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Abstract. We consider the problem of deciding if a group is the fundamental
group of a smooth connected complex quasi-projective (or projective) variety
using Alexander-based invariants. In particular, we solve the problem for
large families of Artin-Tits groups. We also study finiteness properties of such
groups and exhibit examples of hyperplane complements whose fundamental

groups satisfy Fk−1 but not Fk for any k.

To Anatoly Libgober

1. Introduction

The interest in characterizing or finding properties of (quasi)projective groups,
that is, groups that can be obtained as fundamental groups of (quasi)projective
varieties, has been known since J.-P. Serre [51] (who raised questions about gen-
eral characterization of such groups) and O. Zariski [58] (who asked whether or
not they are residually finite). The latter question was negatively answered by
D. Toledo [54]. Only recently, after the work published by A. Libgober [42] and
D. Arapura [3], the question about characterization has experienced an increasing
interest.

Serre’s original question is far from being solved, but at least new effective
obstructions have been found and used for showing that certain groups cannot
be (quasi)projective in a series of papers by Dimca-Suciu-Papadima [33, 35, 36,
34]. Such obstructions are mostly based on Alexander invariants and finiteness
conditions.

In this paper, we are mainly concerned about determining which Artin groups
are quasi-projective and which ones are not by exhibiting quasi-projective varieties
that realize them in the first case and by using obstructions in the second case.
Finally, we are also interested in finiteness conditions by means of studying certain
subgroups of quasi-projective groups that appear as kernel of pencil based maps.
The reason for considering Artin groups has to do with two facts: first of all, it is
a large class of groups that can be easily described with a decorated 1-graph, but
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most importantly, the way these groups are built is by using algebraic relations,
i.e. relations appearing in local fundamental groups of algebraic singularities of
type Ak.

The Alexander invariant of a (quasi)projective variety M is the first homology
group of the universal abelian cover considered as a module over the group of deck
transformations. As it turns out, an important invariant of such a module is related
with the space of rank-one representations of the (quasi)projective fundamental
group G of M . In fact one has a stratification of the space of local systems of
rank 1 whose strata are called characteristic varieties of M (or G). Characteristic
varieties of quasi-projective varieties were first considered by D. Arapura (cf.[4])
who gave a structure theorem on the biggest stratum, namely, he proved that it
is a finite union of translated subtori (by a torsion element) and a finite union
of unitary elements. This was completed by A. Libgober [45] (in the local case)
and N. Budur [19] (in the global case following the work of C. Simpson [52] in
the projective case) showing that the unitary elements should in fact be torsion
elements. This structure theorem and new properties presented in several papers
(see [30, 37, 37, 6] among others) impose restrictions on G. Our purpose here is
to show how these restrictions are enough to prove the non quasi-projectivity of a
large family of Artin-Tits groups. Also, an infinite number of realizable triangular
Artin-Tits groups are shown.

As for the finiteness conditions, in a series of papers [56, 55] from 1960’s
C.T.C. Wall studied general finiteness properties of groups and CW-complexes. A
group G is said to be of type Fn if it has an Eilenberg-MacLane complex K(G, 1)
with finite n-skeleton. Clearly G is finitely generated if and only if it is F1 and
finitely presented if and only if it is F2. An interesting example of a finitely pre-
sented group which is not finitely presented was given by J. Stallings in [53]. A
group G is said to be of type FPn if the trivial ZG-module Z admits a projec-
tive resolution which is finitely generated in dimensions ≤ n. Note that G is of
type FP1 if and only if it is finitely generated. In general, the property Fn im-
plies the FPn property, and they are equivalent in the presence of F2. But, as
shown by Bestvina-Brady [11] FP2 does not imply finite presentation. The first
example of a group which is F2 but not FP3 was given by J. Stallings in [53]. Af-
terwards R. Bieri [13, 12] generalized Stallings’ examples to the following family:
Let Gn = F2×· · ·×F2 be the direct product of n free groups, each of rank 2. Then
the kernel of the map taking each generator to 1 ∈ Z is Fn−1 but not Fn. Stallings’
examples mentioned above are the cases n = 2 and n = 3. Analogous, more general
kernels, now known as Bestvina-Brady groups, coming from arbitrary right-angled
Artin groups, were considered in [11].

In our work, we propose an approach towards an answer to Serre’s question
based on the cohomology associated to rank 1 complex representations of G =
π1(M) and its relationship with the geometric properties of pencils of hypersurfaces
on M . This point of view will lead us naturally into considering the finiteness
properties of G. In this respect, we will pay particular attention to the groups G
which can be realized as π1(P

r \ A) for A a hypersurface arrangement in P
r.

We find that the Bieri-Stallings groups appear as π1(P
r \A) for some arrange-

ments of hyperplanes A. In this way, we exhibit a family of hyperplane arrangement
groups that are Fn−1 but not Fn, for any n ≥ 3. The entire class of quasi-projective
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Bestvina-Brady groups was characterized in [35]. We will refine elsewhere that re-
sult by showing that all quasi-projective Bestvina-Brady groups are in fact hyper-
plane arrangement groups. Here we only give the argument for the Bieri-Stallings
groups.

The paper is organized as follows: in the first three sections we give an ex-
pository presentation of the objects, techniques, and tools necessary. In particular
section §2 will deal with definitions and properties of (quasi)projective groups,
sections §3 and §4 with definitions and properties of two of the most important
invariants of finitely presented groups (in this context) such as the Characteris-
tic Varieties and Alexander Invariants respectively. In section §5 we will study
the question of what Artin groups are (quasi)projective. Finally, in section §6 we
will study some finiteness properties of quasi-projective groups via the pencil map
construction.

Acknowledgment. The third author would like to thank Michael Falk for
an inspiring discussion. A substantial amount of this work was done while the
third author was visiting Universidad de Zaragoza. He is grateful for the financial
support received from his institution, as well as the host institution, that made that
visit possible.

2. (Quasi)-projective groups

In this section we will describe the class of finitely presented groups we are
interested in. It is known that any finitely presented group G can be realized as
π1(M) of a smooth connected complex manifold M . If M is allowed to be compact,
then its complex dimension cannot be in general less than 4. In terms of π1(M), if
one allows M to be open, then M might be chosen just to be 2-dimensional. If in
addition, M is required to be Stein, then again its dimension cannot be less than 4.

However, if M is required to be a smooth complex algebraic variety, then not
any finitely presented G can be realized as π1(M). In the compact case there is a
well-known restriction, namely G must be 1-formal (cf. [28]). Rational homotopy
theory imposes restrictions on π1(M) even in the non-compact case, where M is
quasi-projective, as shown in [46], but 1-formality is no longer guaranteed.

Definition 2.1. We call a group G projective (resp. quasi-projective) if G =
π1(M) for M a smooth connected complex projective (resp. quasi-projective) vari-
ety.

We denote by QP the set of all quasi-projective groups, and by P the set of all
projective groups. Obviously we have an inclusion, P ⊂ QP, which is in fact strict,
since groups G with odd first Betti number b1(G) cannot be projective, whereas for
instance, free groups of odd rank are clearly quasi-projective.

Remark 2.2. Standard Lefschetz-Zariski-Van Kampen principle guarantees
that all groups in QP are finitely presented. Moreover, any (quasi)projective group
is the fundamental group of a (quasi)projective surface.

Let F1 stand for the set of all finitely presented 1-formal groups. We pointed
out above that there is an inclusion P ⊂ F1. This inclusion is also strict by
an easy odd first Betti number argument. However, in general, quasi-projectivity
and 1-formality are independent properties (cf. [37, 33]). An important class of
groups which are both 1-formal and quasi-projective is that of fundamental groups
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of complements to hypersurfaces in a projective space. We denote by H the set of
such groups, that is, G = π1(M) where M = P

N \ V for a hypersurface V in P
N ;

we call these groups hypersurface or curve groups (again because of Lefschetz-type
arguments). Then H ⊂ F1 ∩ QP, as shown in [40] using techniques from [46].

Properties 2.3. The following properties have been proved in the literature:

(P1) If G1, G2 are in QP, then the direct product G1 ×G2 is also in QP.
(P2) If G1, G2 are in F1, then the direct product G1 ×G2 is also in F1.
(P3) The free product G1 ∗ G2 is not necessarily in QP (cf. [37, 33]). For

example, π1 ∗ π2 is not quasi-projective if π1, π2 are fundamental groups
of Riemann surfaces of non-zero genus.

(P4) By M. Gromov [39], a non-trivial free product G1 ∗G2 is never projective.
(P5) If a group G has more than one end, then G /∈ P. Also if G surjects with

finitely generated kernel onto a group with infinitely many ends, then
again G /∈ P (cf. [5]).

(P6) If G1, G2 are in F1, then so is G1 ∗G2, see [37, 33].
(P7) The classes P and QP are closed under taking finite index subgroups.

The same is not true in general for the class F1, see [32, Example 2.9].

Example 2.4. The fundamental group πg of a smooth compact projective curve
Cg of genus g, which admits a presentation of the form πg = 〈ai, bi, 1 ≤ i ≤ g |
∏g

i=1 aibia
−1
i b−1

i 〉, is the most basic projective group. Maybe the simplest infinite
quasi-projective groups are the free groups, both abelian Z

n, and non-abelian Fn.
Of these, only Z

2n are projective. Note that F2g+p−1 = π1(Cg,p), where Cg,p, p ≥ 1
is Cg punctured p times.

We are going to extend these examples to orbifold groups.

Definition 2.5. An orbifold Xϕ is a quasi-projective Riemann surface X with
a function ϕ : X → N with value 1 outside a finite number of points.

Definition 2.6. For an orbifoldXϕ, let p1, . . . , pn the points such that ϕ(pj) :=
mj > 1. Then, the orbifold fundamental group of Xϕ is

πorb
1 := π1(X \ {p1, . . . , pn})/〈μmj

j = 1〉
where μj is a meridian of pj in X. We oftentimes denote Xϕ simply by Xm1,...,mn

.

Definition 2.7. A dominant algebraic morphism ρ : Y → X defines an orbifold
morphism Y → Xϕ if for all p ∈ X, the divisor ρ∗(p) is a ϕ(p)-multiple.

Remark 2.8. An orbifold morphism ρ : S → Cϕ with connected generic fiber F
defines an exact sequence

π1(F ) → π1(S) → πorb
1 (Cϕ) → 1.

Example 2.9. Any orbifold fundamental group G := πorb
1 (Cϕ) can be realized

as π1(S) for S a ruled affine surface, as shown by J. Bertin [10]. If the underlying
curve is not projective, it is easily seen that G is not projective, since it admits a
finite-index free subgroup.

On the other hand, if C is projective, one can show that G is projective, using
arguments used by Morgan-Friedman in [38]. They show that, for an elliptic fibra-
tion π : S → C with at least one fiber having singular reduction, the exact sequence
in Remark 2.8 induces an isomorphism of π1(S) onto G. Such an elliptic fibration

116

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



QUASI-PROJECTIVITY, ARTIN-TITS GROUPS, AND PENCIL MAPS 115

can be found using logarithmic transformations. Moreover, it is proved in [38] that
such a surface can be deformed to become projective if and only if b1(S) is even,
and thus the result follows.

In light of the discussion above, it seems legitimate to ask the following:

Question 2.10. Which finitely presented groups G are quasi-projective?

This question, originally posed by J.-P. Serre in [51], was taken up by A. Lib-
gober in [42] using Alexander invariants. This is the point of view that will be
considered here as well.

3. Characteristic varieties

Throughout this paper G will represent a finitely presented group. Charac-
teristic varieties are invariants of G which can be computed using any connected
topological space X (having the homotopy type of a finite CW-complex) such that
G = π1(X,x0), x0 ∈ X. Let us consider a character ξ : G → C

∗; recall that the
space of characters is

(1) TG = Hom(G,C∗) = Hom(H1(X;Z),C∗) = H1(X;C∗).

Given such a character ξ, one can construct a local system of coefficients over X
as follows. Let ρ : X̃ → X be the universal abelian covering of X. The group
H1(X;Z) acts freely (on the right) on X̃. The local system of coefficients Cξ is
defined as

πξ : X̃ ×H1(X;Z) C → X where X̃ ×H1(X;Z) C :=
(
X̃ × C

)/
(x, t) ∼ (xh, ξ(h−1)t).

Definition 3.1. The k-th characteristic variety of G is the subvariety of TG,
defined by:

Chark(G) = {ξ ∈ TG | dimH1(G,Cξ) ≥ k},
where H1(G,Cξ) is the twisted cohomology with coefficients in the local system ξ.

Remark 3.2. There is a simple way to describe this cohomology. Let us sup-
pose that X is a CW-complex. Then, X̃ inherits also a CW-complex structure. For
each cell σ in X we fix a cell σ̃ in X̃ such that ρ(σ̃) = σ. Then, the set of cells of

X̃ is
{σ̃h | σ cell of X,h ∈ H1(X;Z)}.

In particular, the chain complex C∗(X̃;C) is a free Λ-module with basis {σ̃}, where
Λ := C[H1(X;Z)] is the group algebra of H1(X;Z). Evaluating the elements in
H1(X;Z) by ξ we obtain a chain complex C∗(X;C)ξ, which as a vector space, is
isomorphic to C∗(X;C) but whose differential is twisted.

Remark 3.3. Let us assume that G is finitely generated; then so is H1(X;Z).
Let n := rankH1(X;Z) and let TorsG be the torsion subgroup of H1(X;Z). Then
TG is an abelian complex Lie group with |TorsG | connected components (each one
isomorphic to (C∗)n) satisfying the following exact sequence:

1 → T
1
G → TG → TorsG → 1,

where T
1
G is the connected component containing the trivial character 1.

Example 3.4. Let G := 〈x, t | xt2x = t2x2t〉. In this case TG = C
∗ and

Char1(G) is defined by z2 − 2z + 2 = 0.
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These invariants are very close to other ones, like the Green-Lazarsfeld’s invari-
ant. They were studied by A. Beauville [9] for projective surfaces and his approach
was extended by D. Arapura [4] to quasi-projective varieties. There are also im-
portant contributions from C. Simpson [52], N. Budur [19], T. Delzant [29], and
A. Dimca [30] for the structure of characteristic varieties (for compact Kähler or
quasi-projective manifolds). In the hypersurface case, A. Libgober [43, 44] pro-
posed a computation method where the knowledge of the group is not required and
showed that they reflect deep algebraic properties of the manifolds.

The properties of characteristic varieties of quasi-projective groups provide
strong obstructions for a group to be in QP. Following Remark 3.2, it is not
difficult to prove that the characteristic varieties of a quasi-projective group G are
algebraic subvarieties of TG. The following result can be found in one form or
another in the literature:

Theorem 3.5 (Arapura [4], Budur [19]). If G ∈ QP, then all irreducible
components of Chark(G) are subtori of the character torus TG (possibly translated
by a torsion character).

Note that, in particular, the group of Example 3.4 cannot be quasi-projective.
The main part of Theorem 3.5 was proved by D. Arapura, the only part missing

in his result is the fact that isolated points are not only unitary, but in fact torsion
characters. The main result of D. Arapura involves more obstructions.

Theorem 3.6 (Arapura [4]). Let Σ be an irreducible component of Char1(G).
Then,

(1) If dimΣ > 0 then there exists a surjective morphism ρ : X → C, C
algebraic curve, and a torsion element σ such that Σ = σρ∗(H1(C;C∗)).

(2) If dimΣ = 0 then Σ is unitary.

We give here a refined statement which will be proved in a forthcoming pa-
per [7].

Theorem 3.7. Let G ∈ QP and Σ be an irreducible component of Chark(G),
k ≥ 1. Then one of the two following statements holds:

• There exists a surjective orbifold morphism ρ : X → Cϕ and an irreducible
component Σ1 of Chark(π

orb
1 (Cϕ)) such that Σ = ρ∗(Σ1).

• Σ is an isolated torsion point.

Remark 3.8. In many cases, isolated torsion points come from orbifold mor-
phisms. It will be proved in a forthcoming paper [6] that this is not always the
case.

Definition 3.9. Let Σ be an irreducible component of Chark(G) and dimC Σ ≥
1, consider ShdΣ (not necessarily in Chark(G)) parallel to Σ (that is, Σ = ρ ShdΣ
for some ρ ∈ TG) and such that 1 ∈ ShdΣ. Such a subtorus ShdΣ will be referred
to as the shadow of Σ.

The result and the proof of Theorem 3.7 provide many obstructions which will
be used in §5.

Proposition 3.10. Let G ∈ QP and Σ1,Σ2 different irreducible components
of Chark(G), k ≥ 1 of positive dimension. Then

118

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



QUASI-PROJECTIVITY, ARTIN-TITS GROUPS, AND PENCIL MAPS 117

(1) If the intersection Σ1 ∩ Σ2 is non-empty, it consists of isolated torsion
points, which are of torsion type.

(2) Their shadows are either equal or have 1 as an isolated intersection point.
(3) If Σ1 is not a component of Chark+1(G) and p ∈ Σ1 ∩ Chark+1(G) then

p is a torsion point.
(4) Σ1 is an irreducible component of Char�(G), 1 ≤ � ≤ k.

Remark 3.11. Parts (1) and (2) in Proposition 3.10 can be found in [34],
Part (3) is proved in [31], and Part (4) is immediate.

Proposition 3.12. Let G ∈ QP and consider Σ an irreducible component of
Chark(G), k ≥ 1 of positive dimension d. Then:

(1) If 1 ∈ Σ, then k ≤ d−1. Moreover, one can ensure that Σ is a component
of Chard−2(G) (resp. Chard−1(G)) if d even (resp. odd).

(2) If 1 /∈ Σ, then Σ is a component of Chard(G).
(3) If 1 /∈ Σ and d > 2, then its shadow is an irreducible component of

Char1(G).
(4) If 1 /∈ Σ and d = 2, then its shadow is an irreducible component of

Char1(G) if and only if it is for Char2(G).
(5) If 1 /∈ Σ and d = 1, then its shadow is not an irreducible component of

Char1(G).

Remark 3.13. The results in Proposition 3.12(4), and (5) can be found in [31].
All of them will appear in [6]. The cases where the shadow is not in the character-
istic variety correspond, according to Theorem 3.7, to either orbifold pencils over
C

∗ or elliptic pencils.

Definition 3.14. A subspace 0 �= V ⊂ H1(G,C) is called 0-isotropic (resp.

1-isotropic) if the restriction ∪V of the cup-product map ∪G :
∧2 H1(G,C) →

H2(G,C) is equivalent to ∪C :
∧2

H1(C,C) → H2(C,C) for C a non-compact
(resp. compact) smooth connected complex curve (see also [37, Definition 6.5]).

Proposition 3.15 ([37, 34]). Let Σ be an irreducible component of Char1(G),
G ∈ QP. Let V ⊂ H1(G,C) be the tangent space of ShdΣ at 1. Then V is
p-isotropic, p ∈ {0, 1}.

We finish with a new obstruction which will appear in a forthcoming paper [7].

Proposition 3.16. Let Σ1 be an irreducible component of Chark(G), G ∈ QP,
and let Σ2 be an irreducible component of Char�(G). If ξ ∈ Σ1∩Σ2 a torsion point,
then ξ ∈ Chark+�(G).

4. Alexander Invariants

Let G be a finitely generated group, consider H := H1(G;Z) = G/G′ and ψ a
surjective homomorphism from H onto a group A (note A has to be abelian). We
are mostly interested in the case H = A (as in §3) but it is not more difficult to
work in this more general situation. Note that there is a short exact sequence

0 → K
ϕ→ G

ψ̃→ A → 0.

The group A acts on MA
G := H1(K;Z) by conjugation. This makes MA

G a module
over the group algebra ΛA

Z
:= Z[A]. Note that if A = H then K = G′
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Definition 4.1. . The ΛA
Z
-module MA

G is the first Alexander Invariant of G
with respect to A. Analogously, one can define the first Alexander Invariant MA

K,G

of G with respect to A over K as a ΛA
K
-module, where ΛA

K
:= K ⊗Z ΛA

Z
. We will

drop the superscript A when A = H.

This is a powerful invariant, but it is not easy to deal with it directly. A
classical object of study is the set of Fitting invariants of MA

G . Consider
(
ΛA
Z

)m φ→
(
ΛA
Z

)r → MA
G → 0

a finite free presentation of the ΛA
Z
-module MA

G . Let Mat(φ) be the (r×m) matrix,
with coefficients in ΛA

Z
, of φ.

Definition 4.2. The k-th Fitting ideal of MA
G is defined as the ideal generated

by

fA
k :=

⎧
⎨

⎩

0 if k ≤ max{0, r −m}
1 if k > r

minors of Mat(φ) of order (r − k + 1) otherwise.

Such an ideal does not depend on the free presentation of MA
G and it is denoted by

FA
k if no ambiguity seems likely to arise. Analogously, one can define Fk(M

A
K,G).

Remark 4.3. For computational purposes (when A is a free abelian group, for
simplicity), if one writes a presentation of G of the following type

G = 〈x1, ..., xr, y1, ..., ys : R̄(x̄, ȳ) = 0〉,
where x1, ..., xr freely generate A and y1, ..., ys are trivial after the abelianization
morphism, then MA

Z
admits a presentation

(2) RΛA
Z ⊕ JΛA

Z

φ→

⎛

⎝
⊕

1≤i<j≤r

xijΛ
A
Z

⎞

⎠
⊕

(
s⊕

k=1

ykΛ
A
Z

)

→ MA
Z → 0

as a ΛA
Z
-module generated by xij := [xi, xj ], 1 ≤ i < j ≤ r and y1, ..., ys. A

complete set of relations can be given by the Jacobi relations :

(ti − 1)xjk + (tj − 1)xki + (tk − 1)xij = 0

and the rewriting of R̄(x̄, ȳ) = 0 in terms of xij and yk. For a detailed description
of this module see [8, § 2.5].

The ring ΛA
C

as a C-algebra of finite type, is the ring of functions of an affine
variety T

A
G which is a (maybe non-connected) complex torus (like in (1), replacing

H by A)

Definition 4.4. The reduced zero locus of Fk(M
A
C,G) is the k-th characteristic

variety of G with respect to A and is denoted by CharAk (G).

Remark 4.5. The Definitions 4.4 of CharHk (G) and 3.1 of Chark(G) agree with
the convention of forgetting the superscript (with the exception of the behavior of
1), see, for instance, [43] or a sketch in Remark 4.12(M3).

In case A is a free abelian group of rank r, then Z[A] = Z[t±1
1 , ..., t±1

r ] is the
ring of Laurent polynomials in n variables and Q[A] is a UFD.
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Definition 4.6. For A a free abelian group, the multi-variable Alexander poly-
nomial of G with respect to A is the Laurent polynomial ΔA

G in Q[A] defined by
ΔA

G = gcd F1(M
A
G ). Analogously, one has the multi-variable Alexander polynomial

of G with respect to A over K.

Remark 4.7. Note that ΔK,G is only well defined up to multiplication by a
unit in ΛK, and hence any equality involving ΔK,G has to be considered up to a
unit.

Example 4.8 ([8]). Consider the group G := 〈a, b | aba = bab, [a, a2b2] =
[b, a2b2] = 1〉, the abelianization morphism G → Z, and a field K of characteristic
q, then

MK,G =

{
K[t±1]
(t+1) if q = 3

0 otherwise.

Therefore

Chark(K, G) =

{
{−1} ⊂ K

∗ if q = 3

∅ otherwise,
and ΔK,G(t) =

{
t+ 1 if q = 3

1 otherwise.

As in §3, another fundamental approach to these invariants takes place when
G is considered as the fundamental group of X, a connected CW-complex of finite
type (which we can assume has a single 0-cell e0). In this case MA

G is nothing
but H1(XK ;Z) where XK is the covering of X associated with the subgroup K =
ker(G → A). In this scenario, we can define new invariants; let ẽ0 be the preimage
of the 0-cell in XK .

Definition 4.9. The Alexander module of X with respect to A is the relative
homology H1(XK , ẽ0;Z) (as a ΛA

Z
-module) and we will denote it by M̃A

G . Starting

off with M̃A
G and analogously to the previous discussion, one can define characteris-

tic varieties C̃hark(K, G) and multi-variable Alexander polynomials Δ̃A
K,G associated

with M̃A
K,G.

Remark 4.10. The relationship between M̃A
G and MA

G is clearly given by the
exact sequence of the pair (XK , ẽ0), that is,

(3) 0 = H1(ẽ0) → MA
G → M̃A

G → ker (H0(ẽ0) → H0(X;Z)) → 0.

Since H0(ẽ0) = ZAe0, H0(X;Z)) = Ze0, and the map is given by ae0 �→ 1, its
kernel is nothing but the augmentation ideal IZ[A] =

{∑
a∈A na |

∑
a∈A na = 0

}
.

A free presentation of the Alexander module can be given from the following
chain map using Fox derivation with respect to A:

(4) CA
2 (X)⊗ Z[A]

δ̃2→ CA
1 (X)⊗ Z[A] → M̃A

G → 0.

In order to describe the boundary map δ̃2, let us fix for any 2-cell e2 ∈ C2(X) a
certain closed path ∂e2 representing its boundary as induced by the cell map on the
boundary. It might happen that such map is constant. In that case δ̃2(e2 ⊗ a) = 0.
Otherwise ∂e2 can be written as a composition of closed paths (1-cells), say ∂e2 =

xε1
1 ·xε2

2 · ... ·xεn
n , where ε1 = ±1. Then δ̃2 can be described recursively as a function

of its boundary δ̃2(e2 ⊗ a) = D(∂e2, a) where

(5) D(xε · y, a) =
{

x⊗ a+D (y, ψ(x)a) if ε = 1

−x⊗ ψ−1(x)a+D
(
y, ψ−1(x)a

)
if ε = −1.
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Remark 4.11. The main computational advantage of M̃A
G over MA

G is the
size of the representation matrices, see Remark 4.3. The number of rows (resp.

columns) of the matrix Mat(δ̃2) is linear with respect to the number of generators
(resp. relations) of G, whereas the number of rows (resp. columns) of the matrix
Mat(φ) described in (2) is quadratic (resp. cubic) with respect to the number of
generators (resp. relations) of G.

From (3) one can easily see that

(6) Chark(G) \ {1} = C̃hark+1(G) \ {1}.
(see for instance [21] for a proof).

Analogously, one can easily check that

(7) Δ̃A
G =

{
ΔA

G if rankA > 1

(t− 1)kΔA
G if rankA = 1

Remark 4.12. Let us compare these arguments with the chain complex intro-
duced in Remark 3.2. For A = H, XK = X̃ and C∗(X̃;C) is

0 → C2(X̃;C)
δ2→ C1(X̃;C)

δ1→ C0(X̃;C) → 0;

the map δ2 is the complexification of δ̃2 in (4). For ξ ∈ Hom(G;C∗), ξ �= 1, C has
a natural structure of ΛC-module denoted by Cξ. Given any ΛC-module V we can
produce a twisted C-vector space Vξ := V ⊗ΛC

Cξ. We have the following properties:

(M1) The complexified Alexander Invariant MC,G is the homology in degree 1

of C∗(X̃;C).

(M2) The complexified Alexander Module M̃C,G is coker δ2.

(M3) For ξ �= 1, ξ ∈ CharHk M if and only if dim(MC,G)ξ ≥ k, i.e., if and only
if ξ ∈ Chark(G). This follows from the fact that the operations taking
homology and ⊗ΛC

Cξ commute.

The systematic use of the Alexander polynomial to distinguish quasi-projective
groups has been known since Zariski [57], even though technically the invariant was
defined later by Libgober [41].

The following property will be strongly used in this paper as an obstruction to
quasi-projective groups:

Theorem 4.13 ([34, Theorem 4.3]). Let G = π1(M) ∈ QP be the fundamental
group of a smooth, connected, complex quasi-projective variety.

(A1) If b1(G) = r �= 2, then the Alexander polynomial ΔG has a single essential
variable, that is, there exist a Laurent polynomial P ∈ Z[t±1] such that
ΔG(t1, ..., tr)) = P (tn1

1 · · · tnr
r ).

(A2) If b1(G) ≥ 2, and ΔG has a single essential variable, then either
(a) ΔG = 0, or
(b) ΔC,G(t1, . . . , tr) = P (u) in C[t±1

1 , ..., t±1
r ], where P is a product of

cyclotomic polynomials (possibly equal to 1), and u = tn1 · · · tnr , with
gcd(n1, . . . , nr) = 1.

(c) If G ∈ P, then ΔG = const.

Theorem 4.13(A2) is a generalization of the single-variable result due to Lib-
gober [41]. A generalization of the Alexander polynomial for the twisted case can
be found in [22].
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5. Artin-Tits groups

Let Γ be a simplicial graph with vertices V , edges E (an element of E is a
subset of V with two elements) and a labeling � : E → N≥2 of the edges. The
Artin-Tits group AΓ associated to Γ = (V,E, �) is given by the presentation:

AΓ = 〈v ∈ V | uvu . . .︸ ︷︷ ︸
�(e) times

= vuv . . .︸ ︷︷ ︸
�(e) times

if e := {u, v} ∈ E〉.

Artin groups associated with the constant map � = 2 are called right-angled Artin
groups and their graphs will be denoted simply by Γ = (V,E).

The Coxeter group WΓ associated with Γ = (V,E, �) is the quotient of AΓ

obtained by factoring out by the squares of the generators:

WΓ = AΓ/〈v2, v ∈ V 〉.

Remark 5.1. It is useful to think of the Artin-Tits groups and Coxeter groups
as particular instances of a more general class. Let Γ = (V,E) be a graph as above.
To each vertex v ∈ V we associate a group Gv. To each edge e = {u, v} ∈ E we
associate a group Ge = Gu,v of the form Ge = Gu ∗ Gv/(Re), where (Re) is the
subgroup of the free product Gu ∗ Gv normally generated by a set of words Re.
Then the Pride group PΓ is defined as

PΓ = ∗v∈V Gv/(Re, e ∈ E).

For example, in the case of AΓ the vertex groups are all infinite cyclic Gv = Z and
the edge group of e = uv labeled by m is the two generators, one-relator group

Ge = 〈u, v | uvu . . .︸ ︷︷ ︸
m times

= vuv . . .︸ ︷︷ ︸
m times

〉.

In the case of WΓ the vertex groups are cyclic of order 2, Gv = Z2. Some of the
facts that are proved here easily generalize to Pride groups.

Definition 5.2. An Artin-Tits group AΓ is called spherical or of finite type if
its Coxeter group WΓ is finite. Otherwise AΓ is of infinite type.

Among Artin-Tits groups of infinite type we distinguish certain classes.

Definition 5.3. The Artin-Tits group AΓ is called euclidean (or affine) if its
Coxeter group WΓ is euclidean. If WΓ is of infinite non-euclidean type then AΓ is
of general type. Furthermore, AΓ is called hyperbolic if WΓ is hyperbolic.

Example 5.4. Let us show some examples of Artin-Tits groups.

(1) If Γ,Γ′ are two arbitrary graphs, then AΓ�Γ′ = AΓ ∗ AΓ′ , where Γ � Γ′ is
the disjoint union.

(2) If Γ1, . . . ,Γk are the connected components of Γ then AΓ is the free prod-
uct AΓ1

∗ · · · ∗AΓk
.

(3) AΓ∗Γ′ = AΓ × AΓ′ , where Γ ∗ Γ′ is the join graph with vertices V ∪ V ′,
edges E ∪ E′ ∪ {{v, v′} | v ∈ V, v ∈ V ′} with new edges having labels
μ({v, v′}) = 2.

(4) If Γ is the graph with no edges and n vertices, then AΓ = Fn, the free
group on n generators.

(5) If Γ = Kn, the complete graph on n vertices, then the right-angled Artin
group AΓ is Zn, the free abelian group of rank n.
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(6) If Γ = Kn1,...,nr
, the complete multipartite graph on n vertices partitioned

into subsets of sizes n1, . . . , nr, then right-angled group AΓ is Fn1
× · · · ×

Fnr
.

(7) If Γ is the complete graph Kn with labeling �({i, j}) = 2 if |i − j| ≥ 2,
and 3 otherwise, then AΓ = Bn, the braid group on n strings.

(8) Let Γ be the one edge graph on two vertices with labeling m ≥ 2. It is
well known that AΓ = 〈u, v | uvu · · · = vuv . . . 〉 is isomorphic to the group
π1(C

2 \ C) of the affine curve C = {x2 = ym} having an Am−1 singular
point at the origin.

(9) If Γ has two vertices and no edges, then the free group AΓ = F2 is iso-
morphic to π1(C

2 \ C) for C the union of two parallel lines in C
2.

Remark 5.5. Thus AΓ ∈ QP for Γ a graph on two vertices.

Example 5.6. Another interesting case is that of graphs with three vertices.
All such graphs will be described by graphs Γ(p, q, r) as in Figure 1, with p ≥ q ≥ r,
where p, q, r ∈ N∪ {∞} means that there is no edge. These groups will be denoted
by A(p, q, r).

(1) If Γ has no edges, then AΓ ∈ H ⊂ QP since it is the group of the comple-
ment of three parallel lines in C

2.
(2) The case Γ(∞,∞, k) can also be disregarded as follows. In fact, one

has Char1(A(∞,∞, k)) = TAΓ
, whereas Char2(AΓ) contains irreducible

components of proper dimension, that is, positive but strictly less than
the maximal. This contradicts Proposition 3.10(4).

(3) For the case where Γ has two edges there are partial results in Remark 5.24
and Example 5.30.

(4) For the general case p, q, r ∈ N there are partial results in Theorem 5.27
and Examples 5.10-5.13, 5.29, and 5.31.

3

r

1

p
2

q

Figure 1. Γ(p, q, r)

We are interested in the following general question (see also [37]):

Problem 5.7. Which Artin groups AΓ are (quasi)projective?

This problem is partially solved for quasi-projective right-angled Artin groups
as follows.

Theorem 5.8 ([37, 33]). The quasi-projective right-angled Artin groups AΓ

are precisely those associated to a complete multipartite graph Γ = Kn1,...,nr
. In

particular, AΓ ∈ QP if and only if AΓ = Fn1
× · · · × Fnr

.
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As a consequence of classical invariant theory for spherical and euclidean Cox-
eter groups we have the following result.

Theorem 5.9. All spherical and euclidean Artin-Tits groups AΓ are hypersur-
face groups.

Proof. It is enough to prove it for irreducible Artin-Tits groups. We first deal
with the spherical case.

We will follow E. Brieskorn [18]. Let W be a finite Coxeter group. Realize
W as a reflection group in GL(VR), for a real vector space VR of dimension n.
Let V = VR ⊗ C be its complexification. We have a proper action of W on V
with quotient map π : V → V/W a branched cover with branch locus Δ, the
hypersurface defined by the union of all reflecting hyperplanes of W (we abuse the
notation by using the same symbol for a hypersurface and a defining polynomial).
The action of W is free on V \Δ, and the image of the W -invariant polynomial D2

is the discriminant locus Δ = π(D2) of π.
Thus the restriction π : V \ Δ → V/W \ D is an unbranched cover with

group W . In fact, V/W is isomorphic to the complex affine space C
n as provided

by the Chevalley’s classical invariant theory result: C[V ]W is a polynomial algebra
C[f1, . . . , fn], and the isomorphism V/W → C

n is given by [v] → (f1(v), . . . , fn(v)).
The fundamental group π1(C

n \D) of the discriminant complement is nothing but
the Artin-Tits group AW associated to W .

We now consider the euclidean case. We will follow N. Bourbaki [14]. Let R be
an irreducible root system of rank n in a real vector space VR, with root lattice Q

and Weyl group group W . The affine Weyl group W̃ = Q�W acts on V = VR⊗C

by affine reflections. Let T for be complex torus with rational character lattice the
weight lattice P of R. For λ ∈ P write eλ for the corresponding character in T .
The exponential map e : V → T determines a short exact sequence 0 → Q → V →
T → 1 that provides an identification of the orbit spaces V/W̃ = T/W . Classical
exponential invariant theory tells us that the invariants C[T ]W of the algebra C[T ]
of Fourier polynomials on T , under the natural W -action is a polynomial algebra

C[z1, . . . , zn]. Hence the varieties V/W̃ = T/W are in fact isomorphic to the affine
space C

n. If λ1, . . . , λn are the fundamental weights in P then we may take zj =∑
μ∈W ·λj

eμ, whereW ·λ is theW -orbit of λ. In this way we obtain a branched cover

π̃ : T → T/W with branch locus the Weyl denominator Δ =
∏

α∈R>0
(eα/2−e−α/2)

and discriminant locus D = π̃(Δ2). In this way we obtain an unbranched cover

V \ Δ̃ → V/W̃ \ D̃ = T/W \D, where Δ̃ is the union of all reflecting hyperplanes of

W̃ . Recall that the affine Weyl groups are precisely the euclidean Coxeter groups.
Now according to [26] the euclidean Artin-Tits group A

˜W
is isomorphic to the the

fundamental group π1(V/W̃ \ D̃) = π1(T/W \D) = π1(C
n \D). �

The procedures described in the proof of Theorem 5.9 lead to concrete equations
for the hypersurfaces whose complement have the Artin-Tits groups as fundamental
groups. This has been carried out by E.M. Opdam [47] in the euclidean rank 2
case. We will just give the results here.

Example 5.10. The type Ã2 corresponds to the Artin-Tits group A(3, 3, 3).
This is the complement in C

2 of the quarticD = {z21z22−4z31−4z32+18z1z2−27 = 0}.
This curve is the tricuspidal quartic where the line at infinity is the bitangent line.
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Ar

Ap

Ar

Figure 2. Triangle curve

Example 5.11. The type C̃2 corresponds to the Artin-Tits group A(4, 4, 2).
This is the complement in C

2 of the reducible quartic D = {(z21 − 4z2)(2z1 + z2 +
4)(−2z1 + z2 + 4) = 0} having 1 node and 2 tacnodes as singularities: a parabola
with two tangent lines intersecting outside the conic.

Example 5.12. The type G̃2 corresponds to the Artin-Tits group A(6, 3, 2).
This is the complement in C

2 of the reducible quintic D = {(z21 − 4z2)(−4z31 + z22 +
12z1z2 + 24z2 + 36z1 + 36) = 0}; this is a cuspidal cubic (where the line at infinity
is the tangent at the inflection point) and a parabola (with the same point at
infinity) intersecting at two smooth points, with intersection multiplicities 1 and 3.
The curve D has singularities of type A1, A2, and A5.

Example 5.13. The spherical Artin triangle groups A(p, q, r), 1
p + 1

q + 1
r >

1 can also be obtained in an easy way by curves having singularities of type
Ap+1,Aq+1,Ar+1 as follows:

A(n, 2, 2): The curve of equation (y2 − xn)(x− 1) = 0.
A(3, 3, 2): The curve of equation 8y3 + 3y2 − 6x2y − x2(2 + x2) = 0. The

curve has two ordinary cusps A2 and one ordinary node A1; there is only
one branch at infinity, which is a non-ordinary inflection point.

A(4, 3, 2): The curve of equation (y2 − x3)(2y − 3x + 1) = 0 the line being
an ordinary tangent to the cubic.

A(5, 3, 2): The curve of equation 3125y3+16(16−125x)y2−4x2(32−225x)y+
4x4(4−27x) = 0. It is a rational affine curve with three singular points of
type A1, A2, and A4. There is only one place at infinity; at this place the
projectivized curve has a singular point of type A4 such that the tangent
line (the line at infinity) has intersection number 5.

Remark 5.14. All the curves presented in the examples above have a common
structure. In suitable coordinates they can be presented as in Figure 2, where the
vertices are singular double points. Note that for odd indices the picture should
continue till infinity. These curves are defined by a braid monodromy; if we choose
a vertical line close to the leftmost singular points, it is defined by four braids
in four strings: σp+1

1 · σq+1
3 , σ2 and σ−1

1 · σ−1
3 · σr+1

2 · σ1 · σ3. Following ideas of
L. Rudolph [49], S. Orevkok [48] proved that there exists an analytic curve in Δ×C

(Δ a disk) realizing such a braid monodromy. For the elliptic and euclidean case
the above Examples show that these curves can be extended to algebraic curves in
C

2 such that the complements in Δ×C and C
2. One can construct for small values

of p, q, r (in the hyperbolic case) algebraic curves realizing this braid monodromy
over the disk, but the monodromy of the curves is not trivial outside the disk.
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In fact, any attempt to construct hyperbolic triangle curves in C
2 violates the

Riemann-Hurwitz principle. On the other side, using ideas of L. Rudolph in [50],
any hyperbolic triangle curve is the fundamental group of a Stein surface properly
embedded in C

4.

Now we turn to the question of projectivity of the Artin groups.

Theorem 5.15. All spherical and euclidean Artin-Tits groups AΓ are not pro-
jective.

Proof. The abelianization of AΓ is calculated for example in [27]. Follow-
ing [37, §11.9], let Γodd be the graph obtained from Γ by removing all even labeled
edges. Then AΓ/A

′
Γ is isomorphic to Z

m, where m is the number of connected
components of Γodd. Thus, if Γodd is connected the abelianization of AΓ is Z.

Recall that the simplest necessary condition for group to be projective is
to have even first Betti number. If we go over the list of irreducible spherical
and euclidean Artin groups AΓ, we quickly discover that: b1(AΓ) = 1 for the

types An,Dn,Ek,Hl, I2(m), with m odd, Ãn, D̃n, Ẽk, b1(AΓ) = 1 for type C̃n, and
b1(AΓ) = 2 for the rest of the cases.

Now, for the types with small number of nodes F4,G2, F̃4, G̃2 and I2(m), with
m even, one can easily exhibit low index subgroups of AΓ that have and odd first

Betti number. Although the types Bn and B̃n can also be dealt with that way, we
take here a different road.

We are going to use an obstruction to projectivity (in fact to Kähler-ness) ob-
tained in [5], following ideas of M. Gromov in [39], see also [2] for more background.
More precisely, if a group G fits into an extension 1 → K → G → Q → 1 such that
K is finitely generated and Q has an infinite number of ends e(Q), then G cannot
be Kähler, hence projective. In fact, the group G has also e(G) = ∞, which is not
possible for a projective group (cf. [5] using the results in [39]). In [3] this fact is
used to show that pure braid groups Pn, n ≥ 3 are not projective. Indeed we have a
surjection Pn → P3 with finitely generated kernel, and e(P3) = ∞ as P3 = F2 × Z.
We will follow the same line of reasoning.

First, it is known that the Artin group A(Bn) surjects onto A(An−1) with
kernel a free group of rank n, see [24, 25]. Then Arapura’s discussion in [3] gives
that the braid group A(An−1) has infinitely many ends.

Secondly, it is proved by D. Allcock [1] that B̃n, n ≥ 3 is an index 2 subgroup
of the braid group Bn(Σ) of a 2-dimensional orbifold Σ, so it is enough to show
that this group has infinitely many ends. The orbifold C

∗
ϕ where ϕ( 12 ) = 2 and it is

the only point with value different from 1. Its associated pure braid group Pn(Σ)
is the kernel of the canonical surjection Bn(Σ) → Sn onto the symmetric group.
As with the ordinary pure braid groups we have a surjection Pn(Σ) → P3(Σ) with
finitely generated kernel. It is readily seen that P3(Σ) has infinitely many ends.

In fact, the general irreducible case can be treated as above by showing that
they have an infinite number of ends. This way one shows the result for the non-
irreducible case, since the product of two groups with infinite number of ends also
has an infinite number of ends. �

Conjecture 5.16. All general type Artin groups AΓ are not quasi-projective.

This was already known for right-angled Artin groups (cf. [37]).

127

Licensed to AMS.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/publications/ebooks/terms



126 E. ARTAL, J.I. COGOLLUDO, AND D. MATEI

Definition 5.17. A graph Γ = (V,E, �) is called even if the labeling � takes
only even values. In that case the Artin group AΓ is called of even type. Suppose
Γ = (V,E, �) is an arbitrary graph. Then Γev is the graph obtained from Γ by
identifying the endpoints of each odd labeled edge and then removing the loops.

Remark 5.18. Note that Γev is not the same as the odd contraction of Γ
considered in [37, §11.9] since the even-labeled edges are kept in Γev.

Since Theorem 5.8 solves the problem for right-angled groups, we say that an
Artin group is of strictly even type if it is of even type and not right-angled.

Remark 5.19. Note that if Γ has connected components Γ1, . . . ,Γr then the
Alexander matrix MΓ of AΓ can be seen to be, for a suitable ordering of the vertices
of Γ, a block matrix with blocks MΓ1

, . . . ,MΓr
.

In [37, Theorem 9.9] it is proved that a free product G1 ∗ G2 of two 1-formal
groups Gi with b1(Gi) > 0, i = 1, 2 and presented by commutator relators is in
QP if and only if both Gi are free. We apply this result to the case of even Artin
groups.

Proposition 5.20. A free product AΓ1
∗AΓ2

of even Artin groups is not quasi-
projective unless it is free.

Thus if we focus on the even graphs Γ, we only need to study the quasi-
projectivity of AΓ for connected graphs Γ.

Proposition 5.21. For a connected graph Γ = (V,E, �) let nv be the valence

of the vertex v. Then the Fitting ideal F1 := F1(M̃AΓ
) is of the following form:

F1 = Iε ·
(

∏

v∈Tev

(tv − 1)nv−1 ·
∏

e∈T

Δ�(e)(te), T spanning tree of Γ

)

,

where:

(1) I is the augmentation ideal,
(2) ε = 1 if there exists an even spanning tree for Γ, otherwise ε = 0,
(3) te = tutv if �(e) is even, otherwise te = tu = tv,

(4) Δ2k(t) :=
tk − 1

t− 1
and Δ2k+1(t) :=

t2k+1 + 1

t+ 1
.

Proof. The proof is a pleasant exercise. The Alexander matrix M = MΓ

of AΓ has |E| rows and |V | columns. Let n = |V | and identify V with [n] in

increasing order, and E with a subset of
(
[n]
2

)
, ordered lexicographically, where

[n] := {1, . . . , n}. The entry of M on row jk and column i is denoted as mjk,i. As
Γ is connected, it has at least n−1 edges. Let m = |E|−n+1. The proof is carried
out by double induction on n ≥ 1 and m ≥ 0.

Suppose m = 0. Thus Γ is a tree. Then the Fitting ideal F1 is generated by the
n minors of MΓ of codimension 1. Let Mi be the minor obtained by removing the
i-th column of M . Let ni be the valence of the vertex v = i and ij1, . . . , ijni

the

edges at i. Then the entry mijp,i is up to sign of the form (ti − 1)((−1)�(ijp)+1)/2 ·
Δijp . Moreover mijp,i is the only non-zero entry on the row ijp of the minor Mi.
Expanding Mi along the rows ijp, 1 ≤ p ≤ ni, and using Remark 5.19, we obtain

Mi =
∏

p=1,ni

(ti − 1)((−1)�(ijp)+1)/2 ·Δijp ·
∏

p=1,ni

Mjp(Tp),
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where Tp is the sub-tree of Γ not containing vertex i and edges ij1, . . . , ijni
, and

Mjp(Tp) is the codimension 1 minor of the Alexander matrix of ATp
obtained by

removing its column corresponding to vertex jp.
The last formula, combined with the induction hypothesis on n finishes the

proof for m = 0. If m ≥ 1, we proceed as follows.
Let E′ ⊂ E be a set of rows of M of size n − 1, and denote by Γ′ the full

subgraph of Γ on vertices V and edges E′. Let ME′,i be the codim 1 minor of M
obtained by removing its i-th column and the rows in E \ E′. Then ME′,i is the
minor M ′

i of M ′ = M(AΓ′). By Remark 5.19, M ′ can be seen as a block matrix
with blocks MΓ′

1
, . . . ,MΓ′

r
, where Γ′

1, . . . ,Γ
′
r are the connected components of Γ′. If

r = 1 then Γ′ is a spanning tree for Γ, and we are done. If r > 1 then M ′
i = 0. �

As an immediate corollary we have the following:

Corollary 5.22. For a connected tree T the Alexander polynomial Δ(AΓ) of
AΓ is given by:

Δ(AΓ) =
∏

v∈Tev

(tv − 1)nv−1 ·
∏

e∈T

Δ�(e)(te).

Proposition 5.23. If Γ is an even tree with at least 3 vertices, then AΓ �∈ QP.

Proof. Its Alexander polynomial Δ(AΓ) has at least 2 essential variables and
hence Theorem 4.13(A1) applies. �

Remark 5.24. In particular, the even graphs with three vertices and two edges
are not in QP.

Proposition 5.25. If Γ is a strictly even n-cycle Cn, n ≥ 4, then AΓ is not
quasi-projective.

Proof. The first characteristic variety Char1(AΓ) does not pass the quasi-
projectivity test. Let 2m1, . . . , 2mn be the weights.

If n ≥ 5, then Vi,i+1 = {ti = ti+1 = 1} is an irreducible component. In
particular, V12 and V23 intersect in a codimension 3 variety contradicting Proposi-
tion 3.10(1).

For n = 4 we may assume that m1 > 1 and we proceed in a similar way. �
Theorem 5.26. If Γ is a strictly even non-complete graph n ≥ 3, then AΓ is

not quasi-projective.

Proof. The first characteristic variety Char1(AΓ) does not pass the quasi-
projectivity test. It contains two irreducible components of Char1(AΓ) intersecting
in a subvariety of dimension greater than zero. Since Γ not complete, there exists
a subset W ⊂ V that disconnects V . Then from Proposition 5.21 it follows that
both

CW = ∩w∈W {tw − 1 = 0}, CW,w0,v = ∩w∈W\{w0}{tw − 1 = 0} ∩ {tw0
tv + 1 = 0},

are components of Char1(AΓ), where v ∈ W is any neighbor of w0 in Γ. Clearly,
their intersection CW ∩ CW,w0,v = ∩w∈W {tw − 1 = 0} ∩ {tv + 1 = 0} is of strictly
positive dimension since n ≥ 3. By Proposition 3.10(1) we are done. �

Theorem 5.26 leaves the case of a strictly even complete graph Γ = Kn, n ≥ 3
open. Nevertheless one can still use properties of the characteristic varieties to
rule out quasi-projectivity for such graphs in many instances. For simplicity, we
consider here just the case Γ = K3.
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Theorem 5.27. The hyperbolic groups A(2p, 2q, 2r) are not quasi-projective if
(p, q, r) �= (k, k, k) with k odd.

Proof. From the Alexander matrix of G = A(2p, 2q, 2r) we readily obtain the

Fitting ideals Fi of M̃G:

F1 =I · ((t1 − 1)Δr(t1t2)Δq(t1t3), (t2 − 1)Δr(t1t2)Δp(t2t3),

(t3 − 1)Δq(t1t3)Δp(t2t3)) ,

F2 =((t1 − 1)Δr(t1t2), (t2 − 1)Δr(t1t2), (t2 − 1)Δp(t2t3), (t3 − 1)Δp(t2t3),

(t1 − 1)Δq(t1t3), (t3 − 1)Δq(t1t3)) ,

see Figure 1 and Proposition 5.21 for the notation.
We may restrict to G = A(2p, 2q, 2r), p ≥ 2, q ≥ 2, r ≥ 1 since A(2p, 2, 2), p ≥ 1

are spherical and A(4, 4, 2) is euclidean. There are two cases r = 1 and r ≥ 2.

Notation 5.28. Denote by μ∗
N the set of the N -th roots of unity distinct

from 1.

Case 1. Suppose r = 1, p ≥ 3, and p, q are coprime.

Then Char1(G) has pq irreducible components, one of dimension zero (1, 1, 1),
and pq − 1 of dimension one:

C1,ζ ={t1 − 1 = t2t3 − ζ = 0}, ζ ∈ μ∗
q

C2,ζ,ξ ={t2t3 − ζ = t1t2 − ξ = 0}, ζ ∈ μ∗
q , ξ ∈ μ∗

p,

C3,ξ ={t3 − 1 = t1t2 − ξ = 0}, ξ ∈ μ∗
p.

Furthermore Char2(G) consists of just (1, 1, 1). Now the 1-dimensional components
of Char1(G) intersect as follows:

C1,ζ ∩ C2,ζ,ξ = {(1, ξ, ζξ−1)}, C3,ξ ∩ C2,ζ,ξ = {(ξζ−1, ζ, 1)}.
Clearly (1, ξ, ζξ−1) and (ξζ−1, ζ, 1)} do not belong to Char2(G). This case follows
from Proposition 3.16.

Case 2. Suppose r = 1, p ≥ 3 and gcd(p, q) = d > 1.

The types of components of Char1(G) are identical to the ones when p, q are
coprime. Furthermore Char2(G) consists of p+ q− 1 points: (1, 1, 1), (1, ξ, 1), with
ξ ∈ μ∗

p ∩ μ∗
q . Nevertheless, some of the intersections

C1,ζ ∩ C2,ζ,ξ = {(1, ξ, ζξ−1)} and C3,ξ ∩ C2,ζ,ξ = {(ξζ−1, ζ, 1)}
will not be in Char2(G), unless ξ = ζ ∈ μ∗

p ∩ μ∗
q . If p and q are distinct then one

can always find a ξ ∈ μ∗
p and a ζ ∈ μ∗

q that are not equal. If p = q then ζξ−1 must
be 1 for all pairs ξ, ζ ∈ μ∗

p, which is only possible when p = q = 2 (excluded).
Thus, there will always be a pair of components intersecting outside Char2(G)

and thus the group is not in QP, by Proposition 3.16.

Case 3. Suppose p, q, r ≥ 2, not all equal.

Let α ∈ μ∗
p, β ∈ μ∗

q , γ ∈ μ∗
r . Then Char1(G) has (1, 1, 1) as an isolated point,

and pq + qr + rp− p− q − r components of dimension one, of two types:

C1,β = {t1 − 1 = t2t3 − β = 0} and C1,α,γ = {t1t2 − α = t1t3 − γ = 0},
and similarly C2,γ , C3,α, respectively C2,α,β , C3,β,γ . Furthermore Char2(G) consists
of (1, 1, 1) and possibly points of the following three types:
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• having two trivial coordinates, namely either (ξ, 1, 1) with ξ ∈ μ∗
p ∩ μ∗

r , or
(1, ξ, 1), ξ ∈ μ∗

p ∩ μ∗
q , or (1, 1, ξ), ξ ∈ μ∗

q ∩ μ∗
r);

• having one trivial coordinate, namely either (1, ξ, ζ) with ξ ∈ μ∗
p, ζ ∈ μ∗

r

or ξζ ∈ μ∗
q , and the corresponding ones with 1 in the other variables;

• having no trivial coordinates, namely (t−1, tξ, tζ) with ξ ∈ μ∗
p, ζ ∈ μ∗

r and

t2ξζ ∈ μ∗
q .

Consider the following intersections of 1-dimensional components of Char1(G):

C1,β ∩ C2,α,β = {(1, α, βα−1)}, C1,β ∩ C3,β,γ = {(1, γβ−1, β)}.
In order for (1, α, βα−1) to be in Char2(G) either α = β ∈ μ∗

p ∩ μ∗
q , or βα

−1 ∈ μ∗
r .

Similarly (1, γβ−1, β) ∈ Char2(G) if either β = γ ∈ μ∗
q ∩ μ∗

r , or γβ
−1 ∈ μ∗

p.
Since p, q, r are not all equal, we have p > 2; we choose α a primitive root in

μ∗
p, and β ∈ μ∗

q , also primitive, distinct from α. This implies that βα−1 ∈ μ∗
r . If

α2 �= β then we must also have βα−2 ∈ μ∗
r . It follows that α ∈ μ∗

r , which is also the
case if α2 = β. We deduce that which implies p | r, which leads to a contradiction.
Using Proposition 3.16, we deduce that the groups in this Case are not in QP.

Case 4. Suppose p = q = r ≥ 2, p = 2k even.

We show that A(2p, 2p, 2p), p ≥ 2 is not in QP, by testing the characteristic
varieties of its index 2 subgroup N defined by the homomorphism x1, x2 → 0, x3 →
1 mod 2. Then N is generated by xi, yi := x3xix

−1
3 , i = 1, 2, and z := x2

3. The
relations are:

R = {(x1x2)
2k = (x2x1)

2k, (y1y2)
2k = (y2y1)

2k, (xiyiz)
k = (yizxi)

k = (zxiyi)
k}.

By abuse of notation we denote the generators ofH1(N) = Z
5 by x1, x2, y1, y2, z.

We see that certain irreducible components of Char1(N) intersect in dimension 1.
More precisely, for ξ ∈ μ∗

k the following 2-dimensional tori

C1,2 = {x1 − 1 = y2 − 1 = z − 1 = 0}, C2,1 = {x2 − 1 = y1 − 1 = z − 1 = 0},
Cξ,1 = {x1x2 − ξ = y1 − 1 = z − 1 = 0}, Cξ,2 = {x1x2 − ξ = y2 − 1 = z − 1 = 0},
C1,ξ = {y1y2 − ξ = x1 − 1 = z − 1 = 0}, C2,ξ = {y1y2 − ξ = x2 − 1 = z − 1 = 0},
are components of Char1(N), and we have that

C1,2 ∩ C1,ξ = {(1, t, ξ, 1, 1) | t ∈ C
∗}, C1,2 ∩ Cξ,2 = {(1, ξ, t, 1, 1) | t ∈ C

∗},
C2,1 ∩ C2,ξ = {(1, t, ξ, 1, 1) | t ∈ C

∗}, C2,1 ∩ Cξ,2 = {(ξ, 1, 1, t, 1) | t ∈ C
∗}.

Using Proposition 3.10(1), we conclude that these groups are not quasi-projective.
�

Example 5.29. The case excluded in Theorem 5.27 cannot be treated as Case 4.
We sketch a proof for the simplest case A(6, 6, 6). Let N = kerψ, where ψ is the
morphism sending each generator to the same non-trivial element of Z3. One can
check that b1(N) = 7 and that Char4(N) has three irreducible components of
dimension 2 through 1. The group N , and thus A(6, 6, 6), is not quasi-projective
by Proposition 3.12(1).

Example 5.30. We will consider the case where Γ has three vertices and two
edges labeled 2, 3, say Γ(∞, 3, 2) (see Figure 1). The representation A(∞, 3, 2) → Σ3

given by 1 �→ (1, 2), 2 �→ 1, and 3 �→ (2, 3) has as kernel the Artin group of a bamboo
with 4 vertices and labels (2, 4, 2), which is not quasi-projective by Proposition 5.23.
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The case Γ(∞, 3, 3) can be treated analogously, since the natural representa-
tion A(∞, 3, 3) → Σ3 given by 1 �→ (1, 2), 2 �→ (2, 3), and 3 �→ (2, 3) has as kernel
the Artin group of a triangle Γ(∞, 4, 4), which is not quasi-projective by Proposi-
tion 5.23.

Example 5.31. We will prove that A(5, 4, 2) /∈ QP (note that b1(A(5, 4, 2)) =
2). Consider the following representation A(5, 4, 2) → Σ5 given by 1 �→ (2, 3), 2 �→
(2, 3)(4, 5), and 3 �→ (1, 2)(3, 4). Its kernel K has Betti number 4, and Char1(K)

has three irreducible components V 2
1 , V

1
2 , V

1
3 (dimV j

i = j). However V 2
1 ∩ V 1

2 /∈
Char2(K), which contradicts Proposition 3.16.

The case A(5, 5, 4) can be treated similarly (note that b1(A(5, 5, 4)) = 1).
Consider the following representation A(5, 5, 4) → Σ5 given by 1 �→ (2, 3)(4, 5),
2 �→ (2, 4)(3, 5), and 3 �→ (1, 2)(3, 4). Its kernel K has Betti number 3, and
Char1(K) has three 1-dimensional irreducible components V1, V2, V3. However
V1 ∩ V2 /∈ Char2(K), which contradicts Proposition 3.16.

6. Pencil map construction

We fix a quasi-projective group G = π1(M). We assume that b1(G) > 1 and
that the first characteristic variety Char1(G) ⊂ TG is not 0-dimensional. Then,
according to Theorem 3.7, each irreducible component W of dimension d > 0 of
Char1(G) is of the form W = f∗(V ), where f : M → C is an orbifold morphism (see
Definition 2.6), b1(C) = d, and V ⊂ TC is an irreducible component of Char1(C).
In light of these facts, we make the following construction.

Suppose that fi : M → Ci, 1 ≤ i ≤ k are the pencils determined by the
irreducible components of Char1(G) passing through the trivial character 1 ∈ TG.
Define F : M → C1 × · · · × Ck to be the product map and let φ = F# be the
induced homomorphism

φ := φ1 × · · · × φk : G → D = π1 × · · · × πk,

where πi := π1(Ci), and φi = (fi)# : G → πi. Note that none of the factors of D
is abelian.

If N := kerψ and S := imφ, then we have exact sequences: 1 → N → G →
S → 1 and 1 → T → D → A → 1, where T = S̄ is the normal closure of S in
D and A := D/T . Note that, in the terminology of Bridson-Miller [17], S is a
subdirect product of D, due to the surjectivity of each φi. Note that if a subgroup
H of a direct product of π × σ is such that π ∩H is trivial, then H is isomorphic
to a subgroup of σ. In view of this we will assume that S intersects each factor πi

non-trivially, that is, S is a full subdirect product of G (cf. [17]).
We have the following lemma. The proof is immediate and will be omitted, see

also [17, Proposition 1.2].

Lemma 6.1. The group A is free abelian of finite rank.

Note that, since S is finitely presented, it is also of type FP2(Q), by Bridson-
Howie-Miller-Short [15, Theorem B]. It follows, for all n ≥ 1, that S is type Fn

if and only if is type FPn(Q). Moreover, again by [15, Theorem D], the normal
subgroup T shares the finiteness properties of S.

Remark 6.2. Recall that if 1 /∈ W , then ShdW is also an irreducible compo-
nent of Char1(G), unless C is supported either over C

∗ or over an elliptic curve.
The orbifold version of φ is obtained by considering all orbifold morphisms of M
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(and not only those whose associated components of Char1(G) pass through the
trivial character). Note that in this case A may have torsion.

Proposition 6.3. If φ is injective, then either G is finite index in D, or G is
of infinite index in D and not of type FPk(Q).

Proof. Suppose G has infinite index in D. The injectivity of φ implies G = S,
making G a direct subproduct of D. Now Bridson-Howie-Miller-Short [16, Theo-
rem C] ensures the existence of a finite index subgroup S0 of S = G which is not
type FPk(Q), and we are done. �

In the case where φ is injective and G is finite index in D, then G is clearly of
type FPk(Q).

Corollary 6.4. If G is an infinite index subgroup of D, then M is not a
K(G, 1).

Remark 6.5. By F. Catanese [20], φi has finitely generated kernel Ni if and
only if either g(Ci) = 0, or ≥ 1 and fi has no multiple fibers. Note that N =
N1 ∩ · · · ∩Nk.

Conjecture 6.6. The group G is of type FPk(Q) if and only if either φ is
not injective or G has a finite index subgroup which is a direct product of at most
k smooth curve groups.

Remark 6.7. Note that D is linear and residually finite (resp. nilpotent).
Thus, if φ is injective, then G is linear and residually finite (resp. nilpotent) as
well.

In the following examples we will exhibit some hyperplane arrangement groups
and study their pencil maps. In the context of line arrangements, a construction
similar to our pencil map was considered by Cohen-Falk-Randell in [23], where
analogous finiteness results and examples are given.

Example 6.8. Let M = P
2 \ A, with A the arrangement of 6 lines in P

2 with
coordinates x, y, z, given by Q = xyz(x− y)(y − z)(z − x). There is a total of five
pencil morphisms: four of them coming from the triple points of Q and one coming
from the pencil of conics through the triple points. The pencil map φ : G → (F2)

5

is not injective. In fact, for each pencil φi, G fits into a split exact sequence of the
form 1 → Ni → G → F2 → 1, where Ni is a free group of rank 3 generated by
meridians. Consider three meridians a1, a2, a3 such that two of them are meridians
of two lines intersecting at a double point. Then the commutator [[a1, a2], a3] is in
fact a non-trivial element of N = N1 ∩N2 ∩N3.

Example 6.9. Let M = P
2 \ A, where A is the arrangement of 6 lines in

P
2 given by Q = xyz(x − y)(y − z)(z − λx), λ �= 0, 1. Then φ : G → (F2)

3 is
injective and G = π1(M) is the Stallings group, fitting into the exact sequence:
1 → G → (F2)

3 → Z → 1.

The fact that Stallings’ group is realizable as an arrangement group has been
first discovered by the third author and A. Suciu in 2004, but no satisfactory exten-
sion of this observation to other arrangements was achieved then. We can now give
a generalization of the previous example, by realizing all the Stallings-Bieri groups
as arrangement groups. Further connections between Bestvina-Brady type groups
and fundamental groups of hypersurface complements will be pursued elsewhere.
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Proposition 6.10. Let Mk := P
k−1 \A and k > 3, where A is the hyperplane

arrangement in P
k−1 with coordinates x1, . . . , xk, given by

Q = x1 · · ·xk(x1 − x2)(x2 − x3) · · · (xk−2 − xk−1)(xk−1 − xk)(xk − λx1),

λ �= 0, 1. Then the group Gk = π1(Mk) has type Fk−1, but not Fk.

Proof. Consider the following map

(C \ {0, 1})k ψ→ C
∗, (x1, . . . , xk) �→ x1 · · ·xk.

At the level of fundamental groups it induces Bieri’s map (F2)
k → Z (cf. [13]).

It is easy to see that ψ is a locally trivial fibration outside the fiber of 1. The
generic fiber is homeomorphic to Mk. Since the critical locus is of real codimension
greater than 2, the kernel of Bieri’s map is Gk and the result follows from Bieri’s
arguments. �
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