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Abstract

We consider iterations of smooth non-invertible maps on manifolds of real dimension 4,
which are hyperbolic, conformal on stable manifolds and finite-to-one on basic sets. The
dynamics of non-invertible maps can be very different than the one of diffeomorphisms,
as was shown for example in [4, 7, 12, 17, 19], etc. In [13] we introduced a notion of
inverse topological pressure P− which can be used for estimates of the stable dimension
δs(x) (i.e the Hausdorff dimension of the intersection between the local stable manifold
W s

r (x) and the basic set �, x ∈ �). In [10] it is shown that the usual Bowen equation is
not always true in the case of non-invertible maps. By using the notion of inverse pressure
P−, we showed in [13] that δs(x) � t s(ε), where t s(ε) is the unique zero of the function
t → P−(tφs, ε), for φs(y) := log |D fs(y)|, y ∈ � and ε > 0 small. In this paper we prove
that if � is not a repellor, then t s(ε) < 2 for any ε > 0 small enough. In [11] we showed
that a holomorphic s-hyperbolic map on P

2
C has a global unstable set with empty interior.

Here we show in a more general setting than in [11], that the Hausdorff dimension of the
global unstable set W u(�̂) is strictly less than 4 under some technical derivative condition.
In the non-invertible case we may have (infinitely) many unstable manifolds going through a
point in �, and the number of preimages belonging to � may vary. In [17], Qian and Zhang
studied the case of attractors for non-invertible maps and gave a condition for a basic set to
be an attractor in terms of the pressure of the unstable potential. In our case the situation
is different, since the local unstable manifolds may intersect both inside and outside � and
they do not form a foliation like the stable manifolds. We prove here that the upper box
dimension of W s

r (x) �� is less than t s(ε) for any point x ∈ �. We give then an estimate of
the Hausdorff dimension of W u(�̂) by a different technique, using the Holder continuity of
the unstable manifolds with respect to their prehistories.

1. Introduction: properties of inverse topological pressure

Let us start by giving some information about the particularities of the non-invertible case.
In the diffeomorphism case, Bowen ([2]) proved the following:
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THEOREM (Bowen). Let � be a basic set for a C2 diffeomorphism f : M → M. Then the
following are equivalent:

(a) � is an attractor;
(b) m(W s(�)) > 0, with m the Lebesgue measure on M and W s(�) the global stable

set of �;
(c) Pf |�(φu) = 0, where φu(y) := − log |D f |Eu

y
|, y ∈ �.

Nevertheless, in [3], Bowen gave an example of a C1 map f and a basic set � for f
such that the Lebesgue measure of � is positive; hence the C2 hypothesis is essential. In the
diffeomorphism case, it is important for the above Bowen Theorem ([2]) that there exists a
foliation with local stable manifolds near the attractor.

In the sequel we will concern ourselves with the case of a basic set � for a smooth (for
example C2), possibly non-invertible map f . The non-invertible (endomorphism) case is dif-
ferent than the diffeomorphic one. Indeed we do not have the foliation with local unstable
manifolds since now the unstable manifolds depend on entire prehistories (not only on their
base points). Also we do not know in general whether the number of f -preimages belonging
to � of a point from � is constant or not; this number may vary along � which is complicat-
ing further the study. If � is connected, the fact that the number of preimages is constant on
� is related to the openness of f on � ([14]). For a diffeomorphism f hyperbolic on a basic
set �, the stable dimension (i.e the Hausdorff dimension of the intersection W s

r (x) � �) is
given by the zero of the function t → P(t�s), �s(y) := log |D fs(y)|, y ∈ �, as was shown
by Manning and McCluskey in [8]. But for hyperbolic basic sets of endomorphisms, the
stable dimension is not always equal to the zero of the pressure of the potential φs , as was
proved in [10, Example 2]. Also, by contrast with the diffeomorphic case ([8]), we showed
in [12] that there exists a class of perturbations of the map (z, w) → (z2 + c, w2) which are
homeomorphisms on their respective basic sets, and thus the stable dimension is not varying
continuously with the map.

In [17], Qian and Zhang studied several properties of hyperbolic endomorphisms (i.e
hyperbolic non-invertible maps), in particular the case of attractors and their relationship
with the pressure of the unstable potential and the existence of an SRB measure.

Bothe proved in [4] that there exists open sets of crossed solenoids which are non-
invertible on their basic sets.

Also, in [19], Tsuji studied a class of dynamical systems generated by solenoidal maps of
type T : S1 × R → S1 × R, T (x, y) = (lx, λy + f (x)), with l � 2 an integer, 0 < λ < 1
and f a C2 function on S1. One can notice that T is a skew product Anosov endomorphism.
One can then form the SBR measure associated to T , namely μT := lim n→∞ 1

n

∑n−1
i=0 δT i (x)

and it is shown in [19] that we have this convergence for Lebesgue almost every point x ∈
S1 × R. In the case λl < 1 the SBR measure of T is totally singular with respect to the
Lebesgue measure m since T contracts area; hence due to the fact that μT is T -invariant,
we cannot have that μT is absolutely continuous with respect to m. However for the case
λl > 1, Tsuji proved that the set of (λ, f ) for which the associated SBR measure μT is
absolutely continuous with respect to the Lebesgue measure on S1 × R, is an open and
dense subset of (1/ l, 1) × C2(S1, R). Such derivative conditions will also appear in our
results, in Theorems 4 and 5. In a similar direction, Liu ([7]) studied invariant measures and
their Lyapunov exponents and conditional measures on stable manifolds, for non-invertible
maps (not necessarily uniformly hyperbolic).
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Also in [15], we studied families (Fλ)λ of noninvertible hyperbolic skew products and
used a transversality condition in order to prove a Bowen type formula for almost all para-
meters λ. This equation is considered on the natural extension �̂λ of the basic set �λ. We
also proved the existence of conditional measures on the stable fibers, generated by an equi-
librium measure, and then used them to obtain probability measures on the set of prehistories
of points x ∈ �. This is something specific to endomorphisms, because for diffeomorphisms
each point has a unique preimage.

In order to deal with the new phenomena and particularities of the endomorphism situ-
ation, we introduced and studied a notion of inverse pressure P− in [13] and [14]. This
inverse pressure takes into consideration consecutive preimages of points in �, rather than
forward iterates like in the case of the usual pressure. Instead of covering with Bowen balls
Bn(x, ε) we use tubular unstable sets �(C, ε) (where C is an n-prehistory in �) formed
with points which have an n-prehistory ε-shadowed by C . These tubular unstable sets have
the property that can be concatenated in order to form arbitrarily long prehistories. This
property was used in [14] to prove that if f is open on �, and each point in � has d preim-
ages in �, then the stable dimension is equal to the unique zero of the pressure functional
t → P(tφs − log d). We also proved that the stable dimension in general (i.e without the
openness condition) is smaller or equal than the unique zero of the inverse pressure func-
tional t → P−(tφs). For non-invertible maps, the unstable manifolds W u

r (x̂) depend in
general on the prehistories x̂ ∈ �̂ (precise definitions are given below), and we may have
several unstable manifolds (even infinitely many) going through the same point in the basic
set �. This makes the usual proofs from the diffeomorphism case to break down and even
generates new phenomena as we explained above.

In [11] we studied the case of a non-degenerate (hence non-invertible) holomorphic map-
ping on the 2-dimensional complex projective space P

2
C (denoted also by P

2). Such a map
has the form

f ([z : w : t]) = [P(z, w, t) : Q(z, w, t) : R(z, w, t)], [z : w : t] ∈ P
2,

where P, Q, R are homogeneous polynomials having the same degree. We then assumed
that f is s-hyperbolic, a condition introduced by Fornaess and Sibony ([5]). This means:
(i) f has Axiom A and f −1(S2) = S2; (ii) there exists a neighbourhood U of S1 such that
f −1(S1) � U = S1; and (iii) there exists an analytic set of positive dimension outside S1;
here S1, S2 represent the sets of points from the non-wandering set of f where the unstable
index is 1, respectively 2. For this type of holomorphic endomorphisms we proved that the
global unstable set of the saddle part S1 of the nonwandering set of f , namely W u(Ŝ1) has
empty interior, extending thus in this case some results of Bedford and Smillie from the
case of Henon maps (which are difeomorphisms). For this we used certain several complex
variables techniques, Kontinuitatsatz, etc. However there remains the question of when is
the Lebesgue measure of W u(Ŝ1) zero or when is the Hausdorff dimension of the same set
strictly less than 4. For endomorphisms we do not have a laminar structure for the unstable
manifolds, and thus there may appear a jump in the Hausdorff dimension.

In this paper we study this problem on hyperbolic basic sets for partially conformal maps.
Hence in particular the results apply to the holomorphic case too. We start with the case
of the stable dimension which we know that it is smaller than the zero t s(ε) of the inverse
pressure functional t → P−(tφs, ε) from [13]. Then we prove that for any ε small, if � is
not a repellor, then t s(ε) is strictly smaller than 2. Still this does not mean that the Hausdorff
dimension of W u(�̂) is strictly less than 4. We do not know in general whether all disks
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transversal to the unstable directions intersect W u(�̂) in sets of Lebesgue measure zero.
However if some technical conditions are satisfied we will prove that this is indeed the case
(Theorem 5). We also show that the upper box dimension dim(W s

r (x) � �) is strictly less
than 2. Finally we will give an estimate for the H D(W u(�̂)) using the Holder dependence
of local unstable manifolds with respect to their prehistories as in [10]. Examples of hy-
perbolic endomorphisms, where the above results can be applied will also be given namely
perturbations of product maps and skew products with overlaps in their fibers.

Main results. The main results of this paper are contained in Theorems 1, 2, 3, 4 and 5,
and in Proposition 1. They treat conditions when the stable dimension is strictly less than 2,
the stability of these conditions, the upper box dimension for the stable intersection, respect-
ively in the first three Theorems. Theorems 4 and 5 study the estimates for the Hausdorff
dimension of the global unstable set of the basic set for a cf-hyperbolic map which does
not have local repellors. And in Proposition 1 we give dynamical-topological and analytical
conditions guaranteeing that � is not a local repellor.

In the rest of this Section we give precise definitions and notations that will be used
throughout the paper.

The notion of hyperbolicity can be extended to the non-invertible case by allowing the
unstable spaces to depend on entire prehistories (for example [18]). Indeed, if M is a com-
pact Riemannian manifold and f : M → M is a smooth map (by “smooth” in this paper we
mean Cr , r � 2), and � is an invariant set for f , then we say that f is hyperbolic over �

if there exists a continuous invariant splitting of the tangent bundle T�̂M into contracting,
respectively expanding directions for D f (for more details, we refer to [10, 12, 18]); in the
above, the set �̂ denotes the natural extension of � relative to f , i.e the set of all sequences
x̂ := (x, x−1, x−2, . . .), where x−i ∈ �, and f (x−i−1) = x−i , i � 0.

Definition 1. The elements of �̂ of the form (x, x−1, x−2, . . .) where f (x−i−1) = x−i ,

i � 1 and x0 = x , are called prehistories (or full prehistories) of x . The n-truncation
(x, x−1, . . . , x−n) of a full prehistory will be called an n-prehistory of x . We understand
by n-prehistory of a point x ∈ � a finite sequence C = (x, x−1, . . . , x−n) of consecut-
ive preimages of x , i.e f (x−n) = x−n+1, . . . , f (x−1) = x . Also a point y will be called
n-preimage of x (with respect to f ) if f n(y) = x for n � 1.

We have also the shift homeomorphism f̂ : �̂ → �̂, f̂ (x̂) = ( f x, x, x−1, . . .), x̂ ∈ �̂.

Definition 2. (a) Let M be a compact Riemannian manifold of real dimension 4, and
f : M → M be a smooth (for example Cr , r � 2) finite-to-one map, possibly non-invertible.
We also assume that � is a compact basic set for f , i.e f |� is topologically transitive and
there exists a neighbourhood U of � such that � = �n∈Z f n(U ).

(b) We assume that f is hyperbolic as a non-invertible map on � having both contracting
and expanding directions, and that � does not intersect the critical set C f . We suppose that
the stable index (i.e the real dimension of stable tangent spaces) over � is equal to 2 and
that f is conformal on its stable manifolds over �. We will say in this case that f is cf-
hyperbolic on �.

The fact that M has real dimension 4 is not essential, we use it just to fix ideas. The same
results hold in more general cases.

It is important to remark that in the case of non-invertible maps, the unstable spaces
Eu

x̂ depend in general on the entire prehistories, and not just on their base points as in
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the case of diffeomorphisms. One can also define local stable and unstable manifolds,
W s

r (x) := {y ∈ M, d( f i x, f i y) < r, i � 0} and W u
r (x̂) := {y ∈ M, y has a prehistory ŷ =

(y, y−1, . . .), with d(y−i , x−i) < r, i � 0}, where x̂ = (x, x−1, . . .) ∈ �̂ and r > 0 is some
small positive number. The local stable and unstable manifolds are embedded smooth disks
(since we assumed that the real dimension of Es

x , Eu
x̂ are both equal to 2, for all x̂ ∈ �̂). In

the case when f is a holomorphic map on P
2 and hyperbolic on a basic set �, the local stable

and unstable manifolds are embedded analytic disks. A priori the local unstable manifolds
do not realize a lamination over �, (in contrast to the diffeomorphism case). Also, in the non-
invertible case, we do not always have that a neighbourhood � � B(x, r) is homeomorphic
to the product (W s

r (x) � �) × (W u
r (x̂) � �). So the methods from the diffeomorphism case

usually break down in the non-invertible case.
For a map f as above, define also the global stable set of a point x ∈ � as the

union �n�0 f −nW s
r (x), and denote it by W s(x); the global stable set of x is in fact the

set {y, d( f n y, f n x) → 0, as n → ∞}. We also define the global unstable set of a prehis-
tory x̂ ∈ �̂ as W u(x̂) := �n�0 f nW u

r (x̂). The global unstable set of �, W u(�̂), is defined
as the union of all global unstable sets W u(x̂), over all prehistories x̂ ∈ �̂. Define also
W u

r (�̂) := �x̂∈�̂ W u
r (x̂).

Definition 3. Given a cf-hyperbolic map f on a basic set � and a point x ∈ �, let us
denote by δs(x) := H D(W s

r (x) � �), for some fixed small positive r (H D stands for the
Hausdorff dimension). We shall say that δs(x) is the stable dimension of � at x (with
respect to f ). Also we call stable upper box dimension the upper box dimension of the
intersection W s

r (x) � � for x ∈ � and r > 0 small and fixed.

Notation. Denote the derivative in the stable direction at x , D f |Es
x
, by D fs(x), and the

derivative in the unstable direction, D f |Eu
x̂
, by D fu(x̂) for any x̂ ∈ �̂. D fs(x) will be called

the stable derivative at x , and D fu(x̂), the unstable derivative at x̂ ∈ �̂. Define also
the stable potential φs on � by φs(y) := log |D fs(y)|, y ∈ �, where |D fs | represents
the norm of D fs as an R-linear transformation. Due to the condition C f � � = �, we
know that −∞ < φs < 0. Similarly we have the unstable potential on �̂, φu(x̂) :=
− log |D fu(x̂)|, x̂ ∈ �̂.

From the properties of topological pressure ([20]), it follows that t → P(tφs) is strictly
decreasing and this function will have then a unique zero, denoted by t∗. In [10] we showed
that δs(x) � t∗, but we gave also examples of hyperbolic non-invertible maps where the
inequality is strict. In particular in [10], there is an example when t∗ > 2 (while δs(x) � 2,
being the Hausdorff dimension of a subset of a disk). In order to give a better estimate for
the stable dimension, we introduced in [13] the concept of inverse topological pressure.
We recall here for the convenience of the reader the definition and some useful properties:

Consider (X, d) a compact metric space and f : X → X a continuous surjective
map. The surjectivity of f implies the existence of n-prehistories C = (x, x−1, . . . , x−n)

of any point x ∈ X . Given a prehistory C = (y, y−1, . . . y−n), we denote by n(C)

its length, i.e n(C) = n. In the case n(C) = ∞, C is a full prehistory. Denote by
Cn (or more precisely Cn(X)), the set of prehistories of length n with elements from
X , and let also C∗ := �n�0 Cn (this set may also be denoted by Cn(X) when need
be). We do not record dependence on f unless necessary. Let also C(X, R) be the
space of real continuous functions on X . Let C = (x, x−1, . . . , x−n) ∈ Cn and ε > 0;
then we define X (C, ε) to be the set of points which are ε-shadowed by C, defined
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by: X (C, ε) := {y ∈ B(x, ε), ∃y−1 ∈ f −1(y) � B(x−1, ε), . . . , ∃y−n ∈ f −1(y−n+1) �
B(x−n, ε)}. The set X (C, ε) will be called also tubular unstable set of size ε generated by
C , since for the case when f is smooth and hyperbolic on X , X (C, ε) is a tubular set around
an unstable manifold W u

ε (x̂), for a prehistory x̂ of x starting with the elements of C . For a
function φ ∈ C(X, R) and an n-prehistory C = (x, x−1, . . . x−n), define the consecutive sum
S−

n φ(C) := φ(x)+φ(x−1)+· · ·+φ(x−n). We define now the notion of inverse topological
pressure (introduced in [13]); this notion takes into consideration the many different pre-
histories of points instead of their (uniquely determined) forward orbits. Thus, given a con-
tinuous surjective map f : X → X , take φ ∈ C(X, R), λ ∈ R, ε > 0 small and N positive
integer; assume also that Y is a subset of X . Then define the quantity M−

f (λ, φ, Y, N , ε) :=
inf {∑C∈	 exp (−λn(C)+ S−

n(C)}φ(C), 	 ⊂ C∗, s.t Y ⊂ �C∈	 X (C, ε), and n(C) � N , C ∈
	}. M−

f (λ, φ, Y, N , ε) will also be denoted by M−(λ, φ, Y, N , ε) when the map f is
clear from the context. If a collection 	 ⊂ C∗ has the property that Y ⊂ �C∈	 X (C, ε),
we will say that 	 ε-covers Y . Now, keep λ, φ, Y, ε fixed as above and let N increase.
Then lim N→∞ M−(λ, φ, Y, N , ε) exists as the limit of an increasing sequence; it will be
denoted by M−(λ, φ, Y, ε). Next let P−(φ, Y, ε) := inf {λ, M−(λ, φ, Y, ε) = 0}. Let us
also remark that, if M−(λ, φ, Y, ε) = 0, then M−(λ, φ, Y, N , ε) = 0, ∀N � 1. Also the
limit lim ε→0 P−(φ, Y, ε) exists and will be denoted by P−(φ, Y ).

Definition 4. The quantity P−(φ, Y ) introduced above is called the inverse topological
pressure of φ on Y (relative to the map f ), and P−(φ, Y, ε) is called the ε-inverse pressure
of φ on Y . When we want to emphasize the dependence of P− on f , we will denote it by
P−

f (φ, Y ), respectively P−
f (φ, Y, ε).

When Y = X , we will denote the inverse pressure of φ on X by P−(φ), and the ε-inverse
pressure by P−(φ, ε). A useful property which was proved in [13] says that the inverse
pressure can also be computed by employing at each step only prehistories of the same
length.

PROPOSITION ([13]). Assume that X is a compact metric space and f: X → X is a
continuous and surjective map on X. Let P−

n (φ, ε) := inf {∑C∈	 exp (S−
n φ(C)), X =

�C∈	 X (C, ε), 	 ⊂ Cn}, where φ ∈ C(X, R). Then P−(φ, ε) = lim n→∞ 1
n log P−

n (φ, ε)

and P−(φ) = lim ε→0 lim n→∞ 1
n log P−

n (φ, ε).

The proof of this proposition is quite technical and is based on the fact that we can con-
catenate two sets X (C, ε), C ∈ Cn , respectively X (C ′, ε), C ′ ∈ Cm , in order to form a set
X (C”, 2ε), with C” ∈ Cn+m . We proved also the following property of inverse pressure:

PROPOSITION ([13]). If φ < 0 on X, then the map t → P−(tφ, Y, ε) is strictly decreas-
ing; if P−(·, Y ) is finitely valued, then also t → P−(tφ, Y ) is strictly decreasing.

P− defines also a notion of inverse entropy h− := P−(0). Let us remark that 0 � h− �
min{hi , htop}, where hi is a notion of preimage entropy ([16]) and htop is the usual topolo-
gical entropy. In particular, using a theorem from [16], we see that h− = 0 for a continuous
function f defined on a finite graph X (for example when X is a circle or a Jordan curve).
Since φs(y) := log |D fs(y)|, y ∈ �, we see that φs < 0; also since f is smooth we have
that its topological entropy on � is finite, hence by the above remark, h−( f |�) is finite; then
by the previous Proposition, the function t → P−(tφs, ε) has a unique zero t s(ε), for ε > 0
small. Similarly as in [13], we prove:
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THEOREM (Estimate of the stable dimension). Let f be cf-hyperbolic on a basic set of
saddle type �. Then δs(x) � t s(ε), x ∈ �, for any ε > 0 small.

In the sequel we shall use the estimate δs(x) � t s(ε) in order to prove that δs(x) � t s(ε) <

2. Then we will use this inequality to study the Hausdorff dimension and the Lebesgue
measure of the global unstable set of �.

2. The stable dimension δs(x) and the stable upper box dimension are
strictly smaller than 2

We consider as before a compact Riemannian manifold M of real dimension 4 and a
smooth (for example C2) map f : M → M which is cf-hyperbolic on a basic set �, according
to Definition 2. We work in general with basic sets of saddle type, i.e for which there are
both stable and unstable directions, as follows from Definition 2. We shall prove that if �

is not a local repellor for f , then the unique zero of the ε-inverse pressure of the stable
potential on such a set, t s(ε), is strictly smaller than 2. Let us give first two lemmas which
will be used throughout the paper.

LEMMA 1 (Laminated Distortion Lemma). Let f : M → M be a cf-hyperbolic map on a
basic set of saddle type �. Consider also an n-prehistory C = (x, x−1, . . . , x−n) in Cn(�)

and consider a point y ∈ �(C, ε), for ε > 0 small; then, there is a constant C0 > 1
independent of n, x, y, such that, if (y, y−1, . . . , y−n) is the n-prehistory of y ε-shadowed by
C, then we have:

1

C0
� |D f n

s (y−n)|
|D f n

s (x−n)| � C0

This lemma is proved in [14]. The next lemma is similar to the Volume Lemma of Bowen
([2]); the proof uses the same arguments as in [2] and [17]. We denote in general by Hs the
s-dimensional Hausdorff measure, for s > 0 arbitrary. In the sequel we use the Riemannian
metric on M , or the induced metric on submanifolds of M to define Hs in the case of subsets
of M . Recall also that M has real dimension 4 and that H4 is equivalent as measures with
the Lebesgue (volume) measure on M . If Y ⊂ M is a submanifold of real dimension m,
then if we restrict Hm to Y , we obtain a measure which is equivalent to the m-dimensional
Lebesgue (area) measure on the submanifold Y .

LEMMA 2 (Volume Lemma). In the above setting, consider C = (x, x−1, . . . , x−n) ∈
Cn(�); then there is a constant C1 > 0, independent of n or C, such that for all ε > 0 small,

1

C1
ε4|D f n

s (x−n)|2 � H4(M(C, ε)) � C1ε
4|D f n

s (x−n)|2.
If 
 is any local embedded smooth disk (i.e 
 ⊂ B(x, ε) for some x ∈ �), transversal to
the unstable directions, then 1/C1ε

2|D f n
s (x−n)|2 � H2(
 � M(C, ε)) � C1ε

2|D f n
s (x−n)|2,

where H2 denotes the area measure on the disk 
.

We will also need the following topological condition:

Definition 5. Let f be a continuous map on a compact metric space X , f : X → X ; we
will say that f is preimage-transitive if any point y ∈ X has the set of all its preimages
F(y) := {z ∈ X, ∃n � 0, f n(z) = y} dense in X .
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For instance the map f (z, w) = (z2 + c, w2), (z, w) ∈ C
2 and |c| small, is preimage-

transitive on Jc × {0}, (where Jc is the Julia set of z → z2 + c). We will now give the
definition of repellor slightly differently than the usual one for diffeomorphisms and will
explain later the advantages of this definition in the case of endomorphisms.

Definition 6. Let a smooth (C2) map on a Riemannian manifold M , f : M → M , and
assume that f is hyperbolic on a basic set �. Then we say that � is a local repellor for f if
there exist local stable manifolds of f contained in �.

For diffeomorphisms, a basic set � is said to be a repellor if there exists a neighbourhood
U of � such that f (U ) ⊃ Ū . So � is not a repellor if and only if such a neighbourhood
U does not exist. For endomorphisms this condition alone does not guarantee a priori that
all of the local stable manifolds are not contained in �. This happens because of the subtle
structure of foldings and overlappings for endomorphisms, which may take a point outside
� into a point from �. If we want to have equivalence between our Definition 6 and the
fact that there exists a neighbourhood U of � with Ū ⊂ f (U ), then we have to assume in
addition that f is preimage-transitive or that f |� is open on �. On the other hand one can
notice that these two conditions are not stable under perturbations. Indeed let us consider
the examples of maps from [12], fε(z, w) = (z2 + c + aεz + bεw + dεzw + eεw2, w2) for
b � 0, |c| small and ε small also, 0 < ε < ε(a, b, c, d, e). We showed that fε has a basic set
�ε close to {p0(c)} × S1 (with p0(c) the fixed attracting point of f0(z) := z2 + c), and that
fε is hyperbolic and a homeomorphism on �ε. Due to the conjugacy between the liftings
f̂ |�̂ and f̂ε|�̂ε

, there must exist fixed points for fε inside �ε. But in this case such fixed
points w ∈ �ε have only one prehistory in �ε, namely (w, w, w, . . .), since fε is a homeo-
morphism on �ε. So the set of preimages F(w) contains only the point w and thus it cannot
be dense in �ε. So fε is not preimage-transitive on �ε, although f0 is preimage-transitive
on �.

The following Proposition gives several cases when � cannot be a local repellor for f .

PROPOSITION 1. (a) Let f : M → M be a cf-hyperbolic map on �, a basic set of f
which does not have any neighbourhood U with f (U ) ⊃ Ū , Ū � M. Assume also that f
is preimage-transitive on �, and denote by r > 0 the uniform size of local stable manifolds
along �. Then for any τ ∈ (0, r) there exists γ = γ (τ) > 0 such that for any z ∈ � there
exists z′ ∈ W s

τ (z) with d(z′, �) > γ . In particular it follows that � is not a local repellor.
(b) In case f: P

2 → P
2 is a holomorphic map on the 2-dimensional complex projective

space and s-hyperbolic on a basic set of saddle type �, it follows that we always have the
conclusion of (a) along �.

(c) The same conclusion as in (a) is true if we replace the condition f preimage-transitive
on �, with the condition f |�: � → � is open.

Proof. As before r denotes the uniform size of local stable manifolds on �.
(a) Suppose that the conclusion is wrong and let us prove that this will lead to a contradic-

tion. So assume that there exists a small positive number ε1 ∈ (0, r) such that for any γ > 0
small, there exists z = z(γ ) ∈ � with d(W s

ε1
(z), �) < γ .

But now, by taking a sequence of γ ’s of the form (1/n)n , we get a sequence of zn’s in �.
Due to the compactness of �, choose among these points a convergent sequence, which

for convenience will be denoted also by (zn)n , and assume that zn → w. Now, by continuity
of the stable lamination, we have that W s

ε1
(zn) → W s

ε1
(w), thus W s

ε1
(w) ⊂ �. So we found a

local stable manifold entirely contained in �.
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Assume now that η is a small positive number smaller than ε1.
Let us take now an arbitrary point y ∈ � and assume that its local stable manifold W s

η (y)

is not contained in �; hence there exists a point ζ ∈ W s
η (y)\�. Take the largest disk centered

at ζ which does not intersect � and denote it by 
(ζ); then on the boundary of this disk there
will exist at least a point ξ ∈ �. Then we can apply the preimage-transitivity for ξ . Indeed
ξ has m-preimages ξ−m as close as we want to w when m increases. But W s

ε1
(w) ⊂ �, so

through any point of W s
ε1
(w) there passes at least an unstable manifold which will intersect

transversaly W s
ε1
(ξ−m) in a point χ(m) belonging to � (since � has local product structure

as being a basic set, [6]). In fact we see that in W s
ε1
(ξ−m) there may exist only disks of radius

less or equal than Cd(ξ−m, w), which disks do not contain some point χ(m) obtained in this
fashion. Now if m is large enough, then d( f m(χ(m)), f m(ξ−m)) can be made as small as we
want and since � is f -invariant, it follows that f m(χ(m)) is in �. But this implies that for
any ρ > 0 small, there exist points from � in any disk of radius ρ contained in a larger disk
of radius r(ρ) centered at ξ . This contradicts the fact that ξ is on the boundary of the disk

(ζ) with 
(ζ) � � = �. But y was taken arbitrarily in �, so for any point y ∈ �, there
exists a stable manifold W s

η (y) which is contained in � (with η > 0 fixed, and η < ε1); we
assume also without loss of generality that η < ε0, where ε0 is the injectivity constant of f
near �.

Using the above property, we will prove that there exists a neighbourhood V of � such
that V̄ ⊂⊂ f (V ). Let two positive numbers ρ ∈ (0, η) and ρ ′ = ρ ′(ρ) ∈ (ρ, η) so that,
if x̂ is a prehistory in �̂, and y ∈ B(x, ρ) \ � and y−1 is the preimage of y close to x−1,
then y−1 ∈ B(x−1, ρ

′); moreover we assume that B(z, r ′) � W s
ε1
(z) ⊂ W s

η (z), z ∈ �. Due
to the fact that W s

η (x) ⊂ �, we know that the point y from B(x, ρ) \ �, has a preimage
y−1 such that d(y−1, W s

η (x−1)) � λ · d(y, W s
η (x)) for some fixed λ ∈ (0, 1) independent

of x, y, η. This holds because of the hyperbolicity of f on � and since all the contracting
directions are contained in �, so the (uniform) unstable directions are transversal to W s

η (x)

and hence distances between preimages of f decrease. If y ∈ B(x, ρ) \ � then we saw
that y−1 ∈ B(x−1, ρ

′) for a preimage x−1 in � of x . But recall that the entire W s
η (x−1)

is contained in �, so there must exist a point ζ ∈ W s
η (x−1) with d(ζ, y−1) < ρ; hence

there exists a preimage y−2 of y−1, with y−2 ∈ B(ζ−1, ρ
′) for some preimage ζ−1 in � of

ζ . Recall also that d(y−2, W s
ρ ′(ζ−1)) � λ · d(y−1, W s

η (x−1)). In conclusion, by repeating
this procedure, we shall find a sequence of consecutive preimages (y, y−1, y−2, . . .), with
d(y−n, �) < η, n � 0. Thus, from the local maximality of �, it follows that y ∈ W u

η (�̂). So
we proved that there exists a neighbourhood V of � such that V̄ ⊂ f (V ), and V ⊂ W u

η (�̂).
This implies then a contradiction with the hypothesis.

Therefore, for any small τ > 0 there is γ = γ (τ) > 0 such that for any z ∈ �, there is
z′ ∈ W s

τ (z) with d(z′, �) > γ ; the conclusion of (a) is proved.
(b) We are now in the case when f: P

2 → P
2 is holomorphic. Redoing the argument in

the proof of (a), we see that through any point y of � there passes a complex analytic disk
W s

η (y), contained in �. Hence from a theorem of Takeuchi, P
2\� is a domain of holomorphy

([5] for references). But by hypothesis we have that � � C f = �, so C f ⊂ P
2 \ �, which is

a contradiction with another theorem of Takeuchi which says that a domain of holomorphy
in P

2 (different from P
2) cannot contain a complex variety of positive dimension (like C f ).

So the conclusion of (a) is true in this case too.
(c) For the case when f |� is open, we see that this condition implies that there exists

ε1 > 0 such that f −1(�) � B(�, ε1) = � (where B(�, ε1) stands for the union of the balls
centered at points of �, of radii ε1). Indeed we have the following:
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Topological Fact. If f |� is open, then there exists ε1 > 0 small enough such that
f −1(�) � B(�, ε1) = �.

Proof of Topological Fact. Denote by ε0 the injectivity constant of f near �, i.e a number
ε0 > 0 so that f is injective on balls of radius ε0 centered on �. Let us assume that the
Topological Fact is not true; then for any ε > 0 small, there exists a point zε ∈ B(yε, ε) \ �

such that f (zε) = xε ∈ � and yε ∈ �. But then when ε → 0, it follows that one can
extract a subsequence of points zε converging towards a point z, and a subsequence of yε

converging towards a point y ∈ �; without loss of generality these subsequences can be
denoted in the same way, i.e zε → z, yε → y and xε → x , with zε ∈ B(yε, ε) \ �, f (zε) =
xε ∈ �. From this we obtain that f (y) = x , and since f |� : � → � is open, there
exists η(ε) small with η(ε) →ε→0 0 such that we can find ξε ∈ B(y, η(ε)) � � satisfying
f (ξε) = xε. But on the other hand we have f (zε) = xε and zε ∈ B(y, ε0/2) for ε small.
Therefore we found two points zε, ξε in B(y, ε0) with f (zε) = f (ξε) = xε ∈ �, which is a
contradiction with the injectivity of f on B(y, ε0). So there must exist a positive number ε1

with f −1(�) � B(�, ε1) = �. This complete the proof of the Topological Fact.

Coming back to the proof of c), the idea is that we can use this Topological Fact and
the transitivity of f on the basic set � to pull back (i.e to take preimages) of local stable
manifolds near any point of �. By this pull back, the size of the local stable manifolds is
enlarged.

More precisely, if the conclusion of (a) would be wrong then there would exist a local
stable manifold W s

τ (z) ⊂ �. Take now another point y of � and fix some η, with 0 < η < ε1.
Consider also a neighbourhood B(z, ε) � �, of z in �, for some small 0 < ε < η. Then,
from transitivity, there is a point ξ ∈ B(z, ε)��, a large integer m, and a preimage ξ−m of ξ

(with respect to f m), such that ξ−m ∈ B(y, ε/2) � �. But now, for any prehistory ξ̂ ∈ �̂ of
ξ , containing ξ−m on the (m + 1)th position, the unstable manifold W u

ε (ξ̂ ) intersects W s
η (z)

in a point ζ ∈ � (from the local product structure of basic sets, [6]). Therefore this point ζ

will have a preimage ζ−m which is ε-close to y.
We can take m arbitrarily large, hence we obtain that W s

η (ζ−m) ⊂ f −m(W s
ε1
(z)) ⊂

f −m(�) � B(�, ε1), so W s
η (ζ−m) ⊂ � by the above Topological Fact applied at each in-

verse iterate of order less or equal than m.
We consider now ε → 0 and take for each such ε, the points ξ, ξ−m, ζ−m for m =

m(ε) →ε→0 ∞; thus one sees that ζ−m → y when ε → 0 since ζ−m ∈ B(y, ε). Now,
from the continuity of local stable manifolds, we see that W s

η (ζ−m) → W s
η (y) when ε → 0;

but we proved that W s
η (ζ−m) ⊂ �, 0 < ε < ε1, therefore W s

η (y) ⊂ �. But y was taken
arbitrarily in �, so for any point y ∈ �, there exists a stable manifold W s

η (y) which is
contained in � (with η > 0 fixed, and η < ε1), and assume also that η < ε0, where
ε0 is the injectivity constant of f near �. Using the above property, we will prove that
there exists a neighbourhood V of � such that V ⊂⊂ f (V ). Let then two positive num-
bers ρ ∈ (0, η) and r ′ ∈ (ρ, η) so that, if x̂ is a prehistory in �̂, and y ∈ B(x, ρ), and
y−1 is the preimage of y close to x−1, then y−1 ∈ B(x−1, r ′); moreover we assume that
B(z, r ′) � W s

ε1
(z) ⊂ W s

η (z), z ∈ �. Due to the fact that W s
η (x) ⊂ �, we know that y has a

preimage y−1 such that d(y−1, W s
η (x−1)) � λ · d(y, W s

η (x)), for some fixed λ ∈ (0, 1) inde-
pendent of x, y, η. If y ∈ B(x, ρ), then y−1 ∈ B(x−1, r ′). But recall that the entire W s

η (x−1)

is contained in �, so there must exist a point x1 ∈ W s
η (x−1) with d(x1, y−1) < ρ; hence

there exists a preimage y−2 of y−1, with y−2 ∈ B(x1
−1, r ′), for some preimage x1

−1 of x1,
in �.
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We recall also that d(y−2, W s
r ′(x1

−1)) � λ · d(y−1, W s
η (x−1)). In conclusion, by repeating

this procedure, we shall find a sequence of consecutive preimages (y, y−1, y−2, . . .), with
d(y−n, �) < η, n � 0. Thus, from the local maximality of �, it follows that y ∈ W u

η (�̂). So
we proved that there exists a neighbourhood V of � such that V̄ ⊂ f (V ), and V ⊂ W u

η (�̂).

We will use in the sequel the following Covering Theorem, proved in [12], as a con-
sequence of the classical Besicovitch Theorem:

THEOREM (Covering Theorem). Let A be a bounded set of R
m; assume that A is covered

by a family of balls {B(xi , ri)}i∈I centered at some points xi of A, where ri > 0, i ∈ I . Then
there exists a cover of A with balls {B(x j , 2r j )} j∈J , where J ⊂ I and the multiplicity of this
cover is bounded by a universal constant b(m) depending only on the dimension m.

PROPOSITION 2. (a) Let f be cf-hyperbolic and preimage-transitive on � and assume
that � is not a repellor. Then for any arbitrary given point x ∈ �, ms(W ) = 0, where
W := W s

r (x) � � (for some r > 0 small) and ms is the Lebesgue measure on W s
r (x).

(b) In the setting of (a), for any κ ∈ (0, 1), there exists a positive integer N = N (κ) and
a covering of W with sets of the form M(C ′, r), C ′ ∈ 	 ⊂ CN such that∑

C ′∈	

ms(M(C ′, r) � W s
r (x)) < κ · ms(W s

r (x)),

for any point x ∈ � and r > 0 small enough; N (κ) is independent of x, r .
Same conclusions follow also when f is holomorphic on P

2 and s-hyperbolic on a basic
set �.

Proof. First, let us notice that the measure H2 restricted to W s
r (x) is equivalent with the

Lebesgue measure ms on W s
r (x).

(a) If � is not a repellor, it follows from the last Lemma that there exists r > 0 and
γ > 0 such that for any point z ∈ �, there exists z′ ∈ W s

r (z) with d(z′, �) > γ ; the same
conclusion follows also in the case when f is holomorphic on P

2 and s-hyperbolic on �.
If y ∈ W s

r (z), for some z ∈ �, and if η > 0, denote by Bs(y, η) the intersection B(y, η)�
W s

r (z). Take also some small δ = δ(γ ) ∈ (0, r) such that d(B(z′, δ), �) > γ/2, for all z ∈
� and z′ as above. Consequently there exists some constant β = β(r) ∈ (0, 1), independent
of z, z′, such that

ms(Bs(z
′, δ)) > β · ms(Bs(z, r)), and Bs(z

′, δ) � � = �. (1)

We want to prove that ms(W s
r (x) � �) = 0, for any point x ∈ �. For this let us take an

arbitrary point y ∈ �, a local stable manifold W s
ρ(y), and then an arbitrary point z ∈ �; we

know that there exists the point z′ ∈ W s
r (z) with Bs(z′, δ) � � = �. Assume that δ is the

largest number with this property; it must be less or equal to r since z ∈ �. Then from the
maximality of δ it follows that there exists a point w on the boundary of Bs(z′, δ) which is in
�. Then from the preimage- transitivity of f on �, it follows that w has preimages as close
as we want to y. So there exists a j-preimage w− j of w (for j large enough) such that there
exists a local inverse j-iterate f − j

w− j
(Bs(w, 2δ)) of Bs(w, 2δ) which is very close to W s

ρ(y).
When j increases, f − j

w− j
(Bs(w, 2δ)) � B(y, ρ) becomes as close as we want to W s

ρ(y). But
since w is on the boundary of Bs(z′, δ) which is outside �, it follows that there is always a
subset of Bs(w, 2δ)\� whose Lebesgue measure is larger than a fixed percentage larger than
1/4, from the area of Bs(w, 2δ). And then all the preimages of Bs(w, 2δ)\� are outside �

(otherwise their forward iterates would be in �, which is f -invariant). So if j is large enough
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it follows that f − j
w− j

(Bs(w, 2δ))� B(y, ρ) has a certain subset outside �, whose area is larger
than 1/4 of ms( f − j

w− j
(Bs(w, 2δ)) � B(y, ρ)). Since this area is in fact a disk sector (we use

always the fact that f is conformal on stable manifolds), we obtain that in W s
ρ(y) \ � there

is a subset whose area is larger than (1/4)ms(W s
ρ(y)). But since this is happening for all

ρ ∈ (0, r), it follows that y is not a point of Lebesgue density along stable manifolds, and
hence there are no Lebesgue density points in W s

r (x) � �. Thus ms(W s
r (x) � �) = 0, for

any x ∈ �.
(b) Let κ arbitrary in the interval (0, 1), and r > 0 fixed, as in (a).
We proved in (a) that ms(W s

r (x) � �) = 0, ∀x ∈ �. Then, from applying inductively the
uniform procedure of constructing disk sectors in W s

ρ(y)\� detailed in a), we see that for
any θ ∈ (0, 1) there exists N = N (θ) > 1 independent of x ∈ �, such that there exists a
covering 	̃x ⊂ CN of W s

r (x) � � with

ms

(
�

C∈	̃x

M(C, r) � W s
r (x)

)
< θ.

But the sets M(C, r) � W s
r (x), C ∈ 	̃x can be assimilated with disks since f is conformal

on stable manifolds. So we can use the previous Covering Theorem and obtain a subcover
with multiplicity bounded by a universal constant b. We will denote this subcover by 	x ;
hence we obtain ∑

C∈	x

ms(W s
r (x) � M(C, r)) � bθ,

so the conclusion of b) follows for κ = bθ .

If f is a smooth function on the real 4-dimensional manifold M , then the stable potential
φs(y) is computed as log |D fs(y)|, y ∈ �, where |D fs | represents the norm of the R-linear
transformation D fs between real 2-dimensional vector spaces. Now we prove that, if � is
not a local repellor, then the Hausdorff dimension of the intersection of any stable manifold
with �, is strictly less than 2.

THEOREM 1. Let M be a smooth compact Riemannian manifold of real dimension 4 and
f : M → M be a cf-hyperbolic map on a basic set of saddle type � which is not a local
repellor. Then for any point x ∈ �, we have δs(x) � t s(ε) < 2, for some ε > 0. In particular
this holds also in the case of a holomorphic map f : P

2 → P
2 which is s-hyperbolic on a

basic set of saddle type �.

Proof. Denote by W := W s
r (x)��, for a point x ∈ �. We will denote by ms the induced

Lebesgue measure on a local stable manifold.
We know from the Introduction that δs(x) � t s(ε), ε > 0 small, where t s(ε) is the unique

zero of the function t → P−(tφs, ε), with φs(y) := log |D fs(y)|, y ∈ �. Consider a fixed
ε > 0 small enough (in particular ε < ε0). We will show that P−(2φs, ε) < 0, which will
imply that t s(ε) < 2.

In order to do this, recall first that P−(2φs, ε) can be computed using P−
n (2φs, ε) (from

the Introduction). But from the Laminated Distortion Lemma we know that there exists
a constant χ > 0 such that, if ω ∈ M(C, ε), C = (y, y−1, . . . , y−n) ∈ Cn(�), and
(ω, ω−1, . . . , ω−n) is the corresponding prehistory of ω which is ε-shadowed by C , then
(1/χ)|D f n

s (y−n)| � |D f n
s (ω−n)| � χ |D f n

s (y−n)|. Therefore we can write P−
n (2φs, ε) =
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ω(ε) · inf {∑C∈	 ms(M(C, ε)), 	 ⊂ Cn, 	ε − covering �}, with ω(ε) some positive func-
tion of ε and ms(M(C, ε)) := ms(W s(y, ε) � M(C, ε)). Then we have

P−(2φs, ε) = lim
n→∞

log P−
n (2φs, ε)

n
.

The idea will be to find a number υ ∈ (0, 1) and a positive integer N = N (υ), such that
for n > N , we have P−

n+N (2φs, ε) � υ · P−
n (2φs, ε).

Now, let an arbitrarily small ε′ > 0 and find an integer n and a collection 	 ⊂ Cn such
that P−(2φs, ε) � ε′ + log (

∑
C∈	 ms(M(C, ε))/n, where C = (y, y−1, . . . , y−n) ∈ 	. Due

to the fact that � is not a local repellor for f , there are no local stable manifolds contained
in �, hence there will exist a positive integer N = N (ε) such that for any z ∈ �, we can
cover the set � � W s

ε (z) with sets of the form M(C ′, ε), C ′ ∈ 	z ⊂ CN such that∑
C ′∈	z

ms(M(C ′, ε) � W s
ε (z)) � υ · ms(W s

ε (z)),

for some υ ∈ (0, 1). The collection 	z depends on z, but N is independent of z. Consider
now the collection 	 ⊂ Cn(�) found above, which ε-covers �. For each prehistory C =
(y, y−1, . . . , y−n) ∈ 	 we can cover the set � � W s

ε (y−n) with sets of the form M(C ′, ε),
where C ′ ∈ 	(C) ⊂ CN , for N found above; this cover 	(C) is in fact the family 	y−n , and
hence satisfies the condition:∑

C ′∈	(C)

ms(M(C ′, ε) � W s
ε (y−n)) � υ · ms(W s

ε (y−n)). (2)

Consider now a positive integer n and a prehistory C ∈ Cn(�), C = (y, y−1, . . . , y−n)

like above; assume also that f −n
∗ is the local inverse iterate of f , which takes y into y−n;

then f −n
∗ (M(C, ε) � W s

ε (y)) ⊂ W s
ε (y−n). Let us see now what happens to the points in

M(C, ε) after applying f −n
∗ : the points in M(C, ε)� W s

ε (y) are taken by f −n
∗ into W s

ε (y−n),
while the points outside W s

ε (y) will be taken into points which are (λ′)n-close to W s
ε (y−n),

for some λ′ ∈ (0, 1) (λ′ does not depend on n, y, C). Recall also that we cover each set
W s

ε (y−n) � � for C = (y, y−1, . . . , y−n) ∈ 	, with sets of the form M(C ′, ε), C ′ ∈ 	(C),
where 	(C) ⊂ CN . Therefore from the above discussion it follows that, if n is large enough
in comparison to N , i.e if n > n(N ), then �C ′∈	(C) M(C ′, ε) is an open neighbourhood of
W s

ε (y−n) � �, and so it contains the local inverse iterate f −n
∗ (M(C, ε)). This means that we

obtain a cover of � with sets of type M(CC ′, 2ε), C ∈ 	, C ′ ∈ 	(C), where 	 ⊂ Cn(�),
	(C) ⊂ CN (�), and n > n(N ); CC ′ represents the prehistory obtained by concatenation of
C and then C ′ (see [14] for more details on the concatenation procedure). The new collection
obtained from these concatenations CC ′ is called 	′ and we see that 	′ ∈ Cn+N (�). Then,
after multiplying by |D fs(y−n)|n in both sides of (2), we obtain, from the fact that f is
conformal on stable manifolds, that:∑

C ′∈	(C)

ms(M(CC ′, ε)) � υ · ms(M(C, ε)).

So there exists positive integers N and n(N ) such that for all n > n(N ) we have:

P−
n+N (2φs, ε) � υ · P−

n (2φs, ε).

But then P−
n+k N � υk · P−

n (2φs, ε), k � 1, therefore log P−
n+k N (2φs, ε) � k log υ +

log P−
n (2φs, ε), hence

P−(2φs, ε) � log υ

N
< 0.
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The last inequality follows since υ ∈ (0, 1). In conclusion we obtained t s(ε) < 2, ε >

0 small. Since, from the Introduction, δs(x) � t s(ε), x ∈ �, we obtain the announced
conclusion, i.e. δs(x) < 2 for all x ∈ �.

The holomorphic case follows similarly.

Next we will show that the condition that � is not a local repellor for f is stable under
perturbations, by proving that the stable dimension remains strictly less than 2 for perturb-
ations g of f . By the Conjugacy Theorem for perturbations ([18]; see also [10]), if g is a
perturbation of f , then there exists a basic set �g close to � so that g is hyperbolic on �g

and there exists a Holder continuous homeomorphism �g: �̂ → �̂g conjugating f̂ with ĝ.
However this Theorem alone does not give us the stability of the property that � is not a
local repellor for f , since it does not control the local stable manifolds of size much smaller
than dC1( f, g). For the stability issue we need the following:

THEOREM 2. Let f be a cf-hyperbolic map on a basic set � which is not a local repellor.
Then for any perturbation g close enough to f (in the C2 topology), the corresponding basic
set �g is not a local repellor for g either.

Proof. First let us notice that the proof of Theorem 1 works if, for some small ε, there
are no local stable manifolds of size ε contained in �. This is guaranteed if � is not a local
repellor for f . From this and the fact that f is cf-hyperbolic it follows that δs(x) � t s(ε) < 2
for all x ∈ �. But if ε is fixed then there exists a number ρ = ρ(ε) > 0 such that if
dC2( f, g) < ρ, then the local stable manifolds of size ε/2 relative to g, W s

ε/2(y, g) are not
contained in �g, for any y ∈ �g. Thus we can repeat the proof of Theorem 1 and obtain that
δs(y, g) := H D(W s

ε/2(y, g) � �g) < 2. Therefore if δs(y, g) < 2, ∀y ∈ �g, we obtain that
there are no local stable manifolds of size less than ε/2 contained in �g, since otherwise
δs(y, g) would be equal to 2; hence �g is not a local repellor for g.

This Theorem gives us many classes of examples of maps and corresponding basic sets
which are not local repellors, by taking perturbations of some known examples. In particular
for these perturbations one can apply Theorems 1, 4 and 5.

In the remainder of this Section we will prove an additional theorem, showing that in
the above setting we have dimB(W s

r (x) � �) � t s(ε), where dimB denotes the upper box
(Minkowski) dimension ([9]). First let us remind the definition of upper box dimension.

Definition 7. Let A be a non-empty bounded set of R
n . For 0 < ε < ∞, denote by

N (A, ε) the smallest number of balls of radius ε necessary to cover A. Then the upper box
dimension of A is defined as: dimB(A) := inf {s, lim sup ε→0 N (A, ε)εs = 0}.

THEOREM 3. Let f a cf-hyperbolic map on a basic set �. Then for any point x ∈ � we
have dimB(W s

r (x) � �) � t s(ε), for ε > 0 small.

Proof. Let us fix a point x from �. We will use the inverse pressure ([13]) and coverings
of W := W s

r (x) � � with sets of type �(C, ε) having the same stable diameter. Let us
consider a number t > t s(ε). There exists then a positive integer n0 and a finite family
	 ⊂ Cn0 such that � = �C∈	 �(C, ε) and if n0 is large enough, then:

∑
C∈	

diam(�(C, ε) � W s
r (x))t � A

∑
C∈	

eS−
n0

(t�s )(C)
<

1

2
. (3)
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The above inequality follows from the definition of the pressure P(t�s, ε) and the fact
that t s(ε) is the unique zero of t → P(t�s, ε) ([13, 14]). Let us assume now that
	 = {C1, . . . , Cm} and δi := A · eS−

n0
(t�s )(Ci ), i = 1, . . . , m. We consider all the products

δiδ j , i, j ∈ {1, . . . , m}. Denote by ω(2) := inf {δiδ j , i, j = 1, . . . , m}. If for some i, j we
have δiδ j > ω(2), then let us consider the concatenation

�(Ci C j , ε) := {z ∈ �(Ci , ε), s.t for the preh. (z, . . . , z−i) ε − shadowed by Ci ,

we have z−i ∈ �(C j , ε)}.
But then if z ∈ �(Ci C j , ε) with the corresponding prehistory (z, . . . , z−(n(Ci )+n(C j ))) ε-
shadowed by Ci C j , it follows that there exists k ∈ {1, . . . , m} so that z−(n(Ci )+n(C j )) ∈ �(Ck).
If δiδ jδk � ω(2) we stop; if not, then we continue this process until we obtain a concatenated
prehistory Ci C j Ck1 · · · Ckq so that δiδ j · · · δkq � ω(2) and δiδ jδkq−1 > ω(2).

Denote by I(i, j) := {(k1, . . . , kq), q � 1, s.t δiδ jδk1 · · · δkq � ω(2), but δiδ j · · · δkq−1 >

ω(2)}; then we have �(Ci C j ) = �(k1,...,kq )∈I(i, j) �(Ci C j Ck1 . . . Ckq ). Therefore

� = �
1�i, j�m

�(Ci C j ) = �
1�i, j�m

�
(k1,...,kq )∈I(i, j)

�(Ci C j Ck1 · · · Ckq ).

On the other hand it is clear that

diam(�(Ci C j Ck1 · · · Ckq ) � W s
r (x))t = δiδ j · · · δkq ≈ ω(2).

Hence we covered � � W s
r (x) with sets of comparable diameter. By the same procedure

we can cover � � W s
r (x) with sets of type �(Ci1 . . . Cin Ck1 . . . Ckl ) for 1 � i1, . . . , in �

m, (k1, . . . , kl) ∈ I(i1, . . . , in), n � 2, and, if we denote by ω(n) := inf {δ j1 . . . δ jn , 1 �
j1, . . . , jn � m}, then

diam(�(Ci1 · · · Cin Ck1 · · · Ckl ) � W s
r (x))t

∈ (ω(n)χs, ω(n)χ−1
s ), for (k1, . . . , kl) ∈ I(i1, . . . , in).

Thus we obtained a cover of W s
r (x) � � with sets of comparable diameter (i.e the ra-

tios of diameters of any two sets from this cover are bounded below and above by
some positive universal constants). On the other hand we have lim n→∞ ω(n) = 0. So
we can use this cover for estimating dimB(W ). Denote by Un this cover with the sets
W s

r (x)��(Ci1 · · · Cin Ck1 · · · Ckl ), i1, . . . , in ∈ {1, . . . , m}, k1, . . . , kl ∈ I(i1, . . . , in), n � 2.
Now: ∑

U∈Un

diam(U )t �
∑

1�i1,...,in�m

∑
k1,...,kl∈I(i1,...,in)

δi1 . . . δin δk1 . . . δkl

�
∑
p�1

(δ1 + . . . + δm)p <
∑
p�1

1

2p
< ∞. (4)

Therefore from 4 we conclude that dimB(W s
r (x) � �) � t s(ε) for any ε small enough.

By combining Theorem 1 with Theorem 3 we obtain the following Corollary showing
that the upper box dimension of the intersection between the basic set � and the local stable
manifolds is also strictly less than 2 if � is not a local repellor.

COROLLARY 1. Let us take a smooth function f : M → M on a Riemannian manifold of
real dimension 4 and assume that f is cf-hyperbolic on a basic set � which is not a local
repellor. Then the stable upper box dimension is strictly less than 2 on �, i.e dimB(W s

r (x) �
�) < 2, x ∈ �.
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3. Applications to the Lebesgue measure and Hausdorff dimension of the set W u(�̂)

In this section we study the global unstable set W u(�̂) of a basic set � for a cf-hyperbolic
map f : M → M on a Riemannian manifold of real dimension 4. Since we work with non-
invertible maps on �, the unstable manifolds are not uniquely determined by their base
points, but instead depend on prehistories, W u

r (x̂), x̂ ∈ �̂. So through a given point x ∈ �

there may pass several (possibly infinitely many) local unstable manifolds.
In [11] we showed that for a holomorphic s-hyperbolic map on the complex projective

space P
2, the interior of W u(�̂) is empty for any basic set of saddle type �.

However it remains the question whether the global unstable set W u(�̂) has zero volume
and even if its volume is zero, whether its Hausdorff dimension is strictly less than 4. The
situation is complicated also by the possible complicated foldings of � and by the fact that
different points in � may have different number of preimages belonging to �.

We will show below that, if � is not a local repellor and if the system f |� intuitively
contracts volume, then H D(W u(�̂)) < 4.

Then we will obtain an estimate for the Hausdorff dimension of W u(�̂) when � is not a
local repellor, by using the Holder estimates for the distances between local unstable mani-
folds in the non-invertible case ([10]). We will also give in the end some examples for which
one can conclude that the volume (4-dimensional Lebesgue measure) of the global unstable
set is strictly less than 4.

Let us mention also that for Henon diffeomorphisms g(z, w) = (w, p(w) − az) with
p a monic polynomial of degree d � 2 and a � 0, Bedford and Smillie ([1]) proved
that K −(g) = W u(K (g)), where K −(g) = {x ∈ C

2, (g−n(x))n is bounded in C
2} and

K (g) := {x ∈ C
2, (g±n(x))n is bounded in C

2}. They proved that, if g is hyperbolic on
its Julia set, it follows that for |a| � 1 the interior of W u(K (g)) is empty, and if |a| > 1,
then I nt (W u(K (g))) = �m

i=1 B(pi ), where B(pi ) are repelling basins for some repelling
periodic points p1, . . . , pm . This has some similarity with our result mentioned above for the
dissipative case, since |a| represents the Jacobian of the Henon map g. Before proceeding
to the theorems in this section, let us give a Lemma which will be used in the sequel, and
whose proof can be found in Mattila’s book [9].

THEOREM (Frostman Lemma). Let B be a Borel set in R
n. Then Hs(B) > 0 if and only if

there exists a Radon measure μ with compact support contained in B, with 0 < μ(Rn) < ∞
and satisfying μ(B(x, r)) � r s for any x ∈ R

n and r > 0. Moreover we can find μ so that
μ(B) � c · Hs

∞(B), where c > 0 is a constant depending only on n.

We shall prove now that, under a derivative condition implying that the contraction is
stronger than the dilation near �, the set W u(�̂) has Hausdorff dimension strictly smaller
than 4. Notice that Theorem 4 will complement well the main theorem in [11], which says
that the interior of K − is empty. Indeed, if f : P2 → P

2 is holomorphic and s-hyperbolic,
then K − = W u(Ŝ1) � S0, where S0 is just a finite set of attracting periodic points, and S1 is
the set of points from the non-wandering set with (complex) unstable index 1 (so � ⊂ S1).
We recall that in the case of non-invertible maps the unstable manifolds do not realize a
lamination near �, and that through every point x of � there may pass uncountably many
local unstable manifolds, which makes their union, i.e. W u

r (�̂) hard to control outside its
intersection with �.

THEOREM 4. Let M be a compact Riemannian manifold of real dimension 4, and
f: M → M be a smooth cf-hyperbolic map on a basic set of saddle type �, which is not a
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local repellor. Assume also that the following condition on derivatives is satisfied:
sup
ξ̂∈�̂

|D fu(ξ̂ )| · |D fs(ξ)| < 1. (5)

Then H D(W u(�̂)) < 4.
The same conclusion holds if f : P

2 → P
2 is a holomorphic map which is s-hyperbolic on

a basic set of saddle type � and satisfies (5).

Proof. We suppose for the begining that H D(W u(�̂)) = 4 and will obtain from here a
contradiction. If H D(W u(�̂)) = 4, then Hσ (W u(�̂)) = ∞, ∀σ < 4. We can find then a
subset of W u(�̂) with Hausdorff dimension 4, and if it is not close enough to �, then we
can take backward iterates until we get a set 
̃0 close to � (for example so close that f can
be approximated well with D f , and moreover |D fs | > 0); the condition H D(
̃0) = 4 is
preserved by taking backward iterates.

Then we construct inductively a sequence of Borel sets 
̃n such that d(
̃n, �) → 0 when
n → ∞, and f (
̃n+1) = 
̃n, n � 1. Let also δ0 > 0 be a small number so that we can apply
the Mean Value Inequality for f on balls of diameter δ0.

We shall estimate Hσ
∞(
̃n+1). Without loss of generality we can assume that 
̃n+1 is

covered with sets Ei , i ∈ I , which are cubes with side equal to ri , i ∈ I . Then Hσ
∞(
̃n+1) =

inf {∑i∈I rσ
i , 
̃n+1 ⊂ �

i
Ei }. If there exists some i with ri >δ0, then Hσ

∞(
̃n+1) �δσ
0 .

We notice also that, if (Ei)i∈I cover 
̃n+1, then ( f Ei)i∈I will cover 
̃n . Now, f Ei will
have its side in the stable direction of length (|D fs(ξi)| + η(n))ri , and the “unstable side”
of length (|D fu(ξ̂

′
i )| + η(n))ri , where η(n) > 0 is a small positive number which converges

towards 0 when n → ∞, and where ξi , ξ
′
i ∈ Ei and ξ̂ ′

i is an arbitrary prehistory of ξ ′
i .

So, f (Ei) is approximately a box with a smaller side (|D fs(ξi)| + η(n))ri , and a larger
side (|D fu(ξ̂

′
i )| + η(n))ri . Assume also that n is large enough such that |D fs(ξi)| + η(n) <

|D fu(ξ̂
′
i )| + η(n), i ∈ I .

Then the set f (Ei) can be covered with m2
i cubes with side (|D fs(ξi)| + η(n)) · ri , where

mi is a positive integer satisfying mi (|D fs(ξi)| + η(n)) · ri � (|D fu(ξ̂
′
i )| + η(n)) · ri �

(mi − 1)(|D fs(ξi)| + η(n)) · ri , i ∈ I .
Thus we obtain the estimate:

Hσ
∞(
̃n) �

∑
i∈I

m2
i · (|D fs(ξi)| + η(n))σ · rσ

i

�
∑
i∈I

rσ
i

(
1 + |D fu(ξ̂

′
i )| + η(n)

|D fs(ξi)| + η(n)

)2

· (|D fs(ξi)| + η(n))σ . (6)

But we can consider a finite iterate of f instead of f ; assume this iterate is f p for some p
large enough. The basic set � remains the same, the stable/unstable local manifolds remain
the same as before. But for p large enough we will have 1 + |D( f p)u(x)|/|D( f p)s(x)| <

2|D( f p)u(x)|/|D( f p)s(x)|, x ∈ �. Now recall that d(ξi , ξ
′
i ) < 3ri , i ∈ I . Hence there

exists a small δ1 ∈ (0, δ0) such that if ri < δ1, i ∈ I , and n is sufficiently large (equivalently
η(n) sufficiently small), then condition (5) implies:

(|D fs(ξi)| + η(n))σ

(
1 + |D fu(ξ̂

′
i )| + η(n)

|D fs(ξi)| + η(n)

)2

< 22,
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for σ very close to 4, i.e σ ∈ (σ0, 4) (0 < σ0 := σ(p) < 4 being independent of n). Thus,
for σ very close to 4, we will obtain

Hσ
∞(
̃n) �

∑
i∈I

rσ
i ,

in case ri < δ1, i ∈ I . So in this case (i.e if ri < δ1, i ∈ I ), we got Hσ
∞(
̃n) � Hσ

∞(
̃n+1).

Therefore in general Hσ
∞(
̃n) � min{δσ

1 ,Hσ
∞(
̃0)}, n � 1, σ ∈ (σ0, 4). This means that

there exists some number β0 > 0 such that Hσ
∞(
̃n) > β0 > 0, for n � 1 and σ ∈ (σ0, 4).

Since Hσ (
̃n) = ∞, n � 1, we can apply Frostman’s Lemma to get that, for each
n � 1, there exists a Radon measure μn on 
̃n with μn(
̃n) � c · Hσ

∞(
̃n) > c · β0 >

β ′
0 > 0 (where c, β0, β

′
0 are constants which do not depend on n). We also have that

μn(B(y, r)) � rσ , y ∈ M, r > 0, n � 1. The measure μn is compactly supported inside the
Borel set 
̃n .

But, since d(
̃n, �) → 0, as n → ∞, we see that there exists R > 1 large enough such
that for each n, 
̃n ⊂ B(y0, R), for some y0 ∈ �. Hence μn(
̃n) � R4, n � 1 so, by
a classical theorem in functional analysis, there exists a convergent subsequence of (μn)n .
For brevity, we will also denote this convergent subsequence by (μn)n , and denote its limit
by μ. We see also that, due to the fact that d(supp μn, �) → 0 when n → ∞, it follows
that supp μ ⊂ �. But, since � ⊂ B(y0, R), it follows that μ(�) � R4 < ∞; on the
other hand, μ(B(y0, R)) � lim

n
μn(B(y0, R)) > β ′

0 > 0, so 0 < μ < ∞. Notice also that
for all y ∈ M and all r > 0, the properties of the limit μ ([9, theorem 1.24]), imply that
μ(B(y, r)) � lim

n
μn(B(y, r)) � rσ .

In conclusion, μ is a Radon measure supported inside �, with 0 < μ < ∞ and such
that μ(B(y, r)) � rσ , y ∈ M, r > 0. Frostman’s Lemma implies then that Hσ (�) > 0, for
σ ∈ (σ0, 4).

But recall that in Section 2 we showed that δs(x) = H D(W s
r (x)��) � t s(ε) < 2, for all

x ∈ �. Since � can be laminated locally with intersections of type W s
r (x)��, we conclude

that there exists σ1 � 2 + t s(ε) < 4 with Hσ (�) = 0, ∀σ ∈ (σ1, 4). This then leads to a
contradiction with the previous conclusion, and hence H D(W u(�̂)) < 4.

Next we will use Holder estimates from [10] in order to prove a Theorem about the Haus-
dorff dimension of W u(�̂) by taking in consideration also the number of preimages of points
in �. This condition can be verified on a number of examples.

THEOREM 5. Let M be a compact Riemannian manifold of real dimension 4, and
f: M → M be a smooth cf-hyperbolic map on a basic set of saddle type �, which is not a
local repellor. Let us denote by χs := inf � |D fs |, λs := sup � |D fs | and sup x̂∈�̂ |D fs(x)| ·
|(D f |Eu(x̂))

−1| =: τ . Suppose that every point from � has at most d f -preimages and at
least d ′ f -preimages in �. If the condition

2 inf

{
1,

− log τ

| log χs |
}

− log d

| log χs | � htop( f |�) − log d ′

| log λs |
is satisfied, then H D(W u(�̂)�
) < 2 for any disk 
 transversal to the unstable directions.

Moreover we obtain H D(W u(�̂)) < 4.

Proof. [10, corollary 2] can be extended easily to the setting of cf-hyperbolic maps. Ob-
viously τ < 1.
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Let us assume that 
 ⊂ B(x, r) for some x ∈ � and r > 0, and that 
 � W u(�̂) =
�y∈W s

r (x)��,ŷ∈�̂(
 � W u
r (ŷ)). Let us cover now the set W s

r (x) � � with disks Ui of radius
δi , i ∈ I ,

such that ∑
i∈I

δ
η

i < 1, (7)

where η is arbitrarily larger than the Hausdorff dimension of W s
r (x) � �.

We want now to cover 
 � W u(�̂) with disks centered at W u
r (ŷ) � 
 for y ∈ Ui , i ∈ I .

Here we take into consideration the dependence of the distance between two unstable mani-
folds going through the same point, with respect to the distance between their corresponding
prehistories. Indeed, we have from [10, corollary 2] that d(W u

r (x̂), W u
r (ŷ)) � CdK (x̂, ŷ)θ ,

where C is a positive constant, θ ∈ (0, 1], and K > 1 satisfies the relationship τ · K θ < 1.
Let us consider a certain prehistory ŷ = (y, y−1, . . . , ) ∈ �̂, y ∈ W s

r (x) � �. We will
assume that

K · χs > 1.

Also let us assume that ni is the first positive integer n so that 1/K n < δi . Without loss of
generality we can assume that 1/K ni = δi . Then if we consider the tubular set M(D, r),
where D = (x, . . . , x−ni ) and if (y, . . . , y−ni ) is the prehistory of y r -shadowed by D, we
have that d(x− j , y− j ) � d(x, y)χ− j

s , j = 0, . . . , ni . But dK (x̂, ŷ) � d(x, y)(1 + χ−1
s /K +

· · · + χ−n+1
s /K n−1) + M/K n � Cδi , if 1/K ni = δi , i ∈ I ; therefore we obtain:

diam(M(D, r) � 
) < CdK (x̂, ŷ)θ < Cδθ
i , (8)

for a possibly different constant C > 0 and all i ∈ I . But there exist at most dni such sets of
type M(D, r) � 
. Consequently we can cover 
 � W u(�̂) with sets of type M(D, r) � 
,
where there are at most dni such sets for each i ∈ I . But recall that we assumed δi =
1/K ni , i ∈ I , so dni = δ

− log d
log K

i . Also from above we can take the constant K arbitrarily larger
than 1/χs .

In conclusion we cover the set 
 � W u(�̂) with dni sets of radius δi + δθ
i , for each i ∈ I .

We want to show that there exists some ρ < 2 (ρ close to 2), so that
∑

i∈I dni (δi + δθ
i )

ρ <

∞. This would imply that H D(
� W u(�̂) � ρ < 2. For this it would be enough to

show that
∑

i∈I dni δ
ρθ

i < ∞, since θ � 1. But now we have that dni = δ
log d

− log K

i , θ =
log τ/− log K � 1. If log τ/− log K > 1, then we will take θ = 1. So dni δ

θρ

i =
δ

ρθ− log d
| log χs |

i , i ∈ I .
Now we recall from (7) that for any η > H D(W s

r (x) � �),
∑

i∈I δ
η

i < 1.
Then we shall use an estimate of the stable dimension from [14]; if f |� is at least d ′-to-1

over �, then H D(W s
r (x)��) � td ′ , where td ′ is the unique zero of the pressure function t →

P(t�s − log d ′). Thus we obtain that H D(W s
r (x) � �) � (htop( f |�) − log d ′)/| log λs |.

Therefore it is enough to have

2 inf

{
1,

− log τ

|log χs |
}

− log d

|log χs | >
htop( f |�) − log d ′

|log λs | .

This implies that H D(
 � W u(�̂)) < 2, for any disk 
 transversal to the unstable direc-
tions.
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Then from Fubini Theorem it follows that H D(W u(�̂)) < 4, since we can take the disks

 to be parallel to Es(x).

COROLLARY 2. The conditions in Theorem 4 are satisfied for perturbations g of the
holomorphic map (z, w) → (z2 + c, w2), for small |c|. Thus H D(W u(�̂g)) < 4 for the
respective basic set �g of g which is close to {p0(c)}×S1 (where p0(c) is the fixed attracting
point of z → z2 + c).

The conditions in Theorem 5 or in Theorem 4 can be verified also for many skew products
with overlaps of the type studied in [15], and for their perturbations.
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