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ON THE SECOND NILPOTENT QUOTIENT OF HIGHER

HOMOTOPY GROUPS, FOR HYPERSOLVABLE

ARRANGEMENTS

DANIELA ANCA MACINIC1, DANIEL MATEI, AND STEFAN PAPADIMA

Abstract. We examine the first non-vanishing higher homotopy group, πp, of the
complement of a hypersolvable, non–supersolvable, complex hyperplane arrange-
ment, as a module over the group ring of the fundamental group, Zπ1. We give a
presentation for the I–adic completion of πp. We deduce that the second nilpotent
I–adic quotient of πp is determined by the combinatorics of the arrangement, and
we give a combinatorial formula for the second associated graded piece, gr1I πp. We
relate the torsion of this graded piece to the dimensions of the minimal generating
systems of the Orlik–Solomon ideal of the arrangement A in degree p+2, for vari-
ous field coefficients. When A is associated to a finite simple graph, we show that
gr1I πp is torsion–free, with rank explicitly computable from the graph.
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1. Introduction

1.1. Overview. The hypersolvable class introduced in [5], [6] is well adapted for
homotopy computations with combinatorial flavour; see [8], [3].

Let X be a path-connected space, with fundamental group π1 := π1(X). The
higher homotopy groups of X have a natural module structure over the group ring,
R := Zπ1. In general, their computation can be an extremely difficult problem.
When X is not aspherical, homological methods may be used to tackle the first
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higher non-trivial homotopy group, πp := πp(X), by Hurewicz. This R-module is
still very hard to describe, when π1 is non-trivial. Let I ⊆ R be the augmentation
ideal. A reasonable idea is to approximate πp by its nilpotent quotients, πp/I

qπp (for
q ≥ 1), or by the associated graded module over gr•I R, gr

•
I πp := ⊕q≥0(I

qπp/I
q+1πp).

Now, let A be a central, hypersolvable, complex hyperplane arrangement, with
affine complement denoted X . For homotopy computations on X , we may also
assume A is essential. As shown in [5], X is aspherical if and only if A is fiber-type
(supersolvable). So, we also assume that A is not supersolvable.

Let p(A) be the order of π1-connectivity of X , introduced in [8], and let r(A) be
the rank of the arrangement. We know that 2 ≤ p := p(A) < r := r(A), and both
p and r are combinatorial (i.e., they depend only on the intersection lattice of A).
According to [8], πp = πp(X) is the first higher non–trivial homotopy group of X . It
is also known that both gr•I Zπ1 and the first graded piece (nilpotent quotient) gr0I πp

are combinatorial and torsion-free.
In [3], the case when p is maximal, i.e., p = r−1, was analyzed. It turned out that

the gr•I Zπ1–module gr•I πp is torsion-free, given by an explicit combinatorial formula.
Unfortunately, this formula does not hold, in general.

Here, we aim at removing the additional hypothesis on p, and see what can be
said about πp.

1.2. Results. Set Rq := Zπ1/ Iq, for 1 ≤ q < ∞, and R∞ := Ẑπ1, where Ẑπ1 is
the I–adic completion of Zπ1. The first main results converge to a convenient Rq–
presentation of πp⊗Zπ1

Rq, for q ≤ ∞. These are given in Theorem 3.1 (for q =∞) and
Corollaries 3.2, 3.4 (for q <∞). Note that πp ⊗Zπ1

Rq is the q-th nilpotent quotient,
πp/I

qπp, for q < ∞. When q = 2, both the second nilpotent quotient πp ⊗Zπ1
R2

and the second graded piece gr1I πp have an explicit combinatorial formula, derived
in Theorem 3.5.

The second type of main results is related to torsion in gr1I πp. It turns out that
this problem leads to a basic question in combinatorial arrangement theory; compare
with [7], [10], [2]. Let Λ• := Λ•(A) be the exterior algebra over Z generated by the
set of hyperplanes of an arbitrary arrangement A. Let I• := I•(A) ⊆ Λ• be the
Orlik-Solomon ideal of A, and denote by A•(A) = Λ/I the Orlik-Solomon algebra
over Z, known to be torsion-free. By a celebrated result of Orlik and Solomon,
the K–specialization A•(A)K is isomorphic to the K–cohomology ring of the affine
complement of A, for every commutative ring K.

Let Λ+I ⊆ I be the decomposable Orlik-Solomon ideal. We introduce A•
+(A) :=

Λ/Λ+I, the decomposable Orlik-Solomon algebra. Is A•
+(A) also torsion-free? At the

time of writing, we have no example where torsion appears. When A is hypersolvable
and not supersolvable, we show in Theorem 4.1 that gr1I πp is torsion-free precisely

when Ap+2
+ (A) has no torsion.
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Consider the quadratic Orlik-Solomon algebra, A
•
(A) := Λ/I2, where I2 is the

ideal generated by I2, the degree 2 component of I. When A is supersolvable, it is
known that A•(A) = A

•
(A), see [11]; hence, in this case, A•

+(A) has no torsion.
When A is hypersolvable, not supersolvable, and graphic (i.e., a subarrangement

of a braid arrangement, associated to a finite simple graph), we prove in Corollary
4.4 that gr1I πp has a simple description in terms of the graph, in particular it has no
torsion. The graph from Example 4.5 shows that this combinatorial description may
be done outside the maximal range p = r − 1 from [3].

1.3. Questions. We are left with some open questions concerning hypersolvable ar-
rangements. Is A•

+(A) torsion-free, at least in degree • = p+ 2? What if we restrict
the question to 2–generic arrangements (i.e., arrangements with no collinearity rela-
tions, known to be hypersolvable)? See also Remark 4.8 on arbitrary arrangements.

2. A preliminary module presentation

We shall work in the context of [3, Sections 5 and 6]. Let A be a hypersolvable
complex hyperplane arrangement which is not supersolvable, and X = M ′(A) its
complement in affine space.

We know that A is a p-generic section of its supersolvable deformation, Â. Set

Y = M ′(Â), and let j : X →֒ Y denote the inclusion. Denote by π1 the fundamental

groups identified through the induced map j♯ : π1(X) → π1(Y ). Let j̃ : X̃ → Ỹ be

the π1-equivariant map induced on universal covers. Denote by j̃• : C•(X̃)→ C•(Ỹ )
the Zπ1-linear chain map between the π1-equivariant cellular chains on the universal
covers, and by j• : H•(X)→ H•(Y ) the induced map in integral homology.

We have split exact sequences of finitely generated free abelian groups,

(2.1) 0→ H•(X)
j•
−→ H•(Y )

Π•−→ H•(Y,X)→ 0,

whose duals,

(2.2) 0→ H•(Y,X)
Π•

−→ H•(Y )
j•

−→ H•(X)→ 0,

may be described in purely combinatorial terms: j• may be identified with the
canonical surjection,

(2.3) j• : A
•
(A) ։ A•(A),

between Orlik-Solomon algebras.
For simplicity, in the sequel we set R := Zπ1. Note that C•(X̃) = H•(X) ⊗ R

and C•(Ỹ ) = H•(Y )⊗R, as R-modules, by the minimality property for arrangement
complements [3, Corollary 6].

Denoting by ∂̃• : C•(Ỹ )→ C•−1(Ỹ ) the differential on the equivariant chain com-

plex of Ỹ , we have the following.
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Theorem 2.1. ([3]) The R-module πp is isomorphic to the cokernel of the R-linear

map

∂̃p+2 + j̃p+1 : (Hp+2Y ⊕Hp+1X)⊗ R→ Hp+1Y ⊗ R.

Due to R-linearity, j̃• respects the I-adic filtrations, i.e., it sends H•X ⊗ Iq into
H•Y ⊗ Iq, for all q. The associated graded gr•I R–linear map,

gr• j̃• : H•X ⊗ gr•I R→ H•Y ⊗ gr•I R ,

is equal to j• ⊗ id, by minimality.
Similar considerations are valid for ∂̃•: by minimality again, it sends H•Y ⊗ Iq

into H•−1Y ⊗ Iq+1, for all q. The associated graded gr•I R–linear map is denoted

E•
1 ∂̃• : H•Y ⊗ gr•I R→ H•−1Y ⊗ gr•+1

I R.

To describe the action of E•
1 ∂̃• on the free gr•I R-generators, H•Y ⊗ 1, we recall

that gr0I R = Z · 1, and gr1I R is naturally identified with (π1)ab = H1(Y ). We denote
by H1 both H1(X) and H1(Y ), identified via j1.

Now it follows from [3, Section 6] that the restriction of E•
1 ∂̃• to H•Y ≡ H•Y ⊗1 ⊆

H•Y ⊗ gr0I R, denoted

(2.4) ∂• : H•Y → H•−1Y ⊗H1,

has dual, up to sign,

(2.5) ∂∗
• : A

•−1
(A)⊗A

1
(A)→ A

•
(A),

given by the multiplication of the quadratic OS-algebra.
The description (2.4) of E•

1 ∂̃• is related to the spectral sequence associated to the
equivariant chain complex of a CW -complex, analyzed in full generality in [9].

3. Completion of the presentation

In this section we pursue the following idea: Use completion constructions to
simplify the presentation in Theorem 2.1, more exactly, to replace j̃p+1 by jp+1 ⊗ id,

without altering E•
1 ∂̃p+2. We refer the reader to [1, Chapitre III.2] for standard

completion techniques.

We explain now how these work concretely. The ring R̂ is endowed with the
canonical, decreasing, complete, separated, and multiplicative filtration {F q}q≥0, as

R̂ = lim←−R/Iq. In addition, R̂/F q = R/Iq and grqF R̂ = grqI R, for all q. Every right

R̂-module M has the canonical filtration {M · F q}q≥0, and R̂-linear maps preserve

canonical filtrations. Furthermore, we have the following convenient test, for an R̂-
linear map f between complete and separated modules: f is an isomorphism if and
only if gr•F (f) is an isomorphism. These facts will lead to the first property of the
aforementioned replacement.
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For the second property, let us notice that, given an arbitrary map in R̂-Mod,
f : M → N , we have that f(M · F q) ⊆ N · F q+1 for all q if and only if gr•F (f) = 0.

If this happens, f induces a gr•F R̂-linear map, E•
1f : gr•F M → gr•+1

F N .

Finally, there is the completion functor, (̂·) : R-Mod → R̂-Mod, given by M 7→

M̂ = lim
←−

(M/M ·Iq). On free finitely generated R-modules, (̂·) is naturally equivalent

with (·) ⊗R R̂. More precisely, if M = H ⊗ R, where H is a finitely generated free

abelian group, then M ⊗R R̂ = H ⊗ R̂, with canonical (complete and separated)

filtration {H ⊗ F q}q≥0. Clearly, gr
•
F (H ⊗ R̂) = gr•I(H ⊗ R) = H ⊗ gr•I R.

The (decreasing, multiplicative) I-adic filtration {Iq}q≥0 of R leads to similar
constructions, gr•(ϕ) : gr•I M → gr•I N (for ϕ : M → N R-linear), respectively
E•

1(ϕ) : gr•I M → gr•+1
I N , when gr•(ϕ) = 0. When both M and N are finitely

generated free R-modules, gr•F (ϕ ⊗R R̂) = gr•(ϕ). If in addition gr•(ϕ) = 0, then

E•
1(ϕ⊗R R̂) = E•

1(ϕ).

Theorem 3.1. Let A be a hypersolvable and not supersolvable arrangement. Then

the R̂-module πp ⊗R R̂ is isomorphic to the cokernel of an R̂-linear map

Dp+2 : Hp+2Y ⊗ R̂→ Hp+1(Y,X)⊗ R̂,

with the property that gr•F (Dp+2) = 0 and E•
1(Dp+2) : Hp+2Y ⊗gr•I R→ Hp+1(Y,X)⊗

gr•+1
I R acts on the free gr•I R-generators by

Hp+2Y
∂p+2

−−→ Hp+1Y ⊗H1
Πp+1⊗id
−−−−−→ Hp+1(Y,X)⊗H1,

where ∂p+2 is described in (2.4)-(2.5), and Πp+1 is defined in (2.1) and (2.2).

Proof. Choose a splitting in (2.1), σ• : H•(Y,X) →֒ H•Y . The R-presentation from

Theorem 2.1 gives a presentation for πp ⊗R R̂ as the cokernel of the R̂-linear map

(3.1) ∂̃p+2⊗R R̂+ j̃p+1⊗R R̂ : (Hp+2Y ⊕Hp+1X)⊗ R̂→ (Hp+1X ⊕Hp+1(Y,X))⊗ R̂.

Consider the R̂-linear map

(3.2) j̃p+1⊗RR̂+σp+1⊗idR̂
: (Hp+1X⊕Hp+1(Y,X))⊗R̂→ (Hp+1X⊕Hp+1(Y,X))⊗R̂.

Since gr• j̃p+1 = jp+1 ⊗ id and gr•F (σp+1 ⊗ id
R̂
) = σp+1 ⊗ id, we infer that (3.2) is an

isomorphism, by R̂-completeness and separation.

Hence, Hp+1Y ⊗R̂ ∼= im(j̃p+1⊗RR̂)⊕im(σp+1⊗idR̂
), andHp+1Y ⊗R̂/ im(j̃p+1⊗RR̂) ∼=

Hp+1(Y,X) ⊗ R̂. Moreover, gr•F (Hp+1Y ⊗ R̂
pr

p+1

−−−→ Hp+1Y ⊗ R̂/ im(j̃p+1 ⊗R R̂)) is

identified with Hp+1Y ⊗ gr•I R
Πp+1⊗id
−−−−−→ Hp+1(Y,X)⊗ gr•I R.

SetDp+2 = prp+1 ◦(∂̃p+2⊗R R̂). Combining (3.1) and (3.2) we obtain that πp⊗R R̂
∼=

coker(Dp+2), and gr•F (Dp+2) = (Πp+1⊗ id) ◦ gr• ∂̃p+2 = 0. The assertion on E•
1(Dp+2)

follows from (2.4). �
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It is now an easy matter to derive Rq-presentations for πp ⊗R Rq = πp/I
q · πp, for

all 1 ≤ q < ∞. Note that grsI Rq = grsI R for s < q, and grsI Rq = 0 for s ≥ q. Note
also that Hp+1(Y,X) 6= 0, by the definition of p(A).

Corollary 3.2. ([8]) If A is a hypersolvable and not supersolvable arrangement, then

gr0I πp = πp/I · πp = Hp+1(Y,X) does not vanish.

Example 3.3. Note that the hypersolvability hypothesis on A is crucial. Indeed, re-
call from [8] that by definition p = p(M ′(A)) is equal to sup{s | dimQHt(M

′(A),Q) =
dimQHt(π1M

′(A),Q), ∀t ≤ s}. When A is hypersolvable, this is equal to p(A) :=

sup{s | rankAt(A) = rankA
t
(A), ∀t ≤ s}.

Now, let A be the aspherical Coxeter arrangement of type Dn, n ≥ 4. Since the
Orlik-Solomon algebra A•(A) is not quadratic [4], A is not supersolvable [11] and
2 ≤ p(A) <∞. Clearly A cannot be hypersolvable, since πp(M

′(A)) = 0.

Corollary 3.4. Let A be a hypersolvable and not supersolvable arrangement and

q ≥ 2. Then πp/I
q ·πp is isomorphic over Rq with coker(Dp+2⊗R̂

Rq : Hp+2Y ⊗Rq →
Hp+1(Y,X)⊗Rq). Furthermore, gr•I(Dp+2⊗R̂

Rq) = 0, and Es
1(Dp+2⊗R̂

Rq) : Hp+2Y ⊗
grsI R → Hp+1(Y,X) ⊗ grs+1

I R is equal to Es
1(Dp+2), for s < q − 1, and it is 0, for

s = q − 1.

Proof. Tensor the R̂-presentation from Theorem 3.1, over R̂, with R̂/F q = Rq. The
claims on gr• and E•

1 follow from the fact that gr• Rq = gr• R/ gr≥q
R. �

When q = 2, everything becomes explicit. The exact sequence

(3.3) 0→ I/I2 → R/I2 → R/I → 0

has a canonical splitting. Hence, R2 = Z · 1 ⊕H1, where H1 is free abelian, of rank
|A|. The I-adic filtration is given by I0 ·R2 = R2, I ·R2 = H1 and I2 ·R2 = 0. Hence,
the filtered ring R2 is combinatorially determined.

The map Dp+2 ⊗R̂
R2 : Hp+2Y ⊗ (Z · 1 ⊕ H1) → Hp+1(Y,X) ⊗ (Z · 1 ⊕ H1) is

zero on Hp+2Y ⊗ H1; on Hp+2Y ⊗ 1 ≡ Hp+2Y , it is equal to (Πp+1 ⊗ id) ◦ ∂p+2 :
Hp+2Y → Hp+1(Y,X)⊗H1. Hence, the filtered R2-module πp/I

2·πp is combinatorially
determined, see (2.3) and (2.5). In particular, gr1I πp is combinatorially determined.
We will need an explicit combinatorial description of the second graded piece, gr1I πp.
By (2.2) and (2.3), Π∗

p+1 : H
p+1(Y,X)→ Hp+1Y is the inclusion,

(3.4) Π∗
p+1 : (I/I2)

p+1 →֒ (Λ/I2)
p+1.

We infer from (2.5) that (up to sign)

(3.5) ∂∗
p+2 : (Λ/I2)

p+1 ⊗ Λ1 → (Λ/I2)
p+2

is induced by the multiplication map µ of Λ•. We thus obtain the following explicit
combinatorial description:

(3.6) ∂∗
p+2 ◦ (Πp+1 ⊗ id)∗ : (I/I2)

p+1 ⊗ Λ1 ±µ
−→ (Λ/I2)

p+2.
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Using the R2-presentation from Corollary 3.4, we deduce that gr1I πp is given by

gr1I πp = I · (πp/I
2 · πp) = Hp+1(Y,X)⊗H1/ im(Dp+2 ⊗R̂

R2) ∩ (Hp+1(Y,X)⊗H1)

= coker((Πp+1 ⊗ id) ◦ ∂p+2 : Hp+2Y → Hp+1(Y,X)⊗H1).

We summarize our results for q = 2 as follows.

Theorem 3.5. Let A be a hypersolvable and not supersolvable arrangement, and p =
p(A). Then the second nilpotent quotient, πpM

′(A)/I2 · πpM
′(A) is combinatorially

determined as a filtered Zπ1M
′(A)/I2-module. The finitely generated abelian group

gr1I πpM
′(A) is also combinatorially determined, with Z-presentation

gr1I πpM
′(A) = coker(Hp+2Y

(Πp+1⊗id)◦∂p+2

−−−−−−−−−→ Hp+1(Y,X)⊗H1).

4. Torsion issues

In this section, we analyze the torsion of the second graded piece of πp.

Theorem 4.1. Let A be a hypersolvable and not supersolvable arrangement, and

p = p(A). Then the following are equivalent:

(1) The second graded piece, gr1I πp(M
′(A)), has no torsion.

(2) The decomposable Orlik-Solomon algebra, A•
+(A), is free in degree • = p+2.

(3) The graded abelian group of indecomposable OS–relations, (I/Λ+I)• is free

in degree • = p+ 2.

Proof. Let K be a field. We infer from Theorem 3.5 and (3.6) that the K-dual
(gr1I πp) ⊗ K∗ is isomorphic to ker(µ : (I/I2)

p+1 ⊗ Λ1 → (Λ/I2)
p+2)K over K, where

the subscript K denotes specialization to K–coefficients. Since I2(A)K = I(Â)K
([11, 5]), both Hilbert series, (I/I2)

• ⊗ Λ1(t) and (Λ/I2)
•(t), are independent of K,

taking into account that Orlik-Solomon algebras are torsion-free [7].
Hence, gr1I πp is free if and only if dimK coker(µ)K is independent of K, in degree

p + 2. Plainly, coker(µ)p+2
K = Ap+2

+ (A) ⊗ K. Therefore, (1) ⇔ (2). The split exact
sequence

0→ (I/Λ+I)• → A•
+(A)→ A•(A)→ 0

gives the equivalence (2)⇔ (3). �

In what follows, the subscript K denotes OS–type objects with coefficients in K.
For an arbitrary arrangement A, set A•

K(A)(t) :=
∑

m≥0 bm(A)t
m; this Hilbert series

is independent of the field K. Define

(I/Λ+I)•K(t) :=
∑

m≥2

rm(A)Kt
m = (A•

+)K(A)(t)−A•
K(A)(t).

When we write rm(A), we mean that rm(A)K is independent ofK. With this notation,
we extract from the proof of Theorem 4.1 the following.
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Corollary 4.2. Assume that A satisfies the equivalent properties from Theorem 4.1.

Then gr1I πpM
′(A) is free, of rank

|A|(bp+1Â − bp+1A)− (bp+2Â − bp+2A) + rp+2A ,

where Â is the supersolvable deformation of A, constructed in [5, 6].

Example 4.3. If A is supersolvable, then A•
+(A) has no torsion. Indeed, in this case

A•
K(A) = A

•

K(A), according to [11, Lemma 4.3]. We deduce that the Hilbert series
(I/Λ+I)•K(t) = (I2/Λ

+I2)
•
K(t) = (dimK I

2
K) · t

2 is independent of K.
When A is hypersolvable and p(A) = r(A)− 1, then A is not supersolvable and

Ap+2
+ (A) has no torsion; see [3, Theorem 23] and Theorem 4.1. This happens for

instance when A is hypersolvable and r(A) = 3.

For the next examples, we need to review some standard constructions and termi-
nology in arrangement theory. A subset C ⊆ A belongs to Cq(A) (the set of q–circuits
of A) if and only if |C| = q and the hyperplanes in C form a minimally dependent
set. We say that C ⊆ A has a chord, c ∈ A \C, if there is a partition, C = C ′ ⊔C ′′,
such that both C ′ ∪ {c} and C ′′ ∪ {c} are dependent subsets. Let CNC

q (A) ⊆ Cq(A)
be the subset of chordless q–circuits.

Recall that Λ•
K is the exterior K–algebra on A, as usual. Denote by δ : Λ•

K → Λ•−1
K

the unique degree −1 graded algebra derivation taking the values δ(i) = 1, for all
free algebra generators i ∈ A. Note that δ2 = 0. For C = {i1, . . . , iq} ⊆ A, |C| = q,
denote by eC ∈ Λq the exterior monomial i1 · · · iq (which is well defined, up to a
sign).

We recall that the Orlik-Solomon ideal I is generated by δ(eC), C ∈ C•(A).
It follows that δq : K − span〈eC | C ∈ Cq+1(A)〉 → I

q
K induces a surjection, δq :

K − span〈eC | C ∈ Cq+1(A)〉 ։ (I/Λ+I)qK, for all q. The proof of Lemma 2.1 from
[2] shows that the restriction

(4.1) δq : K− span〈eC | C ∈ C
NC
q+1(A)〉։ (I/ Λ+I)qK

is still onto, for all q.
Now, let AΓ be the graphic arrangement (see [7]) associated to the finite simple

graph Γ, with hyperplanes in one to one correspondence with the edges of Γ. In this
case, the q-circuits of AΓ correspond to the q-cycles of Γ; furthermore, a circuit has a
chord if and only if the corresponding cycle has a chord, in the sense of graph theory.
By [10, Lemma 6.2], the map (4.1) is an isomorphism, for all q, when A = AΓ.

Corollary 4.4. Let A = AΓ be hypersolvable and not supersolvable. Then the second

graded piece, gr1I πpM
′(AΓ), is free, with rank given in Corollary 4.2, where rp+2AΓ =

|CNC
p+3(AΓ)|. Moreover, this rank may be explicitly computed from a hypersolvable

composition series of the graph Γ.

Proof. The first assertion follows at once from the isomorphism (4.1). As for the

second claim, let us examine the Betti numbers, b•(AΓ) and b•(ÂΓ), appearing in
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Corollary 4.2. We know that the Hilbert series of A•(AΓ) can be computed from the

chromatic polynomial of Γ [7]. Finally, the Hilbert series of A•(ÂΓ) is determined
by the exponents of a hypersolvable composition series of Γ [8]. �

Example 4.5. The graphic arrangement AΓ associated to the above graph Γ (with-
out triangles) is hypersolvable and not supersolvable, with p(AΓ) = 2 and rank(AΓ) =
5 > p+ 1. Theorem 23 from [3] cannot be used, but gr1I πpM

′(AΓ) can be computed
with the aid of Corollary 4.4.

Remark 4.6. For a dependent arrangement (i.e., not boolean) define c(A) to be the
smallest integer q for which there is C ⊆ A dependent with |C| = q. Equivalently,
Cc(A)(A) 6= ∅, but C<c(A)(A) = ∅. Note that c(A) ≥ 3. We recall that an arrangement
A is called 2–generic when c := c(A) > 3. This implies that A is hypersolvable and

not supersolvable, of a particular kind: π1M
′(A) = ZA, A

•
(A) = Λ•, p = c − 2.

Question: is rc(A)K independent of K?

Example 4.7. For an arbitrary arrangement A, rp+2(A) = 0 if CNC
p+3(A) = ∅ (see

(4.1)). When A is hypersolvable and not supersolvable (as in the 2–generic example
4.5), gr1I πp is free, with rank computed in Corollary 4.2.

Remark 4.8. Let A be an arbitrary arrangement. Note that r2(A)K is independent
of K, and rm(A) = 0 for m > r(A). The first claim is immediate, since (I/ Λ+I)2 =
I2. The second assertion follows from (4.1), since plainly Cm+1(A) = ∅ for m > r(A).
Question: is rm(A)K independent of K, for 2 < m ≤ r(A)?

Example 4.9. In the graphic case, the computation of rp+2(A) from Corollary 4.4
is a consequence of the following two facts that hold on K-span〈eC | C ∈ C

NC
q+1(A)〉:

(1) ker(δq) = ker(δq)
(2) δq is injective

Assume c := c(A) > 3. Then Cc+1(A) = CNC
c+1(A). Suppose moreover that c =

r(A), and there is C ′ ⊆ A, |C ′| = c + 2, such that all c–element subsets of C ′ are
independent. (Clearly, this cannot happen when A is a graphic arrangement.) Then
the above condition (2) fails in degree q = c. Indeed, δ(eC′) ∈ K-span〈eC | C ∈
CNC
c+1(A)〉 is non–zero, and δ2(eC′) = 0.
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We give a simple rank 4 example illustrating the previously described setting.
Consider the 2–generic arrangement A in C4 of equation

xyzt(x+ y + 2z)(x+ y + z + t)(x+ 2y − z + 4t) = 0,

with c = 4. Denote by H the hyperplane of equation x + y + z + t = 0 and by P
the hyperplane of equation x + 2y − z + 4t = 0. Then the subset of hyperplanes
C ′ = {x, y, z, t, H, P} has the property that all its 4–element subsets are independent,
as needed.

Example 4.10. If rq(A)K ≤ 1 and |CNC
q+1(A)| > 1, property (1) from Example 4.9 is

also violated. Indeed, it would imply that im(δq) is at most one-dimensional, which
clearly forces |CNC

q+1(A)| ≤ 1.
Here is a simple example where this happens. Let A be the 2–generic arrangement

in C4 of equation
xyzt(x+ y + z + t)(x− y − z + t) = 0,

with c = 4. Denote by H and P the last two hyperplanes. It is easy to check
that CNC

5 (A) has two elements, namely C5 = {x, y, z, t, H} and C ′
5 = {x, y, z, t, P}.

Since the subsets C4 = {y, z,H, P} and C ′
4 = {x, t,H, P} are 4–circuits and δ(eC5

)−
δ(eC′

5
) = (ex− et) · δ(eC4

) + (ey − ez) · δ(eC′

4
), we infer from (4.1) that r4(A)K ≤ 1, as

needed.

Acknowledgment. We are grateful to Alex Suciu, for illuminating conversations
about A•

+(A), and for the cornucopia of examples from [12].
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