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Abstract. We study families of hyperbolic skew products with the transver-
sality condition and in particular, the Hausdorff dimension of their fibers, by us-
ing thermodynamical formalism. The maps we consider can be non-invertible,
and the study of their dynamics is influenced greatly by this fact.

We introduce and employ probability measures (constructed from equilib-
rium measures on the natural extension), which are supported on the fibers
of the skew product. A stronger condition, that of Uniform Transversality is
then considered in order to obtain a general formula for Hausdorff dimension
of fibers for all base points and almost all parameters.

In the end we study a large class of examples of transversal hyperbolic
families which locally depend linearly on the parameters, and also another
class of examples related to complex dynamics.

1. Introduction. In this paper we consider skew product maps which are confor-
mal in fibers, and fiberwise contracting, with mild assumptions about the base map.
The motivation to deal with them comes from three directions, namely: general Ax-
iom A endomorphisms (see [6] for example), smooth hyperbolic skew-products ([8]
and [9]) and conformal iterated function systems with overlaps ([11] for example).
Our goal, similar to the one in the two latter mentioned groups of papers, is to shed
light on what is the value of the Hausdorff dimension of fibers, and more precisely
a version of Bowen’s formula.

Let us also note that non-invertibility of the maps we consider prevents one from
using the same kind of approach as in the diffeomorphism case (see [3] for example).

It is known, and easy to see, that in general Bowen’s formula fails for conformal
iterated function systems with overlaps. In order to remedy this situation, the
concept of transversality was introduced (see [10] and [5] for example). This is a
measure theoretic assumption which permits us to establish Bowen’s formula for
almost all Lebesgue iterated systems from a given family.

We asked ourselves whether one could define an appropriate concept of transver-
sality for skew-products, and then, by using thermodynamic formalism to obtain

2000 Mathematics Subject Classification. Primary: 37D35, 37D20; Secondary: 37A35.
Key words and phrases. skew products, Hausdorff dimension, hyperbolic maps, transversality.
Research of the first author supported in part by Grant nr. 2-CEx06-11-10/2006 from the

Romanian Ministry of Education and Research. Research of the second author supported in part
by the NSF Grant DMS 0400481.

907



908 EUGEN MIHAILESCU AND MARIUSZ URBAŃSKI

generic (i.e. for almost all parameters) Bowen’s formula. Indeed, we came up in
this paper with the transversality condition which is formulated in (cf). Working
with Rokhlin’s natural extensions and canonical conditional measures, it allowed us
to prove a generic Bowen’s formula in Theorem 2.8 and Corollary 2.9.

Imposing a stronger condition, namely uniform transversality, we proved (see
Theorem 2.10) a more precise Bowen’s formula, which holds for almost all parame-
ters and all points x in the base space.

One can also notice that we can interpret iterated function systems with overlaps
as skew-products, with their base map being a one-sided shift map, and thus are
investigated by our work. Moreover in the last section we consider maps which are
more general than iterated function systems (although resembling them), namely
maps of the form Fλ(x, y) = (f(x), λi + Φi(x, y, λ)), for x ∈ Xi, where f : I1 ∪ . . .∪
Id → I, and Xi = I∗ ∩ Ii, i = 1, . . . , d. We show in Theorem 3.3 that this family
{Fλ}λ∈Bd(0,η) is uniformly transversal.

In the last section, we complete our theoretical work with a rather large selection
of elaborate examples; some of them (see Theorem 3.3 and Corollary 3.4) were
motivated by conformal iterated function systems with overlaps, and the others
were resulting from higher-dimensional holomorphic dynamics of skew products
(see Theorem 3.5). All of these examples satisfy the transversality condition.

Some of these last families of maps Fλ(z, w) are obtained by perturbations of skew
products which have a hyperbolic map of one variable f(z) in their first coordinate,
and depend linearly or quadratically in w in the second coordinate.

2. Transversal families of hyperbolic skew-products. Recall from [7] that a
continuous self-map f : X → X of a compact metric space (X, ρ) is called open
distance expanding, provided that f is open, Lipschitz continuous, and there are
three constants η > 0, γ > 1 and an integer k ≥ 1, such that ρ(fk(x), fk(z)) ≥
γρ(x, z) whenever ρ(x, z) ≤ η. It is fairly easy to see that changing the metric ρ in
a bi-Lipschitz manner, we may assume without loss of generality that k = 1. There
is an abundance of open distance expanding maps. We want to bring the reader’s
attention now to one particular class of them, called expanding repellers. Let U be
a bounded open subset of a Euclidean space Rp with some p ≥ 1.

A map g : U → R
p is called an expanding repeller if and only if the following

conditions are satisfied:

i) g : U → Rp is a C1+γ endomorphism.
ii) X =

⋂∞
n=0 g−n(U) is a compact g-invariant (g(X) = X) subset of U . The

map g : X → X is transitive.
iii) The map g : X → X is infinitesimally expanding, i.e. there exists k ≥ 1 such

that for all x ∈ X and for all v ∈ Rp, we have ||Dxgk(v)|| ≥ 2||v||.
Clearly, g : X → X is an open distance (with respect to the Euclidean metric)
expanding map. Frequently, perhaps even more appropriately, the word repeller is
referred also to the set X .

Let us then take f : X → X an open distance expanding map and suppose it
is transitive. Let V be a bounded quasi-convex open subset of Rq, q ≥ 1. Being
D-quasiconvex (with some D ≥ 1) means that the internal distances are not bigger
than Euclidean distances multiplied by D. In what follows quasi-convexity will be
used only when the Mean Value Inequality is to be applied. So, in order to simplify
notation, we will assume in the sequel that V is convex.
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Definition 2.1. Suppose now that for all x ∈ X there exists a C1+γ conformal
endomorphism φx : V → V conformally extendable to a neighborhood of V with
the following properties.

(a) κ := sup{|(φx)′(y)| : (x, y) ∈ X × V } < 1.
(b) κ := inf{|(φx)′(y)| : (x, y) ∈ X × V } > 0.

If the conditions (a) and (b) are satisfied, then the map F : U × V → Rp × V given
by the formula

F (x, y) = (f(x), φx(y))

will be called a hyperbolic fiberwise conformal skew-product provided that it is
Lipschitz continuous (with respect to the sum metric on X × Rq) and the map
(x, y) 7→ (f(x), φ′

x(y)) is also Lipschitz continuous; denote the common Lipschitz
constant by LF .

Set

Λ =
⋃

x∈X

∞
⋂

n=0

⋃

z∈f−n(x)

φn
z (V ),

where φn
z = φF n−1(z) ◦ φfn−1(z) ◦ . . . ◦ φz : V → V and Fn(x, y) = (fn(x), φn

x(y)); Λ
is called the basic set of the endomorphism F . Obviously

F (Λ) ⊂ Λ and F (Yx) ⊂ Yf(x),

where

Yx =

∞
⋂

n=0

⋃

z∈f−n(x)

φn
z (V ).

Let f̃ : X̃ → X̃ be the Rokhlin’s natural extension (inverse limit) of the endomor-

phism f : X → X . For every n ≥ 0 let pn : X̃ → X be the projection onto nth
coordinate of X̃. Put

Λ̂ =
⋃

x∈X

p−1
0 (x) × Yx

and define the map F̂ : Λ̂ → Λ̂ by the formula

F̂ (x̃, y) = (f̃(x̃), φx1
(y)).

Notice that the map F̂ : Λ̂ → Λ̂ is a homeomorphism and the mapping

((xn, yn)∞0 ) 7→ ((xn, y0)
∞
0 )

is a homeomorphism from Λ̃, the Rokhlin’s natural extension of F |Λ, to Λ̂ which

establishes a canonical topological conjugacy between the map F̃ : Λ̃ → Λ̃ and
the map F̂ : Λ̂ → Λ̂. Note that for every x̂ ∈ X̂ , {φn

xn
(V )}∞n=0 is descending (as

φn+1
xn+1

= φn
xn

◦ φxn+1
) sequence of compact sets whose diameters, by condition (e)

converge to 0. Hence, the intersection
∞
⋂

n=0

φn
xn

(V )

is a singleton, and denote its only element by π(x̃). So, we have defined a map

π : X̃ → V .
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It is easy to see that for every x ∈ X ,

π(p−1
0 (x)) = Yx.

Endow X̃ with a metric ρ̃ defined as follows.

ρ̃(x̃, z̃) =

∞
∑

n=0

κnρ(xn, zn).

We shall prove the following.

Proposition 2.2. The map π : X̃ → V is Lipschitz continuous.

Proof. We shall first prove the following formula by induction

∥

∥φn
xn

(w) − φn
zn

(w)
∥

∥ ≤
n−1
∑

j=0

κj
∣

∣

∣

∣φxj+1

(

φn−j−1
zn

(w)
)

− φzj+1

(

φn−j−1
zn

(w)
)∣

∣

∣

∣ (2.1)

for all n ≥ 1, all w ∈ V and all x̃, z̃ ∈ X̃. Indeed, for n = 1 we even have equality.
Suppose the formula is true for some n ≥ 1. Using the Mean Value Inequality we
then get

∥

∥φn+1
xn+1

(w) − φn+1
zn+1

(w)
∥

∥ =

=
∥

∥φn
xn

(

φxn+1
(w)

)

− φn
xn

(

φzn+1
(w)

)

+ φn
xn

(

φzn+1
(w)

)

− φn
zn

(

φzn+1
(w)

)∥

∥

≤
∥

∥φn
xn

(

φxn+1
(w)

)

− φn
xn

(

φzn+1
(w)

)∥

∥ +
∥

∥φn
xn

(

φzn+1
(w)

)

− φn
zn

(

φzn+1
(w)

)∥

∥

≤ κn||φxn+1
(w) − φzn+1

(w)||+

+

n−1
∑

j=0

κj
∥

∥φxj+1

(

φn−j−1
zn

(

φzn+1
(w)

))

− φzj+1

(

φn−j−1
zn

(

φzn+1
(w)

))∥

∥

= κn
∥

∥φxn+1
(w) − φzn+1

(w)
∥

∥ +

n−1
∑

j=0

κj
∥

∥

∥φxj+1

(

φn−j
zn+1

(w)
)

− φzj+1

(

φn−j
zn+1

(w)
)

∥

∥

∥

=

n
∑

j=0

κj
∥

∥

∥φxj+1

(

φn−j
zn+1

(w)
)

− φzj+1

(

φn−j
zn+1

(w)
)

∥

∥

∥ .

The inductive proof of formula (2.1) is complete. Continuing the estimates in this
formula, we obtain

∥

∥φn
xn

(w) − φn
zn

(w)
∥

∥ ≤ LF

n−1
∑

j=0

κjρ(xj+1, zj+1) ≤ LF

∞
∑

j=0

κjρ(xj+1, zj+1).

So, letting n → ∞, we get

||π(x̃) − π(z̃)|| ≤ LF

∞
∑

j=0

κjρ(xj+1, zj+1) ≤ LF

ρ(x̃, z̃)

κ
.

We are done. �

For every continuous potential g : X̃ → R let P(g) = P(f̃ , g) be the topological

pressure of g with respect to the dynamical system f̃ : X̃ → X̃ . For the topological
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pressure and its basic properties see for ex. [1] and [7]. Now consider the potential

ζ = ζF : X̃ → R given by the formula

ζ(x̃) = log |φ′
x0

(π(x̃))|
This potential is Hölder continuous because of Proposition 2.2. It is easy to see that
the function t 7→ P(f̃ , tζ) is convex, Lipschitz continuous, strictly decreasing, and

lim
t→−∞

P(f̃ , tζ) = +∞ and lim
t→+∞

P(f̃ , tζ) = −∞.

Thus there exists exactly one t ∈ R, denoted by h, such that P(f̃ , hζ) = 0. Since

P(f̃ , 0ζ) = htop(f̃) > 0, we see that h > 0. The number h is called Bowen’s stable
zero of the basic set Λ. Our goal from now on throughout this section is to provide
a geometric characterization of this zero h of the above pressure function in the
framework of smooth families of hyperbolic fiberwise conformal skew-products.

Endow the space C1+γ(V ) of all C1+γ differentiable endomorphisms from V into
V with the norm || · ||γ given by the formula

||φ||γ = ||φ||∞ + ||φ′||∞ + vγ(φ′),

where

vγ(φ′) = inf{L > 0 : |φ′(y) − φ′(x)| ≤ L|y − x|γ for all x, y ∈ V }.
Obviously C1+γ(V ) endowed with this norm becomes a Banach space. Denote the
metric induced by the norm || · ||γ by ργ .

Definition 2.3. In the above setting, fix d ≥ 1 and an open set W ⊂ Rd and
consider a family Φ = {φλ

x : V → V }(λ,x)∈W×X of maps from C1+γ(V ) satisfying
the following conditions.

(af) Conditions (a) and (b) with the same constants κ, κ ∈ (0, 1).
(bf) The map (λ, x) 7→ φλ

x ∈ C1+γ(V ) defined on W × X is continuous.
(cf) (Transversality Condition)

∀(x ∈ X)∀(λ0 ∈ W )∃(δ(x, λ0) > 0)∃(C1 > 0)∀(x̃, ỹ ∈ p−1
0 (x))∀(r > 0)

x1 6= y1 ⇒ ld
(

{λ ∈ B(λ0, δ(x, λ0)) : ||πλ(x̃) − πλ(ỹ)|| ≤ r}
)

≤ C1r
q ,

where ld denotes the d-dimensional Lebesgue measure on Rd and πλ : X̃ → V
is the canonical projection induced by the skew-product Fλ : U ×V → R

p×V
given by the formula

Fλ(x, y) = (f(x), φλ
x(y)).

Any such family Φ is said to be transversal and the canonically induced family
Φ = {Fλ}λ∈W is also called transversal.

For all λ, λ′ ∈ W put

||Fλ||γ = sup{||φλ
x||γ : x ∈ X} and ργ(Fλ, Fλ′ ) = sup{ργ(φλ

x, φλ′

x ) : x ∈ X}.
Condition (bf) can be now rephrased as follows.

(b’f) The function λ 7→ Fλ, λ ∈ W , is continuous.

In order to prove Bowen’s formula for the family Φ, we need some auxiliary facts.
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Lemma 2.4.

∀(η > 0)∃(δ > 0)∀(λ0 ∈ W )∀(λ ∈ B(λ0, δ) ∩ W )∀(x̃ ∈ X̃)∀(n ≥ 0)

e−ηn ≤ ||
(

φλ,n
xn

)′||
||
(

φλ0,n
xn

)′||
≤ eηn.

Proof. Fix y ∈ V . Using the Mean Value Inequality and condition (a), we get

||φλ,n+1
xn+1

(y) − φλ0,n+1
xn+1

(y)||
≤||φλ

x1

(

φλ,n
xn+1

(y)
)

− φλ0

x1

(

φλ,n
xn+1

(y)
)

|| + ||φλ0

x1

(

φλ,n
xn+1

(y)
)

− φλ0

x1

(

φλ0,n
xn+1

(y)
)

||
≤||φλ

x1
− φλ0

x1
||∞ + ||

(

φλ0

x1

)′||∞||φλ,n
xn+1

(y) − φλ0,n
xn+1

(y)||
≤||φλ

x1
− φλ0

x1
||∞ + κ||φλ,n

xn+1
(y) − φλ0,n

xn+1
(y)||.

Thus, by induction

||φλ,n
xn

(y) − φλ0,n
xn

(y)|| ≤ (1 − κ)−1||φλ
x1

− φλ0

x1
||∞ ≤ (1 − κ)−1ργ(Fλ, Fλ0

).

Hence, for every 0 ≤ k ≤ n, we get that

||
(

φλ
xk

)′(
φλ,n−k

xn
(y)

)

−
(

φλ0

xk

)′(
φλ0,n−k

xn
(y)

)

||
≤||

(

φλ
xk

)′(
φλ,n−k

xn
(y)

)

−
(

φλ0

xk

)′(
φλ,n−k

xn
(y)

)

||+
+ ||

(

φλ0

xk

)′(
φλ,n−k

xn
(y)

)

−
(

φλ0

xk

)′(
φλ0,n−k

xn
(y)

)

||
≤||

(

φλ
xk

)′ −
(

φλ0

xk

)′||∞ + vγ

(

φλ0

xk

)′)||φλ,n−k
xn

(y) − φλ0,n−k
xn

(y)||γ

≤ργ(Fλ, Fλ0
) + ||Fλ0

||γ(1 − κ)−γργ
γ(Fλ, Fλ0

)

≤
(

1 + (1 − κ)−γ ||Fλ0
||γ

)

ργ
γ(Fλ, Fλ0

),

where the last inequality was written assuming that ργ(Fλ, Fλ0
) ≤ 1. Since

log |b/a| ≤ |b − a|/|b|, we further get, by using (af), that

log
|
(

φλ
xk

)′(
φλ,n−k

xn
(y)

)

|
|
(

φλ0
xk

)′(
φλ0,n−k

xn (y)
)

|
≤ κ−1

(

1 + (1 − κ)−γ ||Fλ0
||γ

)

ργ
γ(Fλ, Fλ0

).

Using the Chain Rule, we therefore get

1

n
log

|
(

φλ,n
xn

)′
(y)|

|
(

φλ0,n
xn

)′
(y)|

=
1

n

n
∑

k=1

log
|
(

φλ
xk

)′(
φλ,n−k

xn
(y)

)

|
|
(

φλ0
xk

)′(
φλ0,n−k

xn (y)
)

|
≤ κ−1

(

1 + (1 − κ)−γ ||Fλ0
||γ

)

ργ
γ(Fλ, Fλ0

).

So, the lemma follows by invoking (b’f), the uniform (decreasing W if necessary)
continuity of the function λ 7→ Fλ and the distortion property of φλ

xn
on V . �

Our next auxiliary result is this.

Lemma 2.5. If Φ = {Fλ}λ∈W is a transversal family of hyperbolic fiberwise con-

formal skew-products, then for every β ∈ (0, q) and for all x ∈ X there exists a

constant C > 0 such that for all z̃, w̃ ∈ p−1
0 (x) with z1 6= w1, we have

∫

B(λ0,δ(x,λ0))

dλ

||πλ(w̃) − πλ(z̃)||β ≤ C.
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Proof. Applying the transversality condition (cf), we estimate as follows.
∫

B(λ0,δ(x,λ0))

dλ

||πλ(w̃) − πλ(z̃)||β =

=

∫ ∞

0

ld

({

λ ∈ B(λ0, δ(x, λ0)) :
1

||πλ(w̃) − πλ(z̃)||β ≥ t

})

dt

= β

∫ ∞

0

ld
(

{λ ∈ B(λ0, δ(x, λ0)) : ||πλ(w̃) − πλ(z̃)|| ≤ r}
)

r−β−1

= β

∫ δ(x,λ0)

0

ld
(

{λ ∈ B(λ0, δ(x, λ0)) : ||πλ(w̃) − πλ(z̃)|| ≤ r}
)

r−β−1+

+ β

∫ ∞

δ(x,λ0)

ld
(

{λ ∈ B(λ0, δ(x, λ0)) : ||πλ(w̃) − πλ(z̃)|| ≤ r}
)

r−β−1

≤ C1β

∫ δ(x,λ0)

0

rq−β−1dr + βld(B(λ0, δ(x, λ0)))

∫ ∞

δ(x,λ0)

r−β−1dr

≤ C1β(q − β)−1(2δ(x, λ0))
q−β + βld(B(λ0, δ(x, λ0)))diam(V )−β < +∞.

�

Lemma 2.6. Given ε, a > 0 put η = −ε log κ
2a+ε

and take δ = δ(η) coming from

Lemma 2.4 ascribed to η. Then for all x̃ ∈ X̃ and all n ≥ 0,

||λ − λ0|| < δ ⇒ ||(φλ0,n
xn

)′||a+ ε
2

∞ ≤ ||(φλ,n
xn

)′||a∞.

Proof. Applying Lemma 2.4, we get

||(φλ0,n
xn

)′||a+ ε
2

∞ ≤ exp
(

ηn
(

a +
ε

2

))

||(φλ,n
xn

)′||a+ ε
2

∞

≤ exp
(

ηn
(

a +
ε

2

))

κ
ε
2
n||(φλ,n

xn
)′||a∞

= exp
(

−ε

2
log κn

)

κ
ε
2
n||(φλ,n

xn
)′||a∞ = ||(φλ,n

xn
)′||a∞.

�

For every λ ∈ W denote by hλ the Bowen’s stable zero of the basic set Λλ. We
now shall prove a technical fact, which will easily imply our main result.

Lemma 2.7. Suppose that Φ = {Fλ}λ∈W is a transversal family of hyperbolic

fiberwise conformal skew-products. Then for all x ∈ X we have

(a)

∀(λ0 ∈ W )∀(ε > 0)∃(δ > 0)

HD(Yλ,x) ≥ min{hλ0
, q} − ε

for ld-a.e. λ ∈ B(λ0, δ) and

(b) If hλ0
> q, then there exists δ > 0 such that

lq(Yλ,x) > 0

for ld-a.e. λ ∈ B(λ0, δ).
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Proof. Put h = min{hλ0
, q}. Since the potential hλ0

ζFλ0
is Hölder continuous, there

exists a unique equilibrium (Gibbs) state µ for this potential and the

dynamical system f̃ : X̃ → X̃. Since f : X → X is a distance expanding
map, for every r > 0 sufficiently small, say r ∈ (0, R], every z ∈ X and every
n ≥ 0 there exists a unique continuous inverse branch f−n

z : B(fn(z), r) → X of
fn sending fn(z) to z. We now want to look at the Gibbs measure µ in greater
detail. A straightforward adaptation of the proof of Lemma 1.6, p.11 in [1] results in
the existence of a Hölder continuous function ζ+ that is cohomologous to hλ0

ζFλ0

and depends only on the 0th coordinate, in particular ζ+ can be regarded as a
Hölder continuous function defined on X . Then µ = µ̃+, where µ+ is the Gibbs
(equilibrium) state for the potential

ζ+ : X̃ → R. Also µ◦p
−1
n = µ+ for all n ≥ 0, and P(ζ+) = P

(

hλ0
ζFλ0

)

= 0. Let

L+ : C(X) → C(X) be the Perron-Frobenius operator determined by the potential
ζ+ : X → R. It is then well-known (see [7], Ch. 4 for ex.) that there exists
m+, a Borel probability measure on X being a fixed point of the dual operator
L∗

+ : C∗(X) → C∗(X). This means that

m+(f(A)) =

∫

A

e−ζ+dm+

whenever A is a Borel subset of X such that f |A : A → f(A) is one-to-one. In
particular, for every x ∈ X , every r ∈ (0, R] and every Borel set A ⊂ B(fn(x), r)

m+

(

f−n
x (A)

)

=

∫

A

exp
(

Snζ+ ◦ f−n
x

)

dm+ ≍ exp
(

Snζ+(x)
)

m+(A), (2.2)

where we say that two positive quantities An, Bn are comparable, written An ≍ Bn

if there exists a positive constant C (called a comparability constant) such that
C−1 ≤ An

Bn
≤ C; in our case the comparability constant is independent of r, x and

n.
Since (see [7], Ch.4) the Radon-Nikodym derivative dµ+

dm+
is a continuous function

bounded away from zero and infinity, we get, using (2.2) and cohomology of ζ+ and
hλ0

ζFλ0
, for every r ∈ (0, R], every z ∈ X and all n ≥ 0 that

µ
(

p−1
n ◦ f−n

z (B(fn(z), r))
)

= µ̃+

(

p−1
n ◦ f−n

z (B(fn(z), r))
)

= µ+

(

f−n
z (B(fn(z), r))

)

≍ m+

(

f−n
z (B(fn(z), r))

)

≍ exp
(

Snζ+(x)
)

m+(B(fn(z), r))

≍ exp
(

hλ0
SnζFλ0

(z̃)
)

µ+(B(fn(z), r))

=
∣

∣

∣

(

φλ0,n
z

)′
(πλ0

(z̃))
∣

∣

∣

hλ0

µ̃+ ◦ p−1
0 (B(fn(z), r))

≍
∣

∣

∣

∣(φλ0,n
z )′

∣

∣

∣

∣

hλ0 µ
(

p−1
0 (B(fn(z), r))

)

,

(2.3)
where z̃ was an arbitrary auxiliary point in p−1

0 (z) and all the comparability con-
stants appearing in this calculation are independent of r, z and n. Now, fix x ∈ X ,
r ∈ (0, R], n ≥ 0 and ξ ∈ f−n(x). Put

µx,n(ξ) = lim
r→0

µ
(

p−1
n

(

f−n
ξ (B(x, r))

)

µ
(

p−1
0 B(x, r))

) . (2.4)
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This formula defines a probability measure on the finite set f−n(x). Since for all
n ≥ 1 and all z ∈ f−(n−1)(x),

µx,n ◦ f−1(z) =
∑

w∈f−1(z)

µx,n(w) =
∑

w∈f−1(z)

lim
r→0

µ
(

p−1
n

(

f−n
w (B(x, r))

)

µ
(

p−1
0 (x, r))

)

= lim
r→0

(

µ
(

p−1
0 (x, r))

))−1 ∑

w∈f−1(z)

µ
(

p−1
n

(

f−n
w (B(x, r))

)

= lim
r→0

(

µ
(

p−1
0 (x, r))

))−1
µ





⋃

w∈f−1(z)

p−1
n

(

f−n
w (B(x, r))

)





= lim
r→0

µ
(

p−1
n−1

(

f
−(n−1)
z (B(x, r))

)

µ
(

p−1
0 (x, r))

)

= µx,n−1(z),

the sequence
(

µx,n

)∞

1
is consistent with respect to the sequence of maps

(

f :

f−n(x) → f−(n−1)(x)
)∞

1
in the sense of Definition 3.6.3 from [4]. It therefore

follows from Daniel-Kolmogorov Consistency Theorem (Proposition 3.6.4 in [4])
that there exists a measure µx on p−1

0 (x) such that µx ◦ p−1
n = µx,n for all n ≥ 0.

Hence it follows from (2.3) and (2.4) that for all x ∈ X , all r > 0, all n ≥ 0 and all
ξ ∈ f−n(x), we have

µx(p−1
n (ξ)) = lim

r→0

µ
(

p−1
n

(

f−n
ξ (B(x, r))

)

µ
(

p−1
0 B(x, r))

) ≍ ||(φλ0,n
ξ )′||hλ0 (2.5)

and the universal comparability constant is independent of r, x, n and ξ.
Given ε > 0, let 0 < δ = min{δ(η), δ(x, λ0)}, where η = −ε log κ

2h−ε
comes from

Lemma 2.6 with a = h−ε. By the potential-theoretic characterization of Hausdorff
dimension (see [2]), it suffices to prove that

Rx(λ) =

∫∫

V ×V

d(µx ◦ π−1
λ × µx ◦ π−1

λ )(w, z)

||w − z||h−ε

=

∫∫

p
−1

0
(x)×p

−1

0
(x)

dµ2(w̃, z̃)

||πλ(w̃) − πλ(z̃)||h−ε
< +∞,

(2.6)

where µ2 = µx × µx is the product measure on p−1
0 (x) × p−1

0 (x). And in turn, in
order to prove (2.6), it is enough to show that

∫

B(λ0,δ)

Rx(λ)dλ < +∞.

For every n ≥ 1 and every ξ ∈ f−n(x), let

Aξ = {(w̃, z̃) ∈ p−1
0 (x) × p−1

0 (x) : wn = zn = ξ and wn+1 6= zn+1}.
By the Mean Value Inequality, we get for all (w̃, z̃) ∈ Aξ that

||πλ(f̃−n(w̃)) − πλ(f̃−n(z̃))|| = ||(φλ,n
ξ )−1

(

πλ(w̃)
)

− (φλ,n
ξ )−1

(

πλ(z̃)
)

||
≤ ||(φλ,n

ξ )′||−1||πλ(w̃) − πλ(z̃)||.
(2.7)

By Lemma 2.6, we have

||(φλ,n
ξ )′||h−ε ≥ ||(φλ0,n

ξ )′||h− ε
2 ≥ ||(φλ0,n

ξ )′||hλ0
− ε

2 . (2.8)
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Hence, changing the order of integration, using formula (2.7), (2.8) and Lemma 2.5

((f̃−n(w̃))0 = ξ = (f̃−n(z̃))0, (f̃−n(w̃))1 = wn+1 6= zn+1 = (f̃−n(z̃))1), we get
∫

B(λ0,δ)

Rx(λ)dλ

=

∫∫

p
−1

0
(x)×p

−1

0
(x)

∫

B(λ0,δ)

dλ

||πλ(w̃) − πλ(z̃)||h−ε
dµ2(w̃, z̃)

=
∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

∫

B(λ0,δ)

dλ

||πλ(w̃) − πλ(z̃)||h−ε
dµ2(w̃, z̃)

≤
∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

∫

B(λ0,δ)

||(φλ,n
ξ )′||ε−h dλ

||πλ(f̃−n(w̃)) − πλ(f̃−n(z̃))||h−ε
dµ2(w̃, z̃)

≤
∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

||(φλ0,n
ξ )′|| ε

2
−hλ0

∫

B(λ0,δ)

dλ

||πλ(f̃−n(w̃)) − πλ(f̃−n(z̃))||h−ε
dµ2(w̃, z̃)

≤C

∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

||(φλ0,n
ξ )′|| ε

2
−hλ0dµ2(w̃, z̃).

(2.9)
Now, using (2.5), we can continue (2.9) as follows (Aξ ⊂ p−1

n (ξ)).

∫

B(λ0,δ)

Rx(λ)dλ �
∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

||(φλ0,n
ξ )′|| ε

2 µ−1
x (p−1

n (ξ))dµ2

=

∞
∑

n=0

κ
nε
2

∑

ξ∈f−n(x)

µ−1
x (p−1

n (ξ))µ2(Aξ)

≤
∞
∑

n=0

κ
nε
2 µx(p−1

0 (x))

=

∞
∑

n=0

κ
nε
2 < +∞,

and we are done with part (a).

(b) Put η = −ε log κ
2hλ0

+ε
and determine δ = δ(η) by Lemma 2.6 with a = 1 and ε

replaced by ε/hλ0
. We use the same setup and notation as in the proof of part (a);

in particular µ denotes the same Gibbs state. For every λ ∈ B(λ0, δ), let

νλ = µx ◦ π−1
λ .

It suffices to show that νλ << lq. We shall prove that

R =

∫

B(λ0,δ)

∫

R

D(νλ, z)dνλ(z)dλ =

∫

B(λ0,δ)

∫

V

D(νλ, z)dνλ(z)dλ < ∞,

where

D(νλ, z) = lim inf
rց0

νλ(B(z, r))

rq
.

Having this, we will have D(νλ, z) < +∞ for νλ-a.e. z ∈ V and Theorem 2.12 in
[2] will imply that νλ is absolutely continuous with respect to lq. So, starting the
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proof that R < ∞, we apply Fatou’s lemma to get

R ≤ lim inf
rց0

∫

B(λ0,δ)

∫

V

νλ(B(z, r))

rq
dνλ(z)dλ. (2.10)

Now, use the definition of νλ to change the variable, write νλ(B(z, r)) as an integral
of the characteristic function, and change the variable once again to obtain

∫

V

νλ(B(z, r))dνλ(z) =

∫

p
−1

0
(x)

µx ◦ π−1
λ

(

B(πλ(z̃), r))dµx ◦ π−1
λ (z̃)

=

∫∫

p
−1

0
(x)×p

−1

0
(x)

11
π
−1

λ

(

B(πλ(z̃),r)
)(w̃)dµx ◦ π−1

λ (w̃)dµx ◦ π−1
λ (z̃)

=

∫∫

p
−1

0
(x)×p

−1

0
(x)

11{w̃∈X̃:||πλ(w̃)−πλ(z̃)||<r}dµ2(w̃, z̃).

Inserting this to (2.10) and changing the order of integration, gives

R ≤ lim inf
rց0

r−q

∫∫

p
−1

0
(x)×p

−1

0
(x)

ld
(

{λ ∈ B(λ0, δ) : ||πλ(w̃) − πλ(z̃)|| < r}
)

dµ2(w̃, z̃)

= lim inf
rց0

r−q

∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

ld
(

{λ ∈ B(λ0, δ) : ||πλ(w̃) − πλ(z̃)|| < r}
)

dµ2(w̃, z̃).

By (2.7), Lemma 2.6 with a = 1 and ε replaced by ε/hλ0
, and (cf), we get for all

(w̃, z̃) ∈ Aξ that

ld
(

{λ ∈ B(λ0, δ) : ||πλ(w̃) − πλ(z̃)|| < r}
)

≤
≤ ld

(

{λ ∈ B(λ0, δ) : ||πλ(f̃−n(w̃)) − πλ(f̃−n(z̃))|| < r||(φλ,n
ξ )′||−1}

)

≤ ld
(

{λ ∈ B(λ0, δ) : ||πλ(f̃−n(w̃)) − πλ(f̃−n(z̃))|| < r||(φλ0,n
ξ )′||−

(

1+ ε
2hλ0

)

}
)

≤ C1r
q ||(φλ0,n

ξ )′||−q
(

1+ ε
2hλ0

)

.

Thus

R �
∞
∑

n=0

∑

ξ∈f−n(x)

∫∫

Aξ

||(φλ0,n
ξ )′||−q

(

1+ ε
2hλ0

)

dµ2

≤
∞
∑

n=0

∑

ξ∈f−n(x)

||(φλ0,n
ξ )′||−q

(

1+ ε
2hλ0

)

µ2(Aξ)

≤
∞
∑

n=0

∑

ξ∈f−n(x)

||(φλ0,n
ξ )′||−q

(

1+ ε
2hλ0

)

µ2
x(p−1

n (ξ)).

But it follows from (2.5) that

||(φλ0,n
ξ )′||−q

(

1+ ε
2hλ0

)

≤ ||(φλ0,n
ξ )′||−(hλ0

−ε)
(

1+ ε
2hλ0

)

= ||(φλ0,n
ξ )′||−hλ0 ||(φλ0,n

ξ )′||
ε
2
+ ε2

2hλ0

≤ µ−1
x (p−1

n (ξ))||(φλ0,n
ξ )′|| ε

2

≤ κ
εn
2 µ−1

x (p−1
n (ξ)).
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Hence,

R �
∞
∑

n=0

∑

ξ∈f−n(x)

κ
εn
2 µx(p−1

n (ξ)) =
∞
∑

n=0

κ
εn
2 µx(p−1

0 (x)) =
∞
∑

n=0

κ
εn
2 < +∞.

We are done. �

We are now in a position to provide the proof of the following main result of this
section.

Theorem 2.8. Suppose that Φ = {Fλ}λ∈W is a transversal family of hyperbolic

fiberwise conformal skew-product endomorphisms. Then the function λ 7→ hλ is

continuous on W and for all x ∈ X there exists a Borel set Wx ⊂ W such that

ld(W \ Wx) = 0 and

(a)

HD(Yλ,x) = min{hλ, q} for all λ ∈ Wx.

(b)

ld
(

{λ ∈ W : hλ > q and ld(Yλ,x) > 0}
)

= ld
(

{λ ∈ W : hλ > q}
)

.

Proof. First of all we recall that f̃ : X̃ → X̃ is an expanding homeomorphism.
Continuity of the function λ 7→ hλ is an immediate consequence of the thermo-

dynamic formalism for expanding maps (f̃ : X̃ → X̃) and condition (bf). Inequality
HD(Yλ,x) ≤ min{hλ, q} is known for all hyperbolic fiberwise conformal endomor-
phisms. Proving (a) suppose for the contrary that for some x ∈ X , ld(Z) > 0, where
Z = {λ ∈ W : HD(Yλ,x) < min{hλ, q}}. Then there is ε > 0 such that ld(Zε) > 0,
where Zε = {λ ∈ W : HD(Yλ,x) < min{hλ, q} − 2ε}. Let λ0 be a Lebesgue density
point of Zε. So, there exists δ0 > 0 such that for each δ ∈ (0, δ0],

ld(Zε ∩ B(λ0, δ)) > 0. (2.11)

By the continuity of the function λ 7→ min{hλ, q} there exists δ1 ∈ (0, δ0) such that
min{hλ, q} < min{hλ0

, q} + ε for all λ ∈ B(λ0, δ1). Combining this with (2.11), we
conclude that

ld
(

{λ ∈ B(λ0, δ) : HD(Yλ,x) < min{hλ0
, q} − ε}

)

> 0

for all δ ≤ δ1. This directly contradicts item (a) of Lemma 2.7, and the proof of item
(a) of our present theorem is complete. To finish the proof, that is to demonstrate
item (b), note that it directly follows from item (b) of Lemma 2.7. We are done. �

An interesting question arises of when we can find a universal set W ′ of full measure
in W such that item (a) holds for all x ∈ X and all λ ∈ W ′. We provide below two
sufficient conditions.

Corollary 2.9. Suppose that Φ = {Fλ}λ∈W is a transversal family of hyperbolic

fiberwise conformal skew-products and the function x 7→ HD(Yλ,x), x ∈ X, is upper

semi-continuous, for all λ ∈ W . Then the function λ 7→ hλ is continuous on W
and there exists a measurable set W ′ ⊂ W such that ld(W \ W ′) = 0 and

HD(Yλ,x) = min{hλ, q}
for all λ ∈ W ′ and all x ∈ X.



TRANSVERSAL FAMILIES OF HYPERBOLIC SKEW-PRODUCTS 919

Proof. Suppose on the contrary that there exists a measurable set W+ such that
ld(W+) > 0 and for every λ ∈ W+ there exists xλ ∈ X such that HD(Yλ,x) <
min{hλ, q}. Fix B, a countable base of topology on X . Since the function x 7→
HD(Yλ,x), x ∈ X , is upper semi-continuous, for every λ ∈ W+ there exists a set
Bλ ∈ B such that HD(Yλ,x) < min{hλ, q} for all x ∈ Bλ. For every B ∈ B, let
W+(B) = {λ ∈ W+ : B = Bλ}. Since the family B is countable and ld(W+) > 0,
either there exists B ∈ B such that ld(W+(B)) > 0 or W+(B) is not measurable.
Thus, in any case, there exists B ∈ B and a measurable set U ⊂ W+(B) such that
ld(U) > 0. Fix z ∈ B. Then HD(Yλ,z) < min{hλ, q} for all λ ∈ U contrary to
Theorem 2.8(a). We are done. �

Another way to guarantee the existence of a universal set W ′ as in the corollary
above, is to strenghten the transversality condition (cf) as follows.

(c’f) (Uniform Transversality Condition) There exists C2 > 0 such that for all
x ∈ X , ∀x̃, ỹ ∈ p−1

0 (x), x1 6= y1, and ∀r > 0, we have

ld
(

λ ∈ W : ||πλ(x̃) − πλ(ỹ)|| ≤ r
)

≤ C2r
q.

All that has to be done then, is to replace Rx(λ) in formula (2.6) by supx∈X Rx(λ).
We thus get the following.

Theorem 2.10. Suppose that Φ = {Fλ}λ∈W is a uniformly transversal family of

hyperbolic fiberwise conformal skew-products. Then the function λ 7→ hλ is contin-

uous on W and there exists a measurable set W ′ ⊂ W such that ld(W \ W ′) = 0
and

HD(Yλ,x) = min{hλ, q}
for all λ ∈ W ′ and all x ∈ X.

3. Examples. We shall now describe examples of transversal families of hyperbolic
fiberwise conformal skew products.

First we will give a class of examples which generalize skew products obtained
from iterated function systems, possibly with overlaps (for such iterated systems
see for example [11]). For this class we will obtain a corollary which gives a
good estimate for the Hausdorff dimension of the fiber. Here the dependence
on parameters is not necessarily polynomial. These are parametrized families of
maps of the form Fλ(x, y) = (f(x), λj + Φj(x, y, λ)) if x ∈ Xj , j = 1, . . . , d,
where λ = (λ1, . . . , λd), f : I1 ∪ . . . ∪ Id → I is expanding, with f(Ij) = I and
Xj = Ij ∩ {x ∈ I1 ∪ . . . ∪ Id, fk(x) ∈ I1 ∪ . . . ∪ Id, ∀k ≥ 0}, for j = 1, . . . , d.

Then, we focus on examples of complex skew products with polynomial-like be-
havior ([3]), for which the transversality condition can actually be verified. This
will be done by estimating the coordinates of points from X and then by obtaining
a general formula for the projection πλ(z̃), z̃ ∈ X̃. For the base function f we take
the simple polynomial z → z2 + c with |c| small, which is expanding on its Julia set
Jc (Jc is close to the unit circle S1 for small |c|); then the family will be of the form
{Fλ}λ, Fλ(z, w) := (f(z), gλ(z, w)). These skew products are important examples
of endomorphisms of C2 (hence not necessarily invertible). One of these examples
is linear in w (in the second coordinate) and another example is a perturbation of
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a map which is quadratic in w (in the second coordinate); we give also an example
containing the term zw2 in the second coordinate.

We begin with the following elementary auxiliary facts.

Lemma 3.1. For all η > 0, θ > 0 and l > 0 there exists a constant C(η, θ, l) ≥ 1
with the following property. If g : ∆ → R is a C1-differentiable function such that

(a) ∆ is a closed segment of R with |∆| ≤ l,
(b) |g′(x)| ≤ θ for all x ∈ ∆,

(c) if x ∈ ∆ and |g(x)| ≤ η, then |g′(x)| ≥ η,

then for every r > 0,

l1
(

{x ∈ ∆ : |g(x)| ≤ r}
)

≤ C(η, θ, l)r.

Proof. We may assume without loss of generality that r < min{η, l}/2. It follows
from condition (c) that the set g−1(0) is finite. Let a < b be a closest pair of points
in this set. Assume without loss of generality that g′(a) ≥ η. Since g(a) = g(b) = 0,
using the continuity of the function g′, we deduce from (c) that there exists a point
w ∈ (a, b) such that g(w) = η. Fix a minimal w with this property. it then follows
from the Mean Value Theorem that η = g(w) − g(a) ≤ θ|w − a| ≤ θ|b − a|. Hence
|b − a| ≥ η/θ, and therefore

#g−1(0) ≤ θl/η. (3.1)

Suppose now that z ∈ ∆ and |g(z)| ≤ r. Assume without loss of generality that
0 ≤ g(z) ≤ r. Let a ≤ ξ ≤ z be the largest number such that g(ξ) = 0 if
such a number exists, or else, let ξ = a. In either case 0 ≤ g(t) ≤ r < η and
g′(t) ≥ η for all t ∈ [ξ, z]. By the Mean Value Theorem there exists u ∈ [ξ, z]
such that r ≥ g(z) − g(ξ) = g′(u)(z − ξ) ≥ η(z − ξ). Thus z ∈ (ξ − r

η
, ξ + r

η
) and

therefore g−1([−r, r]) ⊂ B(∂∆∪g−1(0), r/η). So we conclude that l1(g
−1([−r, r])) ≤

2η−1(2 + θlη−1)r. �

As a straightforward consequence of this lemma, we get the following.

Lemma 3.2. Let U ⊂ Rd be a compact convex set with diam(U) ≤ l. Suppose that

g : U → R is a C1-differentiable function with the following properties.

(a) There exists 1 ≤ i ≤ d such that

∣

∣

∣

∂g
∂xi

(x)
∣

∣

∣ ≤ θ for all x ∈ U .

(b) If x ∈ U and |g(x)| ≤ η, then

∣

∣

∣

∂g
∂xi

(x)
∣

∣

∣
≥ η.

Then for every r > 0,

ld
(

{x ∈ U : |g(x)| ≤ r}
)

≤ (2l)d−1C(η, θ, l)r.

Proof. Assume without loss of generality that i = d. For every x ∈ Rd−1 let
∆x = {t ∈ R : (x, t) ∈ U}. Since U is a convex compact set with diam(U) ≤ l

it follows that diam(Û) ≤ l, where Û = {x ∈ Rd−1 : ∆x 6= ∅}. Applying Fubini’s
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Theorem and Lemma 3.1, we then get that

ld
(

{x ∈ U : |g(x)| ≤ r}
)

=

∫

U

11g−1([−r,r])(z)dld(z)

=

∫

Û

∫

∆x

11g−1([−r,r])(x, t)dtdld−1(x)

=

∫

Û

l1
(

{t ∈ ∆x : |g(x, t)| ≤ r}
)

dld−1(x)

≤ C(η, θ, l)ld−1(Û)r

≤ (2diam(Û))d−1C(η, θ, l)r

≤ (2l)d−1C(η, θ, l)r.

We are done. �

Passing to the actual examples, let f : X → X be a topologically exact open dis-
tance expanding map for which there exist closed mutually disjoint sets X1, X2, . . . , Xd

such that X = ∪d
i=1Xi, f(Xi) = X for all i = 1, 2, . . . , d and f |Xi

is injective for all
i = 1, 2, . . . , d. The model that we have in mind here is that of an expanding map
f : I1 ∪ . . . ∪ Id → [0, 1] where I1, . . . , Id are closed mutually disjoint subintervals
of [0, 1], f(Ij) = [0, 1], ∀j, and f |Ij

is injective. Then we will take as the compact
space X , the set I∗ = {x ∈ I1 ∪ . . . ∪ Id, fm(x) ∈ I1 ∪ . . . ∪ Id, ∀m ≥ 0}. So, in this
case, Xi = I∗ ∩ Ii, i = 1, . . . , d.

Returning to the general case of the dynamical system f : X → X as above,
consider λ = (λ1, . . . , λd) ∈ Bd(0, η) ⊂ Rd, for some small enough η > 0, and
fix Lipschitz continuous functions φ1, . . . , φd : X × [0, 1] × Bd(0, η) → (0, 1). So
φ1, . . . , φd are functions of (x, y, λ) ∈ X∗ := X× [0, 1]×Bd(0, η). Let us assume also
that φ1(x, ·, ·), . . . , φd(x, ·, ·) are C2 differentiable functions of (y, λ), with derivatives
in (y, λ) depending Lipschitz continuously on (x, y, λ), and that there exist constants
α, α′ > 0 with 0 < α′ < | ∂

∂y
φi| < 1

4 on X∗, for all i = 1, . . . , d and | ∂
∂λj

φi| < α on

X∗, for all i, j = 1, . . . , d. If φi ≤ β on X∗, for i = 1, . . . , d, then we assume also
that η + β < 1. We define now the parametrized maps Fλ : X × [0, 1] → X × (0, 1)
by the formula

Fλ(x, y) = (f(x), λi + φi(x, y, λ)),

if x ∈ Xi, i = 1, . . . , d. Due to the conditions that we imposed on the functions
φ1, . . . , φd, one can see that Fλ is well defined and it is a hyperbolic fiberwise
conformal skew product endomorphism. In this case, φλ

x(y) = λi + φi(x, y, λ), for
x ∈ Xi, i = 1, . . . , d. We see that 0 < α′ < |(φλ

x)′| < 1
4 , x ∈ X, λ ∈ Bd(0, η), so

condition (af) from the definition of a transversal family is satisfied automatically.
For this family, the set of parameters is W = Bd(0, η) ⊂ Rd.

Theorem 3.3. The family {Fλ}λ∈Bd(0,η) is uniformly transversal, and therefore,

the assertions of Theorem 2.10 hold.

Proof. For every w ∈ X let i(w) ∈ {1, . . . , d} be uniquely determined by the

property that w ∈ Xi(w). Fix 1 ≤ k ≤ d and a prehistory w̃ ∈ X̃ . We have that

πλ(w̃) = lim
n

(

φλ
w1

◦ . . . ◦ φλ
wn

)(ζ) = φλ
w1

◦ . . . ◦ φλ
wn

(πλ(w̃n)),
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where w̃n = (wn, wn+1, . . .). Notice also that the limit above is uniform in ζ. So,

∂

∂λj

(φλ
w1

◦ φλ
w2

(ζ)) =
∂

∂λj

(λi(w1) + φi(w1)(w1, λi(w2) + φi(w2)(w2, ζ, λ), λ)).

For the derivative of φλ
w1

◦ . . . ◦φλ
wn

with respect to λj we obtain a similar formula,

and then using that | ∂
∂y

φi| < 1
4 , i = 1, . . . , d, one proves that the map λ → πλ(w̃)

is differentiable for every w̃ ∈ X̃, and the derivative is continuous with respect to
w̃. Let us assume first that i(wn) 6= k, ∀n ≥ 1. We have then πλ(w̃) = λi(w1) +
φi(w1)(w1, πλ(w̃1), λ). Therefore

∂

∂λk

πλ(w̃) =
∂

∂y
φi(w1)(w1, πλ(w̃1), λ) · ∂

∂λk

πλ(w̃1) +
∂

∂λk

φi(w1)(w1, πλ(w̃1), λ).

Hence | ∂
∂λk

πλ(w̃)| ≤ 1
4 | ∂

∂λk
πλ(w̃1)| + | ∂

∂λk
φi(w1)(w1, πλ(w̃1), λ)|. Thus by induction

we get

| ∂

∂λk

πλ(w̃)| ≤ 1

4
| ∂

∂λk

πλ(w̃1)| + | ∂

∂λk

φi(w1)(w1, πλ(w̃1), λ)|

≤ 1

4
(
1

4
| ∂

∂λk

πλ(w̃2)| + | ∂

∂λk

φi(w2)(w2, πλ(w̃2, λ)|) + α

≤ α +
1

4
α +

1

42
α + . . .

= α · 4

3
.

Let us consider now the case when there exists n ≥ 1 with i(wn) = k, and assume
that n is chosen as the smallest integer with this property (for k ≥ 1 fixed). If
i(w1) = k, then

| ∂

∂λk

πλ(w̃)| ≤ 1 +
1

4
| ∂

∂λk

πλ(w̃1)| + α ≤ 1 +
1

4
(1 +

1

4
| ∂

∂λk

πλ(w̃2)| + α) + α ≤ . . .

≤ (1 + α) · 4

3
,

as one can see by induction, and using the fact that the derivative of the function
λ → πλ(w̃) is bounded in w̃ ∈ X̃. In the case when i(w1) 6= k, but there exists
n ≥ 2 with i(wn) = k, we obtain similarly that

| ∂

∂λk

πλ(w̃)| ≤ 1

4
| ∂

∂λk

πλ(w̃1)| + α ≤ α +
1

4
(1 + α) · 4

3
= α +

1 + α

3
.

In conclusion, in all cases we get

| ∂

∂λk

πλ(w̃)| ≤ 4

3
(1 + α)

for all k = 1, . . . , d and all w̃ ∈ X̃. Consider now x̃, z̃ ∈ p−1
0 (x), with x1 6= z1, and

define, for λ ∈ Bd(0, η),

g(λ) := πλ(z̃)− πλ(x̃) = λi(z1) + φi(z1)(z1, πλ(z̃1), λ)− λi(x1) − φi(x1)(x1, πλ(x̃1), λ).

Let us put k := i(z1) and j := i(x1). Then using the estimate obtained above, we
infer that | ∂

∂λk
g(λ)| ≤ (1 + α) · 8

3 . On the other hand, from the formula

g(λ) = λk + φk(z1, πλ(z̃1), λ) − λj − φj(x1, πλ(x̃1), λ),
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we obtain
∂

∂λk

g(λ) = 1 +
∂

∂y
φk(z1, πλ(z̃1), λ) · ∂

∂λk

πλ(z̃1) +
∂

∂λk

φk(z1, πλ(z̃1), λ)−

− ∂

∂y
φj(x1, πλ(x̃1), λ) · ∂

∂λk

πλ(x̃1) −
∂

∂λk

φj(x1, πλ(x̃1), λ).

Hence using the above estimate on the supremum of | ∂
∂λk

πλ(w̃)|, we have

| ∂

∂λk

g(λ)| ≥ 1 − 1

4
· 4

3
· (1 + α) − α − 1

4
· 4

3
· (1 + α) − α = 1 − 2

3
(1 + 4α).

We want 1 > 2
3 (1 + 4α), so it is enough to take α < 1

8 . Thus we have verified the
hypothesis of Lemma 3.2, and the parametrized family {Fλ}λ∈Bd(0,η) is uniformly
transversal. �

Therefore, we can apply the conclusion of Theorem 2.10 in order to obtain an
estimate for the Hausdorff dimension of the fibers Yλ,x of Fλ; recall that for this
family, W = Bd(0, η).

Corollary 3.4. If f : I1 ∪ . . . ∪ Id → [0, 1] and X = I∗ satisfy the assumptions

of Theorem 3.3, and if there exist constants a, b with 0 < a < b < 1
4 such that

a ≤ | ∂
∂y

φi(x, y, λ)| ≤ b for all (x, y, λ) ∈ X × [0, 1] × Bd(0, η) and i = 1, . . . , d,

then there exists a measurable set W ′ ⊂ W , with ld(W \ W ′) = 0, such that for all

x ∈ X, λ ∈ W ′ we have:

min

{

1,
log d

| log a|

}

≤ HD(Yλ,x) ≤ min

{

1,
log d

| log b|

}

.

In particular, one obtains:

(a) HD(Yλ,x) > 0, x ∈ X, λ ∈ W ′.

(b) if |a| ≥ 1
d
, then HD(Yλ,x) = 1, for all x ∈ X, λ ∈ W ′.

Proof. We notice that, since ζλ(x̃) = log |(φλ
x)′(πλ(x̃))|, we get log a ≤ ζλ(x̃) ≤ log b,

hence
htop(f̃ |X̃) + t log a ≤ P (f̃ , tζλ) ≤ htop(f̃ |X̃) + t log b

Now, let us recall that htop(f̃ |X̃) = htop(f |X). Also due to the fact that f |X
is topologically conjugated to σd : Σ+

d → Σ+
d , the one-sided shift acting on the

full symbol space Σ+
d generated by d symbols, we have that htop(f |X) = log d.

Therefore, using Theorem 3.3, we obtain the announced estimates of HD(Yλ,x), for
all x ∈ X , and λ ∈ W ′. �

We will study in the sequel two other types of examples related to complex dy-
namics, which satisfy the uniform transversality condition, and hence Theorem 2.10
can be applied to them. The first such example is the family

Fλ(z, w) = (f(z), h(z) +
1

2
w + λz).

Here we assume that (z, w) ∈ U × V ⊂ C × C, the set U = ∆(0, 2) is the disk of
center 0 and radius 2 in C, the set V ⊂ C is open, bounded and convex; assume
also that the function f(z) is close enough to a map of the form z → z2 + c, with
|c| small, and that X = J(f), is the Julia set of f (hence f can be considered
expanding on X). We will also take h to be a complex valued Lipschitz continuous
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map defined in a neighbourhood of X ; then since |h| is bounded on X , we can take
the bounded sets V and W ⊂ C in such a way that the map Fλ : U × V → C × V
is well defined for all λ ∈ W ; for example one can take W = ∆(0, 1), V = ∆(0, M),
where M > 2(sup

X

|h| + 2).

Theorem 3.5. The parametrized family {Fλ}λ∈W , defined above, satisfies the uni-

form transversality condition.

Proof. Recall that by our definition, πλ(z̃) = limn→∞ φλ
z1

◦ φλ
z2

◦ . . . ◦ φλ
zn

(ζ), where

in general φλ
z (w) := h(z) + 1

2w + λz. Hence

φλ
z1
◦φλ

z2
(ζ) = h(z1)+

1

2
(h(z2)+

1

2
ζ+λz2)+λz1 = h(z1)+

1

2
h(z2)+λz1 +

1

2
λz2 +

1

4
ζ.

It can be shown by induction that

πλ(z̃) = [h(z1) +
1

2
h(z2) +

1

4
h(z3) + . . .] + λ(z1 +

1

2
z2 +

1

4
z3 + . . .).

Put

A(z̃) := h(z1) +
1

2
h(z2) +

1

4
h(z3) + . . . , and B(z̃) = z1 +

1

2
z2 +

1

4
z3 + . . . .

We shall consider now two prehistories z̃, z̃′ ∈ p−1
0 (z), with z1 6= z′1. Let g(λ) :=

πλ(z̃) − πλ(z̃′) = A(z̃) + λB(z̃) − A(z̃′) − λB(z̃′). Let us notice now that since
f is close to the map z → z2 + c, we have J(f) close to the circle S1, if c is
small enough, and also it follows that z′1 is close to −z1; consequently z′2 ≈ iz2 or

z′2 ≈ −iz2. This means that |z′2 − z2| ≈
√

2. Hence |z′2 − z2 + 1
2 (z′3 − z3) + . . . | ≤√

2.2 + 1
2 (2.1 + 1

22.2 + . . .) ≤
√

2.2 + 2.2, where we assumed that f to be so close to

z2 + c, and |c| to be so small that |z′2 − z2| <
√

2.2 and X ⊂ ∆(0, 1.1). Thus

|B(z̃) − B(z̃′)| ≥ 1.9 − 1

2
(
√

2.2 + 2.2) > 0.2,

if z̃, z̃′ ∈ X̃, z = z′, z1 6= z′1. Therefore if |g(λ)| = |A(z̃)−A(z̃′)+λ(B(z̃)−B(z̃′))| <
r, then

∣

∣

∣

∣

λ +
A(z̃) − A(z̃′)

B(z̃) − B(z̃′)

∣

∣

∣

∣

<
r

|B(z̃) − B(z̃′)| <
r

0.2

whenever z = z′ and z1 6= z′1. This implies that λ ∈ B( A(z̃)−A(z̃′)
B(z̃)−B(z̃′) ,

r
0.2 ). Hence

l2({λ : |g(λ)| < r}) ≤ 25πr2

for all r > 0. Thus we proved that the Uniform Transversality Condition is satisfied
for this family. �

Another example, with a more complicated dynamics is presented below. Let us
consider f(z) = z2+c, for |c| small enough; thus f has a Julia set denoted by X , close
to the unit circle; then we have that f is expanding on X . Assume also that h is a
complex valued Lipschitz continuous function defined on a neighbourhood of X , that
0.4 < |h(z)| < 0.6, for z ∈ X , and that |h(z)+h(z′)| > 3

2 for z2 = −z′2 − 2c, z ∈ X ,

and |c| small. We take then λ to be a complex parameter with |λ| < 1
6 , and consider

the parametrized family

Fλ(z, w) = (f(z), h(z) +
1

5
w2 + λz2).
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Theorem 3.6. In the above setting, for any λ from W := {λ ∈ C, |λ| < 1
6} and

z ∈ X, the map Fλ(z, ·) defined above, invariates the domain V := {w ∈ C, 1
30 <

|w| < 1}, and {Fλ}λ∈W satisfies the Uniform Transversality condition.

Proof. Without loss of generality we will assume that c = 0. Due to the way
we defined h and X , we have that |h(z) + 1

5w2 + λz2| ≤ 0.6 + 1
5 + 1

6 < 1 for

(z, w, λ) ∈ X × V × W . Also, |h(z) + 1
5w2 + λz2| ≥ 0.4 − 1

5 − 1
6 = 1

30 . Therefore
Fλ preserves the domain V . Let us check now the other conditions required for
Uniform Transversality. Firstly, | ∂

∂w
φλ

z | = |2w
5 | < 2

5 , and | ∂
∂w

φλ
z | > 1

75 > 0, for all

z ∈ X, w ∈ V , where φλ
z (w) := h(z)+ w2

5 +λz2. We shall prove by induction that for
all n ≥ 1 there exist functions An, Bn and Cn such that for all z̃ = (z, z1, z2, . . .) ∈
X̃, we have

φλ
z1

◦ . . . ◦ φλ
zn

(w) = An(zn) + λBn(zn, λ) + wCn(zn, w, λ).

For n = 1, we get φλ
z1

= h(z1)+λz2
1+w2

5 , so A1(z) = h(z), B1(z, λ) = z2, C1(z, w, λ) =
w
5 . We want now to calculate the formula for φλ

z1
◦ . . . φλ

zn+1
and to get recurrence

formulas for An, Bn, Cn. From above,

φλ
z1

◦ . . . ◦ φλ
zn+1

(w) =

= φλ
z1

(An(zn+1) + λBn(zn+1, λ) + wCn(zn+1, w, λ))

= h(z1) + λz2
1 +

1

5
[An(zn+1) + λBn(zn+1, λ) + wCn(zn+1, w, λ)]2

= h(z1) + λz2
1 +

1

5
[An(zn+1)

2 + λ2Bn(zn+1, λ)2 + w2Cn(zn+1, w, λ)2+

+ 2λAn(zn+1)Bn(zn+1, λ) + 2λwBn(zn+1, λ)Cn(zn+1, w, λ)+

+ 2An(zn+1)wCn(zn+1, w, λ)]

= h(z1) +
1

5
An(zn+1)

2 + λ[z2
1 +

2

5
An(zn+1)Bn(zn+1, λ) +

λ

5
Bn(zn+1, λ)2]+

+ wCn(zn+1, w, λ) · [ 2λ

5
Bn(zn+1, λ) +

2

5
An(zn+1) +

wCn(zn+1, w, λ)

5
].

Thus we obtain the following recurrence formulas, with z̃ = (z, z1, . . . , zn, . . .) ∈ X̃ .

An+1(zn+1) = h(z1) +
1

5
An(zn+1)

2,

Bn+1(zn+1, λ) = z2
1 +

2

5
An(zn+1)Bn(zn+1, λ) +

λ

5
Bn(zn+1, λ)2,

Cn+1(zn+1, w, λ) = Cn(zn+1, w, λ)·(2λ

5
Bn(zn+1, λ)+

2

5
An(zn+1)+

wCn(zn+1, w, λ)

5
).

Now we want to prove that sup |An| < 0.7, sup |Bn| < 1.5, sup |Cn+1| < 1
2 sup |Cn|,

for z ∈ X, w ∈ V, λ ∈ W . The first two inequalities are satisfied at the level n = 1,
due to our assumptions on Fλ. If |An| < 0.7, then |An+1| < 0.6 + 1

5 (0.7)2 < 0.7.
So we proved the first inequality for all n ≥ 1. Now, assume that |Bn| < 1.5; then
|Bn+1| < 1 + 2

5 · 0.7 · 1.5 + 1
30 (1.5)2 = 1 + 21

50 + 3
40 < 1.5. Thus we proved also the

inequality sup |Bn| < 1.5, ∀n ≥ 1. Last, it is clear that |C1| < 1
5 on V . Assume that

|Cn| < 1
5 ; then |Cn+1| < 1

5 ( 2
30 · 32 + 2

5 ·0.7+ 1
25 ) < 1

10 , and from the recurrence formula

for Cn+1, we obtain also sup |Cn+1| < 1
2 sup |Cn|, ∀n ≥ 1. This last inequality tells

us that sup |Cn| → 0 when n → ∞. Consequently, in general, for z̃ ∈ X̃ , we have

πλ(z̃) = A(z̃) + λB(z̃, λ).
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Let us consider now z̃, z̃′ ∈ p−1
0 (z) and g(λ) := πλ(z̃) − πλ(z̃′) = A(z̃) − A(z̃′) +

λ(B(z̃, λ) − B(z̃′, λ)). We have from the recurrence formulas above that B(z̃, λ) =
z2
1 + 2

5A(z̃1)B(z̃1, λ) + λ
5 B(z̃1, λ)2. Also we have A(z̃1) = h(z2) + 1

5A(z̃2)
2. Hence

we can deduce

πλ(z̃) = A(z̃) + λ(z2
1 +

2

5
A(z̃1)B(z̃1, λ) +

λ

5
B(z̃1, λ)2)

= A(z̃) + λ[z2
1 +

2

5
(h(z2) +

1

5
A(z̃2)

2)·

· (z2
2 +

2

5
A(z̃2)B(z̃2, λ) +

λ

5
B(z̃2, λ)2) +

λ

5
B(z̃1, λ)2].

Similarly we show that

πλ(z̃′) = A(z̃′) + λ[z′21 +
2

5
(h(z′2) +

1

5
A(z̃′2)

2)·

· (z′22 +
2

5
A(z̃′2)B(z̃′2, λ) +

λ

5
B(z̃′2, λ)2) +

λ

5
B(z̃′1, λ)2].

Therefore, recalling that z2
1 = z′21 , we obtain that:

g(λ) = A(z̃) − A(z̃′) + λ{2

5
[(h(z2)z

2
2 − h(z′2)z

′2
2 ) + h(z2)(

2

5
A(z̃2)B(z̃2, λ)+

+
λ

5
B(z̃2, λ)2) − h(z′2)(

2

5
A(z̃′2)B(z̃′2, λ)+

+
λ

5
B(z̃′2, λ)2) +

1

5
A(z̃2)

2(z2
2 +

2

5
A(z̃2)B(z̃2, λ)+

+
λ

5
B(z̃2, λ)2) − 1

5
A(z̃′2)

2(z′22 +
2

5
A(z̃′2)B(z̃′2, λ)+

+
λ

5
B(z̃′2, λ)2)] +

λ

5
(B(z̃1, λ)2 − B(z̃′1, λ)2)}

= A(z̃) − A(z̃′) + λ{2

5
[(h(z2)z

2
2 − h(z′2)z

′2
2 ) + D(z̃, z̃′, λ) + E(z̃, z̃′, λ)]+

+
λ

5
G(z̃, z̃′)},

where

D(z̃, z̃′, λ) := h(z2)(
2

5
A(z̃2)B(z̃2, λ) +

λ

5
B(z̃2, λ)2)

− h(z′2)(
2

5
A(z̃′2)B(z̃′2, λ) +

λ

5
B(z̃′2, λ)2),

E(z̃, z̃′, λ) :=
1

5
A(z̃2)

2(z2
2 +

2

5
A(z̃2)B(z̃2, λ) +

λ

5
B(z̃2, λ)2)−

− 1

5
A(z̃′2)

2(z′22 +
2

5
A(z̃′2)B(z̃′2, λ) +

λ

5
B(z̃′2, λ)2),

and

G(z̃, z̃′, λ) = B(z̃1, λ)2 − B(z̃′1, λ)2.

But we can estimate |D(z̃, z̃′, λ)| as follows:

|D(z̃, z̃′, λ)| ≤ 2 · 0.6 · (2

5
· 0.7 · 1.5 +

1

30
· 9

4
) < 0.6.

Also we obtain:
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|E(z̃, z̃′, λ)| = 2 sup |1
5
A(z̃2)

2(z2
2 +

2

5
A(z̃2)B(z̃2, λ) +

λ

5
B(z̃2, λ)2)|

≤ 2 · 1

5
· (0.7)2(1 +

2

5
· 0.7 · 1.5 +

1

5
· 1

6
· (1.5)2) <

2

5
.

Notice that

|G(z̃, z̃′, λ)| ≤ 3,

for all z̃, z̃′ ∈ X̃, λ ∈ W , from the estimate for |Bn|. Combining all the above we

obtain |25 [(h(z2)z
2
2−h(z′2)z

′2
2 )+D(z̃, z̃′, λ)+E(z̃, z̃′, λ)]+ λ

5 G(z̃, z̃′, λ)| ≥ 2
5 (|h(z2)z

2
2−

h(z′2)z
′2
2 |−0.6− 2

5 )− 1
5 · 16 ·3 = 2

5 (|h(z2)z
2
2−h(z′2)z

′2
2 |−1)−0.1. Thus, since z2

2 = z1−c,
we will obtain

|B(z̃, λ) − B(z̃′, λ)| ≥ 2

5
(|h(z2)z

2
2 − h(z′2)z

′2
2 | − 1) − 0.1 > γ > 0,

where γ > 0 is small enough, when |c| is small enough and |h(z2) + h(z′2)| > 6
4 for

z2
2 = −z′22 − 2c, z2 ∈ X . This means that now we can prove Uniform Transversality

for Fλ, as in the previous Theorem. �

Another example of a complex parametrized family with Uniform Transversality
is

Fλ(z, w) = (z2, z2 + λ1z + λ2zw2),

with W = {λ = (λ1, λ2) ∈ C2, |λ1| < 1
50 , 1

10 < |λ2| < 1
8}, V := {w ∈ C, 1

2 < |w| <

1.5}. Then it can be shown that Fλ(z, ·) : V → V is well defined for z ∈ S1, λ ∈ W ,
and ∃ κ, κ ∈ (0, 1) such that κ ≤ |(φλ

z )′| ≤ κ on V . For this example it can be proved
similarly that {Fλ}λ∈W is a parametrized family with Uniform Transversality.

Therefore, for all the examples we have given in this section, the conclusions of
Theorem 2.10 apply, and we can write, for almost all parameters λ, the Hausdorff
dimension of all fibers (thus the stable dimension in our case), by means of the

thermodynamic formalism on X̃.
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