] == 0,{y1,¥2,y3, y4,y5,y6}]

x5, y6 — —t,yl — —e~ix1,

{{y4 — —e x4, y3 — —e3x3,y5 — —e~
y2 — —e 2x2}}
inverseoff[{x1_,x2_,x3_,x4_,x5_,t_}]:={y1,y2,y3,y4,y5,y6}/.

-3t -3t

{y4 — —e3x4,y3 — —e~3x3,y5 — —e *x5,y6 — —t,yl — —e~x1,

y2 — —e 2x2}

inverseoff[{x1, x2, x3, x4, x5, t}|

{—e7ix1, —e?x2, —e73x3, —e3x4, —eYx5, —t}

Define the conjugation C, as Conj, i.e. Cy(h) = ghg™".

Conj[{{x1_,x2 ,x3_,x4 ,x5 ,t },{yl_,y2 ,y3 ,y4 ,y5_,y6_ }}|:=
FHAH{x1, x2,x3, x4, x5, t}, {y1,y2,y3,y4,y5,y6} }],

inverseoff[{x1, x2, x3, x4,x5,t}]}|

Conj[{{x1,x2,x3,x4,x5,t},{y1,y2,y3,y4,y5,y6}}]
84
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{x1 — e¥0x1 + elyl,x2 — e 2 H2T0)x2 4 e2y2 x3 — e 3303 4 e3ly3,

x4 — e 3305 — elx2yl — e HH2HY0)xD (x1 + elyl) 4 eXxly2 +

e¥0x1 (x2 4 e*y2) + e3lyd, x5 — e HHHITYO)x5 4 elty5 yv6}

Now we take the differential of C\.

Jac = Array|(d, {6, 6}];

Do([¢,1] = Expand[D[Conj[{{x1,x2, x3, x4, x5, t},{y1,y2,y3,y4,y5,y6} }|[[]], y1]],
{i,1,6}]

Do|[[i,2] = Expand[D[Conj[{{x1, x2,x3, x4, x5, t}, {y1,y2, y3,y4,y5,y6} }][[?]], ¥2]],
{i,1,6}]

Do([[¢, 3] = Expand[D[Conj[{{x1,x2, x3, x4, x5, t}, {y1,y2,y3, y4,y5,y6} }|[[¢]], ¥3]],
{i,1,6}]

Do([¢,4] = Expand[D[Conj[{{x1,x2, x3, x4, x5, t},{y1,y2,y3,y4,y5,y6} }|[[¢]], y4]],
{1,1,6}]

Do|[[, 5] = Expand[D[Conj[{{x1, x2,x3, x4, x5, t}, {y1,y2, y3,y4,y5,y6} }][[#]], ¥5]],
{1,1,6}]

Do([[¢, 6] = Expand[D[Conj[{{x1,x2, x3, x4, x5, t},{y1,y2,y3,y4,y5,y6} }|[[]], y6]],
{i,1,6}]

Expand|[Jac]

{{e',0,0,0,0, —e"%x1}, {0, €*,0,0,0, —2e~2#F2(+¥6)x2 1 |

{0,0,€%,0,0, =3e73H30Hv0x3} {—elx2 — 7 HATOx2 e2x] + 21Y0x1,0, €,

0, e¥0x1x2 — 2e 2 F2(H¥0)x]x2 — 3e73F3(HY0)xq — 2e1H2(TVO)xDy] + X H¥0x1y2}
{0,0,0,0, ", —4e~HH46)x51 1£0,0,0,0,0,1}}

The adjoint representation Ad is given below.

Adjoint = Array/[adj, {6, 6}];

CoAdjoint = Array|[coadj, {6, 6}];

Adjoint = Jac/.{yl — 0,y2 — 0,y3 — 0,y4 — 0,y5 — 0,y6 — 0};
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Adjoint

{{€",0,0,0,0, —x1},{0,¢e*,0,0,0, —2x2} ,

{0,0,¢€,0,0, —3x3} , {—2¢'x2, 2e*x1, 0, €*, 0, —x1x2 — 3x4},

{0,0,0,0,e* —4x5},{0,0,0,0,0,1}}

Now we prepare for the computations of ad.

littleadoff[{x1_,x2 ,x3_,x4 ,x5_,t_}] =

{{€,0,0,0,0,—x1}, {0, e*,0,0,0, —2x2} , {0,0, €%, 0,0, —3x3},
{—2¢'x2,2e%x1, 0, €%, 0, —x1x2 — 3x4}, {0, 0,0, 0, e*, —4x5} , {0,0,0,0,0,1} };

afl = D[littleadoff[{x1, x2, x3, x4, x5, t}], x1]/.

{x1 - 0,x2 — 0,x3 — 0,x4 — 0,x5 — 0,t — 0};
af2 = D[littleadoff[{x1, x2, x3, x4, x5, t}],x2]/.

{x1 - 0,x2 — 0,x3 — 0,x4 — 0,x5 — 0,t — 0};
af3 = D|[littleadoff{{x1, x2, x3, x4, x5, t}],x3]/.

{x1 - 0,x2 — 0,x3 — 0,x4 — 0,x5 — 0,t — 0};
af4 = Dlittleadoff[{x1,x2, x3, x4, x5, t}],x4]/.

{x1 - 0,x2 — 0,x3 — 0,x4 — 0,x5 — 0,t — 0};
af5 = D|[littleadoff[{x1, x2, x3, x4, x5, t}], x5]/.

{x1 - 0,x2 — 0,x3 — 0,x4 — 0,x5 — 0,t — 0};
af6 = D[littleadoff[{x1, x2, x3, x4, x5, t}],]/.

{x1 - 0,x2 — 0,x3 — 0,x4 — 0,x5 — 0,t — 0};

littleadjointoff = x1afl + x2af2 + x3af3 + x4af4 + x5af5 + x6af6;
The adjoint representation ad on the 6-dimensional Lie algebra is given below.

MatrixForm|littleadjointoff]
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x6 0 0 0 0 —x1

0 2x6 0 0 0 —2x2
0 0 3x6 0 0 —3x3
—2x2 2x1 0 3x6 0 —3x4
0 0 0 0 4x6  —4x5

0 0 0 0 0 0

CoAdjoint =
Transpose[Jac]/. {x1 — —e~'x1,x2 — —e #x2,x3 — —e3x3,x4 — —e3x4,

x5 — —e x5t — —t,yl — 0,y2 — 0,y3 — 0,y4 — 0,y5 — 0,y6 — 0};

MatrixForm[Adjoint]
el 0 0 0 0 —xl
0 e?t 0 0 0 —2x2
0 0 e 0 0 —3x3
—2e'x2 2e*x1 0 € 0 —x1x2—3x4
0 0 0 0 ' —4x5
0 0 0o 0 0 1

MatrixForm|[CoAdjoint|
et 0 0 232 0 0
0 e 2 0 —2e 731 0 0
0 0 e 3t 0 0 0
0 0 0 e 3t 0 0
0 0 0 0 e~ 0
e txl 2e7%x2 3e3x3 —e3xIx2 + 3e3x4 de x5 1

CoAdjoint
{{e,0,0,2e73x2,0,0}, {0, =2, 0, —2¢~3x1,0, 0},
{0,0,e73¢,0,0,0},{0,0,0,e73,0,0},{0,0,0,0,e7% 0} ,
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{e7!x1,2e7%x2, 3e73x3, —e3x1x2 + 3e x4, de x5, 1}}

Now, we define the law on G~’, then we compute the exponential.
gl{{x1_,x2_,x3_,x4_,x5_,t_,x7_,x8 ,x9 ,x10_,x11_,x12_},
{y1_,y2_,y3_,y4 ,y5 ,y6_,y7 ,y8 ,y9 ,yl0_,yll ,yl12 }}:=
Join[{x1 + Exp|t]yl, x2 + Exp[2t]y2, x3 + Exp|[3t]y3,

x4 + Exp[3t]y4 + Exp[2t]x1y2 — Exp[t|x2y1,x5 + Exp[4t]y5, t + y6},
Expand [{x7, x8,x9,x10,x11,x12}+

{{e™,0,0,2¢73x2, 0,0} , {0, e~%, 0, —2¢~%x1, 0,0} ,

(0,0, %,0,0,0}, {0,0,0,e~3, 0,0} , {0,0,0,0, =, 0} ,
{e7'x1,2e%x2, 3e73x3, —e3x1x2 + 3e~3x4, e *x5,1}} .
{¥7,¥8,y9,y10,y11,y12}]]

9l{{x1,x2,x3, x4, x5, t,x7,x8,x9,x10,x11, x12},
{v1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12} }]

{x1 + e'yl,x2 + e*'y2,x3 + 3y3, x4 — e'x2y1 + e¥x1y2 + e3ly4,

x5 + ety5, t + y6,x7 + 2e73x2y10 + e ty7,x8 — 2e3x1y10 + e~ ?y8,
x9 + e73y9, x10 + e 3y10,x11 + e *y11,x12 — e 3x1x2y10 +
3e73x4y10 + de Hx5y11 + y12 + e7Ix1y7 + 2 x2y8 + 3e3'x3y9}
Solve[g[{{x1,x2, x3, x4, x5, t, X7, x8,x9, x10,x11, x12},
{y1,¥2,y3,y4,y5,¥6,y7,y8,y9,y10,y11,y12}}] == 0,
{vL,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12}]

{{y12 — —x12 + x1x10x2 + 3x10x4 + 4x11x5 + x1x7 + 2x2x8 + 3x3x9,

x5, y6 — —t,yl — —e~'x1,

y3 — —e 3x3,y4 — —e3x4,y5 — —e
y2 — —e %x2 y7T — e!(2x10x2 — x7),y8 — —e?(2x1x10 + x8),

v9 — —e¥x9,y11 — —etx11,y10 — —e*x10}}
inverseofg[{x1_,x2_,x3_,x4_,x5_,t_,x7_,x8 ,x9 ,x10_,x11 ,x12 }|:=

{¥1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12}/.
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{y12 —» —x12 + x1x10x2 + 3x10x4 + 4x11x5 + x1x7 + 2x2x8 + 3x3x9,

-3t -3t e—4t

y3 — —e 3x3,y4 — —e x4, y5 — —e¥x5,y6 — —t,yl — —e~ixl,
y2 — —e #x2, y7 — €!(2x10x2 — x7), y8 — —e?(2x1x10 + x8), y9 — —e3tx9,
yll — —ex11,y10 — —e3x10}

inverseofg[{x1,x2, x3, x4, x5, t, x7, x8,x9, x10,x11, x12}|

{—e7ix1, —e#x2, —e73x3, —e x4, —e x5, —t,

e!(2x10x2 — x7), —e* (2x1x10 + x8), —e3x9, —e3'x10, —ex11,

— x12 4 x1x10x2 + 3x10x4 + 4x11x5 + x1x7 + 2x2x8 + 3x3x9}

We define the conjugate C,(h) = ghg™" as Conjofg.

Conjofg[{{x1_,x2 ,x3 ,x4 ,x5 ,t ,x7 ,x8 ,x9 ,x10 ,x11 ,x12 },
{y1_,y2_,y3_,y4 ,y5 ,y6_,y7 ,y8 ,y9 ,yl0_,yll ,yl12 }}:=
9l{g[{{x1,x2, x3, x4, x5, t,x7,x8,x9,x10,x11,x12},
{v1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12}}],

inverseofg[{x1,x2, x3, x4, x5, t, x7, x8,x9, x10,x11, x12}]}]

Jacofg = Array|[dofg, {12, 12}];

leftstar = Array/[lstar, {12, 12}];

Dollstar[i, 1] = D[g[{{x1,x2,x3,x4,x5, t,x7,x8,x9,x10,x11,x12},
{v1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12}}][[él], y1], {3, 1, 12}]
Dollstar[i, 2] = D[g[{{x1,x2, x3, x4, x5, t, x7,x8,x9,x10,x11,x12},
{¥1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12} }][[#]], y2], {3, 1, 12}]
Dollstar[i, 3] = D[g[{{x1,x2,x3,x4,x5, t,x7,x8,x9,x10,x11,x12},
{¥1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11, y12}}]([i]], y3], {4, 1,12}]
Dollstar[i, 4] = D[g[{{x1,x2,x3,x4,x5, t,x7,x8,x9,x10,x11,x12},
{y1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12} }]([i]], y4], {i, 1, 12}]
Dollstar[z, 5] = D[g[{{x1,x2, x3,x4, x5, t, x7,x8,x9,x10,x11, x12},

{y1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12} }][[él], y5], {¢, 1, 12}]
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Dollstar[i, 6] = D[g[{{x1,x2,x3,x4,x5,t,x7,x8,x9,x10,x11,x12},
{¥1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11, y12}}]([i]], y6], {4, 1,12}]
Dollstar[i, 7] = D[g[{{x1,x2, x3, x4, x5, t, x7,x8,x9,x10, x11,x12},
{y1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12} }]([i]], y7], {i, 1, 12}]
Dollstar[i, 8] = D[g[{{x1,x2, x3, x4, x5, t, x7,x8,x9,x10,x11,x12},
{¥1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11, y12}}]([i]], y8], {4, 1,12}]
Dollstar[i, 9] = D[g[{{x1,x2,x3,x4,x5,t,x7,x8,x9,x10,x11,x12},
{y1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12} }]([i]], y9], {i, 1, 12}]
Dollstar[, 10] = D[g[{{x1,x2, x3, x4, x5, t, x7,x8, x9, x10,x11,x12},
{¥1,¥2,y3,y4,y5,¥6,y7,y8,y9,y10,y11,y12}}]([i]], y10], {3, 1, 12}]
Dollstar[i, 11] = D[g[{{x1,x2,x3,x4,x5, t,x7,x8,x9,x10,x11,x12},
{¥1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11, y12} }]([i]], y11], {3, 1, 12}]
Dollstar[z, 12] = D[g[{{x1,x2, x3, x4, x5, t, x7,x8, x9, x10,x11, x12},
{¥1,¥2,y3,y4,y5,¥6,y7,y8,y9,y10,y11,y12}}]([i]], y12], {3, 1, 12}]
leftstar

{{€',0,0,0,0,0,0,0,0,0,0,0},
{0,¢%,0,0,0,0,0,0,0,0,0,0},{0,0,¢*,0,0,0,0,0,0,0,0,0},
{—elx2, e¥x1,0,¢%,0,0,0,0,0,0,0,0}
{0,0,0,0,¢",0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,e,0,0,2¢%x2, 0,0} ,

{0,0,0,0,0,0,0,2,0, —2¢~%x1,0,0} ,
{0,0,0,0,0,0,0,0,e730,0,0},
{0,0,0,0,0,0,0,0,0,e730,0},{0,0,0,0,0,0,0,0,0,0, e 0},
{0,0,0,0,0,0, e~ %1, 2e7%x2, 3e73x3, —e3x1x2 + 3e3x4, de~4x5, 1}}

{{€,0,0,0,0,0,0,0,0,0,0,0},{0,e%*,0,0,0,0,0,0,0,0,0,0},
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{0,0,¢*,0,0,0,0,0,0,0,0,0},

{—e!x2, e%x1,0, ™, 0,0,0,0,0,0,0,0},

{0,0,0,0,¢*,0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,e~t, 0,0, 2¢~3x2, 0, 0} ,

{0,0,0,0,0,0,0, e, 0, —2¢~3tx1, 0,0} ,
{0,0,0,0,0,0,0,0,e-3,0,0,0}, {0,0,0,0,0,0,0,0,0, =3, 0,0},
{0,0,0,0,0,0,0,0,0,0,e~*, 0},

{0,0,0,0,0,0, e~*x1, 2e~%x2, 3e~3x3, —e~3tx1x2 + 3e~3x4,4e 4x5,1}} /.
{x1 — —e7x1,x2 — —e 2%x2,x3 — —e 3x3,x4 — —e x4, x5 — —e x5,
t — —t,x7 — e'(2x10x2 — x7), x8 — —e?(2x1x10 + x8),x9 — —e3x9,
x10 — —e3x10,x11 — —ex11,

x12 — —x12 + x1x10x2 + 3x10x4 + 4x11x5 + x1x7 + 2x2x8 + 3x3x9}
{{e1,0,0,0,0,0,0,0,0,0,0,0},
{0,e721,0,0,0,0,0,0,0,0,0,0},{0,0,e73¢,0,0,0,0,0,0,0,0,0},
{e73x2, —e73x1,0,e73,0,0,0,0,0,0,0,0},
{0,0,0,0,e7%,0,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,¢",0,0,—2¢'x2,0,0},
{0,0,0,0,0,0,0,e*,0,2e%x1,0,0},{0,0,0,0,0,0,0,0,e% 0,0,0},
{0,0,0,0,0,0,0,0,0,¢*,0,0},{0,0,0,0,0,0,0,0,0,0,e* 0},
{0,0,0,0,0,0, —x1, —2x2, —3x3, —x1x2 — 3x4, —4x5,1}}

Leftl = {{e*,0,0,0,0,0,0,0,0,0,0,0},
{0,e~%,0,0,0,0,0,0,0,0,0,0}, {0,0,e~*,0,0,0,0,0,0,0,0,0},
{e73x2, —e73¥x1,0,e73,0,0,0,0,0,0,0,0},
{0,0,0,0,e~*,0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0, 0},
{0,0,0,0,0,0,¢,0,0,—2¢'x2,0,0},

{0,0,0,0,0,0,0,e*,0,2e*x1,0,0}, {0,0,0,0,0,0,0,0,€%,0,0,0},
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{0,0,0,0,0,0,0,0,0,¢*,0,0}, {0,0,0,0,0,0,0,0,0,0, e*, 0},
{0,0,0,0,0,0, —x1, —2x2, —3x3, —x1x2 — 3x4, —4x5,1}}
{{e7*,0,0,0,0,0,0,0,0,0,0,0},
{0,e721,0,0,0,0,0,0,0,0,0,0},{0,0,e73¢,0,0,0,0,0,0,0,0,0},
{e3x2, —e~31x1,0,¢7%,0,0,0,0,0,0,0,0},
{0,0,0,0,e7%,0,0,0,0,0,0,0},{0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0,¢,0,0, —2¢'x2, 0,0},

{0,0,0,0,0,0,0, ¢, 0, 2¢%x1,0,0} , {0,0,0,0,0,0,0,0,¢*,0,0,0}
{0,0,0,0,0,0,0,0,0,¢*,0,0},{0,0,0,0,0,0,0,0,0,0,e* 0},
{0,0,0,0,0,0, —x1, —2x2, —3x3, —x1x2 — 3x4, —4x5,1}}
{{e™,0,0,0,0,0,0,0,0,0,0,0}, {0,e2,0,0,0,0,0,0,0,0,0,0},
{0,0,e7%,0,0,0,0,0,0,0,0,0},

{e%x2, —e~3x1,0,e-%,0,0,0,0,0,0,0,0},
{0,0,0,0,e~*,0,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0,0},
{0,0,0,0,0,0, ¢, 0,0, —2¢'x2, 0, 0} ,

{0,0,0,0,0,0,0, ¢, 0, 2¢%x1, 0,0} , {0,0,0,0,0,0,0,0,*,0,0,0} ,
{0,0,0,0,0,0,0,0,0,¢*,0,0}, {0,0,0,0,0,0,0,0,0,0, e*, 0} ,
{0,0,0,0,0,0, —x1, —2x2, —3x3, —x1x2 — 3x4, —4x5,1}}.
{y1,¥2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12}

{e7tyl, e 2y2, e 3ty3 e 3x2y1 — e 3x1y2 + e 3ty4,

e~4y5, y6, —2e'x2y10 + ely7, 2e?x1y10 + e?y8, e3'y9, 3y 10,

elty11, (—x1x2 — 3x4)y10 — 4x5y11 + y12 — x1y7 — 2x2y8 — 3x3y9}
FI[{{x1_,x2 ,x3 ,x4 ,x5 ,t ,x7 ,x8 ,x9 ,x10 ,x11 ,x12 },
{v1_,y2_,y3_,y4_,y5_,y6_,y7_,y8_,y9_,yl0_,yll ,yl2 }}|:=
{e7tyl, e 2y2, e3ty3 e~3x2y1 — e 3x1y2 + e~ 3ty4, e~4y5, y6,
—2etx2y10 + ety7, 2e*x1y10 + e*y8, e3y9, e3y10, e*y11,
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(—x1x2 — 3x4)y10 — 4x5y11 + y12 — x1y7 — 2x2y8 — 3x3y9}
bl[t_]:=gl[t];

b2[t_]:=g2[t];

b3[t_]:=g3[t];

b4t _]:=g4[t];

b5[t_]:=g5[t];

b6[t_]:=g6[t];

b7[t_]:=g7lt];

b8[t_]:=g8[t];

bI[t_]:=gI[t];

b10[t_]:=g10[t];

bll[t_|:=gll[t];

bl2[t_|:=gl2[t];

Evaluate[F1[{{bl1][t], b2[t], b3[t], b4[t], b5[t], b6[t], b7[t], b8[¢], bI[t],
b10[t], b11[t], b12[t]}, {b1’[t], b2'[t], b3'[t], b4'[t], b5[t], b6'[t], b7'[t], b8'[t],
b9'[t], b10'[t], b11[t], b12'[]} }]]

{emellg1'[t], el g2/[t], e~ 80l g3/ [1],

e~ g2[t]g1'[t] — e~ Vg1 [t]g2'[t] + e Mgd'[t], e~ * Vg5 [t], g6[¢],
— 2851 g2[t]g10'[t] + e#8lg7'[t], 2288 g1 [t]g10/[t] + €251 g8'[#],
elgy'[t], e Ulg10/[t], e*81Ig11/[t], (—g1[t]g2[t] — 3g4[t])gl0'[t] —
4g5[t]g11'[t] + g12'[t] — gl[t]gT'[t] — 2g2[t]g8'[t] — 3g3[t]g9'[t]}

g6[t_]:=tz6

To obtain the exponential, we first solve a system of differential equation which is a
subsystem of the system of ODEFE that gives the exponential.

DSolve [{e7"6gl'[t] == z1, e 2%6g2'[t] == 22, e~36g3/[t] == 23, e~4*6g5'[t] == 25,
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—2e8g2[t]gl0[t] + e“SgT'[t] == 27, 2e*%0g1[t]g10'[t] + €**6g8'[t] == 28,
e36gy [t] == 29, 36g10'[t] == 210, e*0g11'[t] == 211},

{sllt], 2t], g3[t], 85[t], 87[t], 88[t], 89[t], 10[t], g11[t]}, 1]

{{gS[t] R _e*%zﬁ(—zzégloﬂezs) 42 3f;ZZGmC 1, C2],

gl[t] — <22 + O[], gzm — &2y O3],

226
e 120 (2102242627 e—3tz6y C[3
g7[t] s ( 1Z%22+ 627) 3Z610 (3] + C'[ ]
— 3tz 6Z 3tz6Z 4t 6Z
gl0[t] — =S5 + C[5], g3[t] — 52 + C[6],85[t] — 5> + C[7],

g9lf] — — =55 + 8], gl1[1] — <"t + Clo]} |
We take the solutions of the previous system and then we deal with the remaining

two equations.
e~2t26 1) (—221210+2628) 2(e—3t26—-1)21021
g8lt_J:=— ( )2z62 - 3z62) ;
26 _1)z1
glfe_J:= )

em“ 1)z2
g2[t_]::( 226 ) ;
(e=*#6—1)(21022+2627) + 2(e=3t26-1)21022

g7ft_]-=— 267 6262 ,
e‘3t’6—1)210
gloft_]:=— (T;
( 3"‘6—1)22 °
ettz6_1 )y
eslt_J *w,
3t26_1)z9
gofe_Ji— — o,
e—4t26 _1)z11
glift_J:=— (=1 s ) ;

DSolve [{e~3#6tg2[t|gl’[t] — e3*6tgl[t]g2'[t] + e~ 3*6tgd/[t] == z4,
(—81[t]g2[t] — 3g4t])g10[t] — 4g5[t]g11'[t] + g12'[t] — gl[t]g7[t] -
282[t]g8'[t] — 3g3[t]g9'[t] == 212}, {g4t], g12[¢]}, ¢]

{ {g ] > e ) | o,

6262

g12[t] — ez (€740 (32112526 + 12€%%621 (21022 + 2627)—

6e27642(221210 — 2628) + 26 (2121022 + 2232629) —
2% (71 (21022 — 6t26%27) — 226(21024(—1 + 3t26) + 3t26
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(#1125 + 21246 + 2248 + 2349))))) — “nlOCIU C[z]}}

DSolve [{e~*g2t]g1'[t] — e~>*%g1[t]g2'[t] + e~***'gd'[t] == 24}, {g4[t]}, 1]
{{g4[t] . et20 ((3—3et#0 4220 ) 1122+ 2e210 2446 ) n C[l]}}

6262

etﬁ6((3_3et16 +e2t56)zlz2 +2e2t56
6262

z4z6) /{t - 0}

7122422426
6262

tz6((3__3 t16+ 2126 ), 242 226,46
g4[t_]:ie (( € eﬁzﬁzz Zz e z47| ) . 212261_:22426;

DSolve[{(—g1[t]g2[t] — 3g4[t])g10'[¢] — 4g5[t]g11'[t] + g12'[t] — g1[t]g7'[t]—
2g2(t]e8'[t] — 3g3(t]g9 [t] == z12}, {g12[¢]}, ]

{{ng[t] N zc% <i€—4tz6Z11Z5 + e*tzﬁzl(zié)22+Z6Z7) + e*2tz622(—22;61210+z6z8)+

t26(21024 + 21125 + 21226 + 2127 + 2228 + 2329) +

e 326 (2121022+42102426+232629
( 3z6 ) + C[]']

—4tz6 e~ 2671 (21022+2627) e~2t26,2(—221210+2628)
z11z5 + o6 + 26 +

Expand[_ (ie

t26(21024 + 21125 + 21226 + 2127 + 2228 + 2329)+

e~ 3t26 (2121022+2102426+232629)
= /t—0

z1z10z2 z10z4 z11z5 z1z7 2228 z3z9
3263 + 3262 + 4262 + 762 + 2262 3262

1 (1,416 €7 1%621(21022+2627) |, e~ 2t%622(—221210+2628)
Expand[—z» ( 1€ %0z1125 + g + 526 +
—3t26 (2121022+21024
126(21024 + 21125 + 21226 + 2127 + 2228 + 2329) + & (2121022+2102426+232629) ) _
3z6
z1z10z2 z10z4 z11z5 z1z7 2228 2329
( 3263 + 3262 + 4762 + 262 + 2262 + 3z67)]
2121022 | e7352121022  e"?%7%2121022 | e 02121022 21024
tz12 360 3463 263 + 263 367 T

e 312641024 21125 e~ 42641145 tz10z4 tz11z5 2127 e t%04147
3262 4762 + 4762 + z6 + z6 762 + 262 +

tzlz7 7228 e 21262228 12228 2329 e 3126329 12329
76 2262 + 2262 + 26 3262 + 3262 + 76

—3tz6 —2t26
g12[t_]ft212 _ 213221(2322 + e 32261321022 _ e 22%21022_'_

e 202171022 _ 21024 | e~3%671024 _ 21125 |, e 45071125 | t21024
263 3262 + 3262 4262 + 4262 + z6 +
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tzl11z5 zlz7 + e~ t%62127 + tzlz7 7228 + e~ 2t26,9,8 + tz228

z6 262 T 2262 2262

2329 e_3tz‘523z9 tz3z9
3262 + 3262 +

Finally, we get the exponential.

{sl[t], 82[t], g3[t], g4lt], 85[t], z6t, g7[t], g8[t], £9]¢], g10[¢], g11[¢], g12[¢]}

(—1+6tZ6)Z1 (—1+62tZ6)Z2 (—1+63tZ6)Z3 2122+22426 etZ6((3—3etZ6+62tZ6)2122-1—262“62426)
76 ) 246 ) 346 AL 6262 )
(—1+64tZ6)Z5 26 (—1+673tZ6>Z10Z2 (—1+e*t26)(21022+2627)
476 » LZ0, 3262 - 262 )
2(—14e730)21210  (—1+e~2t6)(~241210+4628)
- 3262 - 2262 ?
(—14e736)29  (—1+e73%0)710  (—14e420)411
- 3z6 » 3z6 T 4726 ’

2121022 | e7352121022  e"2%7%2121022 | e 02121022 21024
tz12 — S5 + T 26° R— 562 T
e 37641024 _ 21125 e 47641145 121074 | tz11z5 _ 2127 | e *%04147

3262 47262 + 4262 + 76 + 76 262 + 262 +
tzlz7 2228 e 21262228 12228 2329 e 31262329 tz329
26 2262 + 2262 + 26 3262 + 3262 + z6
Expand|[g12'[t]]

—3tz6 —2tz6 —tz6
e 2121022 2e 7121022 e 2121022
212 262 + 262 262 +
z10z4 e 312621024 z11z5 e 42621125 z1z7
z6 z6 + z6 z6 + z6
e t%64147 2228 e~ 21%642,8 2329 e 3162359
z6 + z6 + z6

We also need to find the exponential when zg = 0. We take the limit at z = 0 of

Previous map.
lelt[{( 1+e‘“6)zl (- 1+e2t=6)z2 (—14¢320)23

276 3z6 )

_le2+2sts6 | © 26 ((3— 3e“6+e2"6)z1z2+2e2t’6z4z6)

6262 6262
(—1+e4t"‘6)25 126, (—l+e—3t“6)21022 (—l+e—t“6)(21022+2627)
426 3z62 - 267 ’
2(—1+e_3"‘6)z1z10 (—1+e=2t=6) (— 2z1z10+z6z8) (—1+e_3"‘6)z9
- 3262 2262 326 ’
(—1+e3t#)z10  (—1+e*%6)a11
- 3z6 T 476 )
2121022 e—3t26,1 21022 e 2t26,1,1022 e~ %62121022
tz12 — 5= + 263 +
z10z4 e—3t26,1024 z11z5 e—1t26,11,5 tz10z4 tz11z5
3262 + 3262 4262 + 4262 + +
zlz7 e~ t%02127 tzlz7 7278 e—2t26,9,8 tz228 2329
w62 T 262 + T 2262 + 2762 + T 3262 3262 T
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e~ 3t26,3,9 12329
367 T g (2260

{tz1,t22,123, 124,125, 0, t(tz1022 4 27), t(—1tz1210 + 28), 129, tz10, tz11,
£1(6212 + t(—2t2121022 + 921024 + 1221125 + 32127 + 62228 + 92329)) }

Expand [{tz1, tz2, tz3, tz4, tz5, 0, t(tz1022 + z7), t(—tz1z10 + z8), tz9, tz10, tz11,
24(6212 + t(—2tz121022 + 921024 + 1221125 + 32127 + 62228 + 92329)) } |
{tz1,t22, 123, tz4,125,0, 1221022 + t27, —t?21210 + 28, 129, tz10, tz11,

tz12 — $t32121022 + 31221024 + 2t%21125 + §t%2127 + %2228 + 3122329}
{tz1,t22, 123, tz4, t25,0, 1221022 + 27, —t221210 + 28, 129,

tz10, 211,212 — t32121022 + 3t*21024 + 2t21125 + 1t*2127+

t22228 + 3122329} / {t — 1}

{21,22,23,24,25,0, 21022 + 27, —2z1210 + 28, 29, 210,

211,212 — 221022 4 300 4 91145 + 227 4 42,8 + 389}

(—1+e“6)z1 (—1+e2"6)z2 (—1+€3t%6)23
76 226 326 ?

_ 2122422426 + et#6 ( (3—3etﬁ6 +2t26 ) zlz2+2e2t’62426)
6262 6262
(—1+e4tz‘5)25 (—l+e_3“6)21022 (—l+e_“‘6)(21022+2627)
w126, 3267 262 ’
2(- 1+e—3t=6)z1z10 (—14e~2t26)(— 2z1z10+z6z8) ( 1+e~3t26 )79
- 3262 2262 326 ’
(—1+e’3t"6)210 (—l+e‘4"6)z11
- 326 - 426 )

z1z10z2 e_3t“6z1z10z2 e~ 2265121022 e_tzsz121022
tz12 — 3+ 326° 26° + 76%

z10z4 6—3“621024 z11z5 e 26,1145 tz10z4 tz11z5
3262 + 3262 4262 + 4262 + +

—2tz6
zlz7 + tzlz7 2228 + e 2262228 + 12228 3229 +

_33tzﬁz3z9 + tz3z9}/{t — 1}

( 1+e” )z ( 142 6)22 ( 1+63Z6)z3 2122422446 ((3—36Z6+62Z6)Z1Z2+262Z6Z4Z6)
76 ) 226 ) 326 T 6z62 +- 6262 )

(—1+e4Z6)25 (—1+e’SZ6)21022 (—1+e’Z6)(21022+ZGZ7)
w20, 3262 - 762 ’
2(—1+673Z6>Z1Z10 (—1+672Z6>(—2Z1Z10+Z6Z8)
3262 2262 )

—tz6

zlz7 + e
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(—14e730)29  (—14e736)210  (—14e"46)211

326 ? 3z6 ? 476 ’

2121022 e 3762121022 e 2262121022 e “62121022 z10z4
z12 3269 T 3469 263 R 367 T

e 37641024 _ 21145 + e~ 47041145 4 21024 | zllgd _ zlal —%5147 +
76

e
3262 4762 4762 z6 762 762

z1z7 7228 e~ 2762228 2228 2329 e 3762329 2329

46 2262 + 2262 + 26 3262 + 3262 + 7}

{21,22,23,24,75,0,21022 + 27, —z1210 + 28, 29, 210, z11,
z1z10z2 3z10z4 z1z7 32329

712 — 22102 4 3610ad | 971175 + 22T 4 4228 4 3381 /.

{27 — 21,28 — 22,729 — 23,210 — 24,211 — 25,212 — 0}

{21,22,23,24,25,0, 21 + 2224, 22 — 7124,

23,274,125, % +222 + % — —Z1Z32Z4 + % + 2z52}

Adjointofg = {{¢*,0,0,0,0, —x1,0,0,0,0,0,0},
{0,¢%*,0,0,0,—2x2,0,0,0,0,0,0}, {0,0,¢*,0,0,—3x3,0,0,0,0,0,0},
{—2¢'x2,2e%x1, 0, €%, 0, —x1x2 — 3x4,0,0,0,0,0,0},

{0,0,0,0, ', —4x5,0,0,0,0,0,0}, {0,0,0,0,0,1,0,0,0,0,0,0},

{0, —2¢%*x10, 0,0, 0, 4x10x2 + x7,e7%,0,0, 2 3x2, 0, 0} ,
{2¢x10,0,0,0,0, —2x1x10 + 2x8, 0, e~%, 0, —2¢~3tx1, 0, 0} ,
{0,0,0,0,0,3x9,0,0,e=*,0,0,0}, {0,0,0,0,0,3x10,0,0,0, =3, 0,0},
{0,0,0,0,0,4x11,0,0,0,0, =%, 0} ,

{6e!x10x2 — e'x7, —6e2x1x10 — 2e*x8, —3e3x9, —3e3x10, —4e*x11,
3x1x10x2 + 9x10x4 + 16x11x5 + x1x7 + 4x2x8 + 9x3x9, e ~x1, 2e~%x2,
3e~3x3, —e~3tx1x2 + 3e~3x4, 4e~x5,1}};

{{e%,0,0,2¢73%x2,0, 0,0, —2¢*x10, 0, 0, 0, 4x10x2 + x7},

{0,e7%,0, —2e73%x1, 0, 0, 2¢°x10, 0, 0, 0, 0, —2x1x10 + 2x8} ,
{0,0,e~3,0,0,0,0,0,0,0,0,3x9} , {0,0,0,e-3,0,0,0,0,0,0,0,3x10},
{0,0,0,0,e~%,0,0,0,0,0,0, 4x11} ,

{e7tx1,2e%x2, 3e73x3, —e~3x1x2 + 3e73x4, 4e~ x5, 1,
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6etx10x2 — e'x7, —6e2x1x10 — 2e%x8, —3e3x9, —3e3x10, —4ex11,

3x1x10x2 + 9x10x4 + 16x11x5 + x1x7 + 4x2x8 + 9x3x9},
{0,0,0,0,0,0,¢,0,0,0,0,—x1}, {0,0,0,0,0,0,0,e%,0,0,0, —2x2} ,
{0,0,0,0,0,0,0,0,€%,0,0,—3x3},

{0,0,0,0,0,0, —2¢’x2, 2e*x1, 0, €3, 0, —x1x2 — 3x4},
{0,0,0,0,0,0,0,0,0,0,e*, —4x5} , {0,0,0,0,0,0,0,0,0,0,0,1}} /.{t — 0}
{{1,0,0,2x2,0,0,0, —2x10, 0,0, 0, 4x10x2 + x7},
{0,1,0,—2x1,0,0,2x10,0,0,0,0, —2x1x10 + 2x8},
{0,0,1,0,0,0,0,0,0,0,0,3x9}, {0,0,0,1,0,0,0,0,0,0,0,3x10},
{0,0,0,0,1,0,0,0,0,0,0,4x11},

{x1,2x2, 3x3, —x1x2 + 3x4, 4x5, 1, 6x10x2 — x7, —6x1x10 — 2x8, —3x9,

— 3x10, —4x11, 3x1x10x2 4 9x10x4 + 16x11x5 + x1x7 + 4x2x8 + 9x3x9},
{0,0,0,0,0,0,1,0,0,0,0,—x1}, {0,0,0,0,0,0,0,1,0,0,0, —2x2},
{0,0,0,0,0,0,0,0,1,0,0,—-3x3},{0,0,0,0,0,0, —2x2, 2x1,0, 1,0, —x1x2 — 3x4},
{0,0,0,0,0,0,0,0,0,0,1, —4x5}, {0,0,0,0,0,0,0,0,0,0,0,1} }
{{1,0,0,2x2,0,0,0,—2x10,0,0, 0,4x10x2 + x7},

{0,1,0,—2x1, 0, 0,2x10,0,0,0,0, —2x1x10 + 2x8},

{0,0,1,0,0,0,0,0,0,0,0, 3x9},{0,0,0,1,0,0,0,0,0,0,0, 3x10},
{0,0,0,0,1,0,0,0,0,0,0,4x11},

{x1, 2x2, 3x3, —x1x2 + 3x4, 4x5, 1, 6x10x2 — x7, —6x1x10 — 2x8,

—3x9, —3x10, —4x11, 3x1x10x2 + 9x10x4 + 16x11x5 + x1x7 + 4x2x8 + 9x3x9},
{0,0,0,0,0,0,1,0,0,0,0,—x1},{0,0,0,0,0,0,0,1,0,0,0, —2x2},
{0,0,0,0,0,0,0,0,1,0,0,—3x3}, {0,0,0,0,0,0,—2x2,2x1,0, 1,0, —x1x2 — 3x4},
{0,0,0,0,0,0,0,0,0,0, 1, —4x5}, {0,0,0,0,0,0,0,0,0,0,0,1} }/.

{x7 — y1,x8 — y2,x9 — y3,x10 — y4,x11 — y5,x12 — y6}
{{1,0,0,2x2,0,0,0, —2y4,0,0,0,y1 + 4x2y4},
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{0,1,0,—2x1,0,0,2y4,0,0,0,0,2y2 — 2x1y4},
{0,0,1,0,0,0,0,0,0,0,0, 3y3},
{0,0,0,1,0,0,0,0,0,0,0,3y4},{0,0,0,0,1,0,0,0,0,0,0,4y5},
{x1,2x2, 3x3, —x1x2 + 3x4, 4x5, 1, —y1 + 6x2y4, —2y2 — 6x1y4, —3y3,
— 3yd, —4y5,x1y1 + 4x2y2 + 9x3y3 + 3x1x2y4 + 9xdy4 + 16x5y5},
{0,0,0,0,0,0,1,0,0,0,0, —x1}, {0,0,0,0,0,0,0,1,0,0,0, —2x2},
{0,0,0,0,0,0,0,0,1,0,0, —3x3},

{0,0,0,0,0,0,—-2x2,2x1,0, 1,0, —x1x2 — 3x4},
{0,0,0,0,0,0,0,0,0,0,1,—4x5},{0,0,0,0,0,0,0,0,0,0,0,1}}

We compute Adg,a_ - L. We take L = {11,12,13,14,15,16,17,18,18,19,110, 111,112}
{{1,0,0,2x2,0,0,0, —2y4,0,0,0, y1 + 4x2y4},

{0,1,0,—2x1,0,0, 2y4,0,0,0,0, 2y2 — 2x1y4},
{0,0,1,0,0,0,0,0,0,0,0, 3y3},{0,0,0,1,0,0,0,0,0,0,0, 3y4},
{0,0,0,0,1,0,0,0,0,0,0,4y5},

{x1,2x2, 3x3, —x1x2 + 3x4, 4x5, 1, —y1 + 6x2y4, —2y2 — 6x1y4,
—3y3, —3y4, —4y5, x1yl + 4x2y2 + 9x3y3 + 3x1x2y4 + 9x4y4 + 16x5y5},
{0,0,0,0,0,0,1,0,0,0,0,—x1}, {0,0,0,0,0,0,0,1,0,0,0, —2x2},
{0,0,0,0,0,0,0,0,1,0,0, —3x3},

{0,0,0,0,0,0,—2x2,2x1,0,1,0, —x1x2 — 3x4},
{0,0,0,0,0,0,0,0,0,0,1, —4x5}, {0,0,0,0,0,0,0,0,0,0,0,1}}.
{11,12,13,14,15,16,17, 18,19, 110, 111, 112}

{11 + 214x2 — 218y4 + 112(y1 + 4x2y4),

12 — 2l4x1 + 217y4 + 112(2y2 — 2x1y4), 13 + 3112y3, 14 + 3112y4,

15 + 4112y5,16 + 11x1 + 212x2 + 313x3 + 14(—x1x2 + 3x4) +

A15x5 — 319y3 — 3110y4 + 18(—2y2 — 6x1y4) + 17(—y1 + 6x2y4) —
AT1y5 4+ 112(x1y1 + 4x2y2 + 9x3y3 + 3x1x2y4 + 9xdy4 + 16x5y5),
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17 — 112x1,18 — 2112x2,19 — 3112x3,
110 + 218x1 — 217x2 + 112(—x1x2 — 3x4),111 — 4112x5,112}



Chapter 8

Appendix C

In this chapter we find all ad-invariant bilinear symmetric form on our 6-dimensional
Lie algebra. This checks the claim from chapters Blland Bl that there is no ad-invariant
non-degenerate symmetric bilinear form on g,.

¢ = Array[w, {6,6,6}];

Do|wli, 3, k] = 0, {3, 6}, {j,6}, {k, 6}]; w[1,2,4] = 2; w([2,1,4] = —2;

Do[wl[6, i,] = 1, {, 3}];

Do[wl[, 6,1 = —i, {1, 3}];

w[6,4,4] = 3;w[6,5,5] = 4;

w[4,6,4] = -3;

w(5,6,5] = —4;

adform = Array(b, {6, 6}];

adcondition = Array|[adb, {6, 6,6}];

Doladbli, j, k] = Suml|c[[s, 4, ]]b[l, k] — b[¢, I|c[[4, k, 1], {I, 1, 6}], {3, 1,6}, {4, 1,6},
{k,1,6}];

Solve[adcondition == 0]
({0[1,1] — 0,b[1,2] — 0,b[1,3] — 0,b[1,4] — 0,b[1,5] — 0,b[1,6] — 0,b[2,1] —
0,b[2,2] — 0,b[2,3] — 0,
b[2,4] — 0,b[2,5] — 0,b[2,6] — 0,b[3,1] — 0,b[3,2] — 0,b[3,3] — 0,b[3,4] —

0,b[3,5] — 0,b[3,6] — 0,
102
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b[4,1] — 0,b[4,2] — 0,b[4,3] — 0,b[4,4] — 0,b[4,5] — 0,0[4,6] — 0,b[5,1] —
0,0[5,2] — 0,b[5,3] — 0,

b[5,4] — 0,b[5,5] — 0,b[5,6] — 0,0[6,1] — 0,0[6,2] — 0,b[6,3] — 0,b[6,4] —
0,b[6,5] — 0}}

MatrixForm[adform]/.

{[1,1] — 0,b[1,2] — 0,b[1,3] — 0,b[1,4] — 0,b[1,5] — 0,b[1,6] — 0,b[2,1] — 0,
b[2,2] — 0,b[2,3] — 0,b[2,4] — 0,b[2, 5] — 0,b[2,6] — 0,b[3,1] — 0,5[3,2] — 0,
b(3,3] — 0,b[3,4] — 0,b[3,5] — 0,b[3,6] — 0,b[4,1] — 0,b[4,2] — 0,b[4,3] — 0,
b(4,4] — 0,b[4,5] — 0,b[4,6] — 0,b[5,1] — 0,b[5,2] — 0,b[5,3] — 0,b[5,4] — 0,
b[5,5] — 0, b[5,6] — 0, b[6,1] — 0, b[6,2] — 0,b[6,3] — 0,b[6,4] — 0,b[6,5] — 0}

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o



Chapter 9

Appendix D

This chapter is to support the statements from Lemma BE5T and Remark BTTT]
Notice that Corollary is proven directly without the results from this chapter.
We also give the computation of the spectral curve.

¢ = Array[w, {6, 6,6}];

Do[wl[t, j, k] = 0,{%, 6}, {J, 6}, {k,6}]; w[1,2,4] = 2; w|[2,1,4] = —2;

Do[w[6, %, ] = i, {3, 3}]; Do[wlz, 6, %] = —i, {3, 3}|;

w(6,4,4] = 3;w[4,6,4] = —3;w[6, 5, 5] = 4;w[5,6,5] = —4;

dc = Array|d, {12,12,12}];

Do[d[i, j, k] = 0,{i,1,12},{j,1,12},{k, 1,12};

Dol[d[i, j, k] = w[i, j, k], {3, 1,6}, {4,1,6}, {k,1,6}]

Do[d[i + 6,5 + 6,k + 6] = 0,{3,1,6},{j,1,6},{k,1,6}]

Do[d[i, j + 6,k + 6] = —w][i, k, j], {1, 1,6}, {4, 1,6}, {k, 1,6};

Do[d[i, j + 6,k] = 0,{3,1,6},{7,1,6},{k,1,6}];

Do[d[j + 6,1, k + 6] = wl[i, k, 7], {3, 1,6}, {7,1,6}, {k, 1,6}];

Do[d[j + 6,1, k] =0, {i,1,6}, {j,1,6}, {k,1,6}];

p = Array[z, {12}];

ad = Array[y, {12, 12}];

Do[y[k, j] = Sum|[z[i]d[s, j, k], {i, 1,12}], {4, 1,12}, {k,1,12}]

The following gives Tr(ad)™ for n from 1 to 100. The output is omitted.

R = ad; tra = Array][trac, {100}]; tra[[1]] = Tx[R];

Do[R = R.ad ;tracn + 1] = Tr[R];, {n, 1, 100}];
104
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We find the Ker(ad).

Solve[ad == 0, {z[1], z[2], z[3], z[4], z[5], z[6], z[7], z[7], z[8], [9], z[10], z[11], z[12]}]
Solve::svars : Equations may not give solutions for all solve variables. More. . .
{{z[8] — 0,z[1] — 0,z[2] — 0,z[6] — 0,z[7] — 0,z[3] — 0,z[4] — 0,z[5] — 0,

z[9] — 0, 2[10] — 0, z[11] — 0}}

So Ker(ad) is 1-dimensional and it is generated by Y12 = Y. This proves Corollary
P71

Expand ad]

{{z]6],0,0,0,0,—2[1],0,0,0,0,0,0},

{0,22[6],0,0,0,—22[2],0,0,0,0,0,0}, {0,0,3x[6], 0,0, —3x[3],0,0,0,0,0,0},
{—2z[2], 2z[1], 0, 3z[6], 0, —3x[4],0, 0,0, 0,0, 0}, {0, 0,0, 0, 4x[6], —4x[5], 0,0, 0,0, 0,0},
{0,0,0,0,0,0,0,0,0,0,0,0}, {0, —2x[10], 0, 0,0, [7], —z[6], 0, 0, 2x[2], 0, 0},
{22]10],0,0,0,0, 2z[8],0, —2x[6], 0, —2z[1], 0, 0},
{0,0,0,0,0,3z[9],0,0,—3x[6],0,0,0},

{0,0,0,0,0,3z[10],0,0,0,—3z[6],0,0}, {0,0,0,0,0,4x[11],0, 0,0, 0, —4z[6],0},
{—2[7], —22[8], —3z[9], —3z[10], —4x[11], 0, z[1], 2x[2], 3x[3], 3z[4], 4z[5], 0} }

Now we get the characteristic curve.

Factor[Expand[Det[ad — aldentityMatrix[12]]]]

02 (a—4a[6])(a — 32[6])? (a — 22(6]) (a — 2[6]) (a -+ 2[6]) (a + 22(6]) (a + 32[6])? (a+ 4 6]
The eigenvalues of ad a given below.

Eingev = Eigenvectors|ad]

{{0,0,0,0,0,0,0,0,0,0,0,1},
{xm o[2]  x[3] x[4] a5] 6] 7] =[] =29 =[10] 10}

z[11]? z[11]7 z[11]’ =[11]’ «[11]’ z[11]’ z[11]’ =[11]’ x[11]’ x[11]’> =’

{0 0,0,0,0,0,0,0,0,0, ——5],1},{0,0,0,0,0,0,0,0,——3],0 0, 1}
_z2] 22(1]  x[l]z[2]+z[4]z[6]

{0,0,0,0,0,0,—28, 2 _=Mebleldeld 3 g o},

{0,0,0,0,0,0,0,—%,0,0,0,1},{0,0,0,0,0,0, 9.0,0,0,0, 1}
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362 . 3x[2]x[6] . 22[6]x[10]
"~ 3z[6]2[7]+52[2]=[10] ° 0,0, 3x[6]m[7}+5x[2]m[1o]’0 0,0, 3z[6]x [7]+5m[2} [10]° 0,0,0, 1}

6]000000001}{00 100000000}

3x[6]2 6x[1]z] 2z[6]2[
{0’ 32(6]x[8]—8z[1]x[10]’ O’ —3x[6]x[8}+8x 1]z[10]’ O 0’ 3z(6]x[8]— 8:1,‘ 1]:(:[10] ) 0 O 0 O 1}
{ [9]° m[g 5 Ly

0,0,0,0, — 6]}0000001}}

The space of eigenvectors is 12-dimensional in the case x[6] # 0, i.e. zg # 0 in
Section [ notation.

MatrixRank[Eingev]

12

Det[Eingev]

. 9z[6]11
x[1]z[2]z[3]x[5]x[9](—3x[6]z[8]+8z[1]z[10]) (3 [6]z[7]+5z[2][10] )= [11]?

The space of eigenvectors is 8-dimensional in the case x[6] = 0, i.e. zg = 0 in Section

[ notation.

Eigenvectors[ad/.z[6] — 0]

{{000000000001} {00,%000000010}
{2, 2, —=hellebdizinliaiol ,0,0,0,0,0,1,0,0

{0.0 3},000001000}{00,?{3}000010000}
{o. ,%000,1,00000} {0,0,~%151,0,1,0,0,0,0,0,0,0}
{0,0.~21,1,0,0,0,0,0,0,0,0},0,0,0,0,0,0,0,0,0,0,0,0},

{0,0,0,0,0,0,0,0,0,0,0,0},{0,0,0,0,0,0,0,0,0,0,0,0},
{0,0,0,0,0,0,0,0,0,0,0,0}}



Chapter 10

Appendix E

In this section we compute the Lie algebra cohomology H?(g, @) in a five-dimensional

case. First, we set the Lie algebra structure constants c[i, j, k| of the Lie algebra g,
5

ie. [Vi,Y] =3 cli, j, k|Ys for any i, j, k € {1,2,...,5}.

¢ = Array|t, {g,:51, 5}];

Dolt[, j, k] = 0, {%,5}, {34, 5}, {k,5}]; t[1,2,4] = 2;¢[2,1,4] = —2;
Dolt[5,1,i] = 1, {1, 3}]; Do[t[s, 5, %] = —i, {3, 3}];

1[5,4,4] = 3; t[4,5,4] = —3;

Let f:gxgxg— g be an alternating map given in coordinates by

5

f31Yi, Y, Yi] = Z f3[i, j, k, s]Ys.

s=1

f = Array[f3, {5, 5,5, 5}];

Do[mm = Sort[{il, i2,i3}];

£3[i1, 2,13, i4] = Signature[{il, i2,i3}|f3[mm[[1]], mm][[2]], mm([3]], 4],

{i1, 1,5}, {i2,1, 5}, {i3, 1, 5}, {i4, 1, 5}];

Now, we define the coboundary operator ds : C3(g,g) — C*(g,g). Recall that dsfs
gxXgxgxg— g with fs € C3(g,8). We do all computations in coordinates. Let
d3f4lil,i2,13,14, s| be given by

5
dsfs Vi, Yiy, Vi, Yi,| = D d3f4[il, 42,13, 4, s]Y..

s=1

107
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d3f4 = Array|[t5, {5, 5,5, 5, 5}];

Do|[t5[i1, 12,13, i4, s] = Sum|c[[il, I, s]|f3[i2,13,i4,], {l,1,5}]—

Sum|c[[i2, 1, s]]f3[i1,13, 14, 1], {1, 1, 5}] + Sum|¢[[i3, {, s]]f3[i1,i2, 14, 1], {I,1,5}]—
Sum|c[[i4, I, s]]f3[i1,12,13, 1], {I, 1, 5}] — Sum|¢][[il, i2, []|f3[l, 13, i4, s], {1, 1,5}]+
Sum|c([i1, 13, I])f3[,12, 14, s|, {l, 1,5}] — Sum|c][[i1, i4, [])f3[l, 12,13, 5], {1, 1,5}]—
Sum|c[[i2, 13, I]|f3[l, 11, i4, s], {1, 1, 5}] + Sum|c[[i2, i4, {])f3[l, 11,3, s], {1, 1, 5}]—
Sum|c[[i3,i4, I]]f3[l, 11,12, 5], {l, 1, 5}], {i1, 1, 5}, {i2, 1, 5}, {i3, 1, 5}, {i4, 1, 5}, {s, 1, 5}];
zz1 = Solve[d3f4 == 0]

Solve::svars : Equations may not give solutions for all solve variables. More. . .
{{13[1,2,4,3] — 0,13[1,2,4,5] — 0,13[1, 3,4, 2] — 0,{3[1,3,4,5] — 0,

£3[1,3,4, 3] — 313[1,2,4,2],£3[1,4,5,5] — —2f3[1,2,4, 2],

f32,3,4,1] — 0,3[1,2,3,5] — —3f3[3,4,5, 5],

f3[1,3,4,1] — £13[3,4,5,5],3[2,3,4, 2] — ££3[3,4,5,5],3[2,3,4,5] — 0,
£3[1,2,4,4] — 3[1,2,3,3] — 23[1,4,5,1] — 2£3[2, 4,5, 2] + 213[3,4, 5, 3],
f3[1,2,5,5] — 3[1,2,3,3] + 2£3[3,4,5, 3], £3[2, 3,4, 3] — —3f3[1,2,4, 1],
f32,4,5,5] — 5f3[1,2,4,1],13[2,3,4,4] — 3f3[1,2,3,1] + £3[3,4,5, 1],
£3[2,3,5,5] — 5£3[1,2, 3, 1] + 2£3[3,4, 5, 1],

f3[1,3,4,4] — —313[1,2,3,2] — 213[3,4, 5, 2],

f3[1,3,5,5] — —21£3[1, 2, 3, 2] — 3[3, 4, 5, 2],

£3[1,2,3,4] — —2£3[1,3,5,1] — 213[2,3,5,2] — 23[3,4,5,4] } }

Remark 10.0.2. The previous system reduces to 20 equations linearly independent.

So dim (Kerds) = dim(C3(g, g)) — 20 = 280 — 20 = 50 — 20 = 30.

[EE)

Let fo: g x g — g be an alternating map, and let f5]Y;,,Y:,] be the coordinates of f2.

Y, Y Zf2 [i1,42,i3]Y;,

iz=1
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g = Array[f2, {5,5, 5}];

Do[mmm = Sort[{il, i2}];

f2[i1,i2, i3] = Signature[{il, i2}|f2[mmm][1]], mmm([2]], i3],

{i1, 1,5}, {i2, 1,5}, {i3, 1,5}]

We define the coboundary operator dy : C*(g,9) — C3(g,9). Let fo € C*(g,g). The
coordinates d2f3[il, i2,1i3,s] of

dafs:gxXgxg—g

are given by

5
dof [Yi1, Vi, Vi) = > d2f3[i1,i2,i3, 5]V,

s=1

d2f3 = Arraylt4, {5,5, 5, 5}];

Dolt4[il, i2, i3, s] = Sum|[c[[i1, I, s]|f2[i2, i3, 1], {1, 1, 5}]—

Sumle[[i2, I, s]}f2[il, i3, 1], {1, 1, 5}] + Sumle[i3, I, s[}f2[i, 12, 1], {1, 1,5}]—
Sumle[[i1, i2, )£2[1, i3, 8], {1, 1, 5}] + Sumle[[iL, i3, [}2[L, i2, 5], {1, 1, 5}]—
Sumle[[i2, i3, )€2[1,i1, 5], {1, 1, 5}], {i1, 1,5}, {i2, 1, 5}, {i3, 1,5}, {s,1,5}]

Solve[d2f3 == 0]

Solve::svars : Equations may not give solutions for all solve variables. More. . .
{{f2[1,3,2] — 0,12[1,3,5] — 0,2[1,4,2] — 0,

f2[1,4,3] — 0,12[1,4,5] — 0,12[1, 3, 3] — 3£2[1, 2, 2] + 3f2[4,5, 2],

f2[1,5,5] — 1£2[1,2,2] + 2[4, 5, 2], 122, 3,1] — 0,12[2,3,5] — 0,

£22,4,1] — 0,2[1,2,5] — —2£2[4,5,5],12[1,4, 1] — —1f2[4,5,5],

£2[2,4,2] — —2£2[4,5,5],2[2,4, 3] — 0,12[2,4,5] — 0,

£2(2,3,3] — £2[2,4,4] + 2[4, 5, 1],12[2,5,5] — §f2[2, 4, 4] + §f2[4, 5,1],
2(3,4,1] — 0,12[3,4,2] — 0,23, 4, 3] — —f2[4,5, 5],
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£2(1,3,1] — —3£2[3,5, 5], 122, 3,2] — —212[3,5, 5], £2[3,4, 4] — 2[3,5,5],
£2[3,4,5] — 0,12[2,3,4] — —f2[3,5, 1], £2[1, 3, 4] — 2f2[3,5, 2],

f2[1,2,1] — —1£2[2,4,4] — 3f2[4,5,1],£2[1,4, 4] — 3£2[1,2, 2] + 52[4, 5, 2],
f2[4,5,3] — 0,f2[1,5,1] — —12[2,5,2] + {2[4,5,4]}}

Remark 10.0.3. The previous system reduces to 30 linearly independent equations

and

dimIm d» = dim (C*(g,g)/Kerd,)

= dim C*(g, g) — dim Kerd,

— 5(2) — (5(2) —30) = 30.

Remark 10.0.4. Since dim (Kerds) = dim (Imdy), it follows that Ker ds = Im ds, so
H(g.g) = 0.

Let f3 = f € Kerds , i.e. in the notation of this appendiz f3 is in zz1.
£3[1,2,4, 3] = 0;

£3[1,2,4,5] = 0;

£3(1,3,4,2] = 0;

£3[1,3,4, 5] = 0;

f3[1,3,4,3] = 3£3[1,2,4,2];

£3[1,4,5,5] = —2£3[1, 2, 4, 2|;

£3[2,3,4,1] = 0;

f3[1,2,3,5] = —1f3(3,4,5,5];

f3[1,3,4,1] = 1£3(3,4,5, 5;

£32,3,4,2] = 3f3(3,4,5, 5];

£3[2,3,4, 5] = 0;

£3[1,2,4,4] = £3[1,2,3,3] — 23[1,4,5, 1] — 2£3[2,4, 5, 2] + 23[3,4, 5, 3];
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f3[1,2,5,5] = £3[1, 2, 3, 3] + 2f3[3,4, 5, 3];

£3[2, 3,4, 3] = —3f3[1, 2,4, 1];

£3[2,4, 5, 5] = 5£3[1, 2,4, 1];

£3[2,3,4,4] = 3£3[1,2,3,1] + £3[3,4, 5, 1];

£3[2,3,5, 5] = 5£3[1,2, 3, 1] + 2f3[3,4, 5, 1];

f3[1,3,4,4] = —213[1,2,3,2] — 23[3,4,5,2];

£3[1, 3,5, 5] = —2f3[1,2, 3, 2] — £3[3,4, 5, 2];

£3[1,2,3,4] = —213[1,3,5, 1] — 23[2,3,5, 2] — 23[3,4, 5, 4];
zz2 = Solve[f == d2f3]

The solution of the equation dyfs = f5 is given bellow.
{{£2(2,3,5] — —if3[2,3,5,5],

f2(3,4,1] — —1£3(3,4,5,1],

f2[1,3,5] — —1f3[1,3,5,5],

f2(3,4,2] — —113[3,4,5,2],

f2[1,2,5] — —2f2[4,5,5] — 33[1,2,5, 5],

f2(3,4, 3] — —12[4,5, 5] — 3f3[3, 4,5, 3],

f2[1,3,1] — —1f2(3,5,5] — 33[1,3,5,1],

f2[2,3,2] — —2f2[3,5,5] — 33[2,3,5, 2],

f2(3,4,4] — £2[3,5, 5] — 3f3[3,4,5,4],

f2[3,4,5] — —113[3,4,5,5],

f2[2,4,5] — —113[2,4,5, 5],

f2(1,4,5] — —1f3[1,4,5, 5],

f2[1,4,1] — —1f2[4,5,5] — 33[1,4,5,1],

f2[2,4,2] — —2f2[4,5, 5] — 132, 4,5, 2],

f21,2,1] — —3f2[2,3, 3] + £2[2, 4, 4] — 3£3[1,2,5,1] — 213[2,3, 5, 3]+
113[2,4,5,4],£2[2,5,5] — 2f2[2, 3, 3] + 13[2,3,5, 3],
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f2(4,5,1] — £2[2,3,3] — £2[2,4, 4] + 113[2, 3,5, 3] — 1£3[2, 4, 5, 4],
f2[1,2,2] — 3£2[1,3, 3] — £2[1,4,4] — £3[1,2,5,2] + 3£3[1,3,5, 3] — £3[1,4,5,4],
f2[1,5,5] — 1f2[1,3, 3] + 13[1,3,5, 3],

f2[4,5,2] — —12[1,3, 3] + 1£2[1, 4, 4] — 13[1, 3,5, 3] + 1£3[1, 4,5, 4],
f2(4,5,3] — —113[1,2,5, 3],

f2[1,5,1] — —f2[2,5,2] + £2[4,5, 4] + £3[1,2,5, 4],

f2[1,3,2] — —1f3[1,3,5,2],

£2[1,3,4] — 2f2[3,5,2] — £3[1, 3,5, 4],

f2[1,4,2] — —1£3[1,4,5,2],

f2[1,4,3] — —£3[1,4,5, 3],

f2[2,3,1] —» —1f3[2,3,5,1],

f2(2,3,4] — —f2[3,5,1] — 113[2,3, 5, 4],

f2[2,4,1] — —1f3[2,4,5,1],

f2[2,4,3] — —113[2,4,5,3]} };

Z*g,9)={f:gxg— g}f is alternating and (daf) = 0} = Ker d,
dim (Ker d) = 5(3) — 30 = 20 (by Remark [I3). So Z%(g,g) # 0.
Now, we compute H?(g, g) = Ker do/ Imd;. Recall that

B'(g,9) =Imd, = {fo: g x g — g|f2 = di fifor some f, : g — g}

(df1) (2, y) = [z, i(w)] = Ly, fu(e)] = fillz, y))
(dlfl) (Y;a Y}) = d1f2[27]7 S]Y:s

We define coboundary operator dy : C*(g,g) — C*(g,9). Let fi € C'(g,g) and let
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d1f2[il1,12,i3, s] be the coordinates of
difi :gxg—ag, ie.

5
dif [Yi, Vi) = dlf2[i1,12, 5]Y,
s=1

h = Array(fl, {5, 5}];

d1f2 = Array|[t3, {5, 5, 5}];

Do[t3[il,i2, s] = Sum|¢[[il, I, s]|h[[i2,]], {l, 1, 5}] — Sum|¢][[i2, I, s]]h[[i1, 1]], {I, 1, 5}]
—Suml¢[[i1, i2, JIR{[L, 5], {1, 1, 5}], {iL, 1, 5}, {i2, 1, 5}, {5, 1, 5}]

Solve[d1f2==0)

Solve::svars : Equations may not give solutions for all solve variables. More. . .
{{f1[1,2] — 0,f1[1, 3] — 0,f1[1,5] — 0,f1[2,1] — 0,

f1[2,3] — 0,f1[2,5] — 0,f1[3,1] — 0,f1[3,2] — 0,f1[3,5] — 0,

f1[4,1] — 0,f1[4,2] — 0,f1[4,3] — 0,f1[1, 1] — —f1[2, 2] + f1[4, 4],

f1[4,5] — 0,f1[2,4] — —2f1[5, 1], f1[1, 4] — f1[5, 2], f1[5,5] — 0} }

Remark 10.0.5.

H*(g,g) # 0.
Proof.
dim (Imd;) = dim (C'(g, g)/Kerd, ) = 25 — (25 — 17) = 17.
. 5
dim (Kerdy) = 5 ( 2) — 30 =20
(see Remark [0).

So dim (Imd;) < dim (Ker dy) . Therefore H?(g,g) # 0

We define I as gp(= fp2)
Fy o Iy as bracketf3 (=t7),
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Fy o Fy+ Fyo Fy as bracketf3p (=t8), and

Fy 0 Fy as bracketf3pp(=t9)

gp = Array[fp2, {5, 5, 5}];

Do[mmm = Sort[{il,i2}];

fp2[il, i2,i3] = Signature[{il,i2}]fp2[mmm([1]], mmm][[2]],i3],
{i1,1,5}, {i2, 1,5}, {i3, 1, 5}]

d2f3p = Array[tp4, {5, 5,5, 5}];

Do[tp4[il, 2,13, s] = Sum|c][[i1, , s]]fp2[i2,i3,], {,1,5}]—

Sum|c[[i2, I, s])fp2[i1,i3, 1], {I, 1, 5}] + Sum|c[[i3, I, s])fp2[i1,i2,], {I,1,5}]—
Sum|c[[i1, 12, [])fp2[L,i3, s], {I, 1, 5}] + Sum]¢][[i1, i3, I]]fp2[l,i2, s], {I, 1, 5}]—
Suml[e[[i2, i3, ]fp2[L, i, 5], {1, 1, 5}], {iL, 1,5}, {i2, 1,5}, {i3, 1,5}, {5, 1,5}]
bracketf3 = Array[t7, {5, 5,5, 5}|;

Dolt7[i1,i2,13, s] = Sum|[f2[il1,i2, i4]f2[i4, 3, 5], {i4, 1, 5}]+

Sum|[f2[i2, i3, i4]f2[id, i1, ], {i4, 1, 5}] + Suml[f2[i3, i1, i4)£2(i4, 2, s], {i4, 1,5}],
{i1,1,5}, {i2, 1,5}, {i3, 1, 5}, {s, 1, 5}];

bracketf3p = Array[t8, {5, 5, 5, 5}];

Dolt8[iL, 2,3, 5] = Sum[f2p[il, i2, i4]£2[i4, i3, s], {i4, 1, 5}]+

Sumlf2p[i2, i3, i4]f2[i4, i1, ], {i4, 1,5}] + Sum[f2p[i3, i1, i4]£2[i4, i2, ], {i4, 1, 5}]+
Sumlf2[i1, i2, i4]2p[i4, i3, ], {i4, 1,5}] + Sumlf2[i2, i3, i4]2p[i4, il, ], {i4, 1, 5}]+
Sum|[f2[i3, i1, i4]f2p[i4, i2, ], {i4, 1, 5}], {il, 1,5}, {i2, 1,5}, {i3, 1,5}, {s, 1, 5}];
bracketf3pp = Array|[t9, {5, 5,5, 5}];

Do|[t9[il, 2,3, s] = Sum[f2p[il,i2, i4]f2p[i4, i3, ], {i4, 1, 5}]+

Sum|[f2pli2, i3, i4]£2p[i4, il, 5], {i4, 1, 5}] + Sum[f2pl[i3, i1, i4]f2p[i4, i2, 5], {i4, 1, 5},
{i1,1,5}, {i2, 1, 5}, {i3, 1,5}, {s, 1, 5};

Now, we try to find whether there are quadratic deformations, i.e.

Fy=F=...=0. (10.0.1)
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Solve[d2f3 == 0&&d2{3p == bracketf3&&bracketf3p == 0&&bracketf3pp == 0]
Here, we try to find an Fy € Z? such that F} o F} = dyFy, Fyo Fy + Fyo Fy = 0 and
Fy o0 Fy, =0. If such Fy, Fs exist, then we may take

F[Y;,, Yy, = £2[il,i2,i3]Y;,

F2 [Y;l, 2'2] = f2p[1]_, 12, 13]}/;3

p = Array[z, {5}]; ad = Array[y, {5, 5};

Dolylj, k] = Sum[z[i](c[[3, j, k]] + t£2[z, 7, k] + t"2fp2[i, j, k]), {3, 1, 5}],
{4:1,5},{k,1,5}]

Now, we find an invariant bilinear form B(=b).

B = Array|b, {5,5}]; invB = Array[invb, {5, 5, 5}];

Do[invb[z, j, k] = Sum[([[4, 7, s]] + t£2[z, 7, s])b[s, k] + (c[[¢, , s]] + t£2[¢, k, s])b[3, s],
{s,1,5}],{i,1,5},{3,1,5}, {k, 1, 5}];

Solve[invB == 0]

The output s omitted.

Solve[d2f3 == 0&&d2f3p==bracketf3&&bracketf3p == 0&&bracketf3pp == 0&&
bracketf3==d2f3p

The Mathematics cannot not get a solution (it runs forever or give a out of memory
message). A good idea would be to solve a subsystem, then substitute into the remain-
ing equations, but this doesn’t work for Mathematics either. The following equation
gives the solutions of the simple subsystem.

Solve[d2f3 == 0&&Dbracketf3 == 0]

{{f2[1,5,1] — —12[2,5, 2] + 2[4, 5, 4], £2[2, 3, 3] — 0,2[1,2,1] — 0,

2[2,4, 4] — 0,12[1, 3, 3] — 0,2[1,4,4] — 0,12[1,2,2] — 0,2[3,4,4] — 0,
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£2[3,4,3] — 0,£2[1,3,1] — 0, £2(1,2,3] — 0, 2[4,5,3] — 0, £2[3,5,1] — 0,
£2[2,3,2] — 0,£2[3,5,2] — 0, 2(1,4,1] — 0,2[2,5,5] — 0, 2[2,3,4] — 0,
£2[2,4,2] — 0,£2[4,5,1] — 0, 2[4, 5,2] — 0, 2[1,5,5] — 0, 2[2,3,1] — 0,
£2[2,4,3] — 0,£2[1,3,4] — 0, £2[2,4, 1] — 0, £2[3,5,5] — 0, £2[1,4,3] — 0,
£2[1,2,5] — 0,£2[2, 4,5] — 0, ©2(1,3,2] — 0, 2[4,5,5] — 0, £2[1,4,2] — 0,
£2[2,3,5] — 0, 2[1,4,5] — 0, £2[1,3,5] — 0, £2[3,4, 5] — 0, £2[3,4,2] — 0,
£2[3,4,1] — 0},

.. another 13 solutions here...

{f2[3,5, 3 — 3 (—3f2[1, 2,4] — M@l) ,

£2[2,3,4]

£2[1,5,1] - § (-3f2[1,2,4] - 2LSABOSI)

f2[4> 574] - % (—3f2[1,2,4] — W) ,

&mam4§Q4Mqu—ﬂ%%%@)mm&mqm

£2(1,2,1] — 0,£2[2,4,4] — 0,£2[1,3,3] — 0,f2[1,4,4] — 0,f2[2,5,3] — 0,
£2[2,5,1] — 0,2[1,2,2] — 0,2[3, 4, 4] — £2[3,5, 5], f2[1, 5,4] — 0,

f2[1,5,3] — 0,f2[3,4,3] — 0,f2[1,5,2] — 0,f2[1, 3,1] — —32[3, 5, 5],
f2[1,2,3] — 0,£2[4,5,3] — 0,2[3,5, 1] — —2[2,3,4],2[2, 3,2] — —2£2[3,5, 5],
£2[3,5,2] — 0,12[1,4,1] — 0,2[2,5,5] — 0,2[2,4,2] — 0,2[4,5,1] — 0,
£2(4,5,2] — 0,2[1, 5,5] — 0,£2[2,3,1] — 0,f2[2,4,3] — 0,f2[1,3,4] — 0,
£2(2,4,1] — 0,2[1,4,3] — 0,£2[1,2,5] — 0,f2[2,4,5] — 0,f2[1,3,2] — 0,
£2[4,5,5] — 0,12[1,4,2] — 0,2[2,3,5] — 0,2[1,4,5] — 0,2[1,3,5] — 0,
£2[3,4,5] — 0,2[3,4,2] — 0,2[3,4,1] — 0}}
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