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Abstract. We present a formulation of general nonlinear LC circuits within the framework of

Birkhoffian dynamical systems on manifolds. We develop a systematic procedure which allows,
under rather mild non-degeneracy conditions, to write the governing equations for the mathemat-
ical description of the dynamics of an LC circuit as a Birkhoffian differential system. In order

to illustrate the advantages of this approach compared to known Lagrangian or Hamiltonian
approaches we discuss a number of specific examples. In particular, the Birkhoffian approach

includes networks which contain closed loops formed by capacitors, as well as inductor cutsets.
We also extend our approach to the case of networks which contain independent voltage sources
as well as independent current sources. Also, we derive a general balance law for an associated

“energy function”.

Keywords. Conservative dynamical systems, Birkhoffian differential systems, Birkhoffian vec-
tor fields, electrical networks, geometric theory.

1. Introduction

In this paper we give a formulation of the dynamics of LC circuits within the
framework of Birkhoffian systems [3]. Based on the constitutive relations of the
involved inductors and capacitors and on Kirchhoff’s laws, we define a configura-
tion space and a corresponding Birkhoffian that describes the “elementary work”
done by a set of “generalized forces”. As a matter of fact, in order to cover circuits
for which the topological assumptions usually imposed in the literature, are not
satisfied, we are forced to describe a single circuit by a whole family of Birkhoffian
systems parameterized by a finite number of real parameters. Relevant values of
these parameters correspond to initial values for the time evolution of certain state
variables of the circuit. The dimension of each configuration space is given by the
cardinality of a selection of loops that cover the whole circuit.

In order to study the dynamics of LC circuits, various Lagrangian and Hamil-
tonian formulations have been considered in the literature (see for example [2], [4],
[5], [6], [9], [10]).
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In the Lagrangian approach, a central issue is the selection of suitable coordi-
nates and corresponding velocities in terms of which the Lagrangian function is
expressed. A specific technique for the sometimes difficult task of choosing the
proper Lagrangian variables is presented in paper [6].

More often Hamiltonian formulations have been used to describe circuit equa-
tions. In [2] it is shown how to construct, based on the circuit topology, canonical
variables and a Hamiltonian, so that the circuit equations attain canonical form.

For a more general approach including also resistors, the RLC circuits, see
Brayton–Moser’s approach [5]. In [5], under the hypothesis that the currents
through the inductors and the voltages across the capacitors determine all currents
and voltages in the circuit via Kirchhoff’s law, is proved the existence of the
mixed potential function with the aid of which the system of differential equations
describing the dynamics of such a network is written into a special form (see §4 in
[5]). The mixed potential function is constructed explicitly only for the networks
whose graph possesses a tree containing all the capacitor branches and none of the
inductive branches, that is, the network does no contain any loops of capacitors or
cutsets of inductors, each resistor tree branch corresponds to a current-controlled
resistor, each resistor co-tree branch corresponds to a voltage-controlled resistor
(see §13 in [5]).

In [9], the dynamics of a nonlinear LC circuit is shown to be of Hamiltonian
nature with respect to a certain Poisson bracket which may be degenerate, that
is, non-symplectic. In this formalism, the constitutive relations of the inductors
and capacitors are used to define the Hamiltonian function in terms of capacitor
charges and inductor fluxes, while the topological constraints of the network graph
and Kirchhoff’s laws define the Poisson bracket on the space of capacitor charge
and inductor flux variables.

But for all those formulations, a certain topological assumption on the electrical
circuit appears to be crucial, that is, the circuit is supposed to contain neither loops
of capacitors nor cutsets of inductors.

In [12], [10] and [4] the Poisson bracket is replaced by the more general notion
of a Dirac structure on a vector space, leading to implicit Hamiltonian systems.
The Hamiltonian function is the total electromagnetic energy of the circuit and
the vectorial state space is defined by the inductors’ fluxes and capacitors’ charges.
The Dirac structure on the state space is obtained from Kirchhoff’s laws. In this
formalism, it is possible to include networks which do not obey the topological
assumption mentioned before.

In the paper at hand we will see that the restricted class of networks involving
capacitor loops and inductor cut sets are naturally captured by the Birkhoffian
approach. We are going to discuss explicit examples in order to demonstrate the
advantages of the Birkhoffian approach in the analysis of the resulting systems.
Another advantage of the Birkhoffian approach is the possible inclusion of dissi-
pative effects caused by resistors included in a network. It is a straight-forward
matter to extend the approach presented here to the case of RLC circuits, that
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is circuits containing resistors in addition to capacitors and inductors. However,
to start it appears to be more instructive to restrict the theory to the case of LC
circuits. The investigation of RLC circuits will be presented in another paper.

The following parts of the paper are organized as follows. In Section 2 we
recall the basics of Birkhoffian systems (see [3]) presented from the point view of
differential geometry using the formalism of jets (see [8]). Birkhoffian formalism
is a global formalism of the dynamics of implicit systems of second order ordinary
differential equations on a manifold. In particular, we extend the approach in
[8] to non-autonomous systems in order to be able to treat the case of networks
with independent voltage and current sources later on in Section 4. In Section 3,
our Birkhoffian formulation of the dynamic equations of a nonlinear LC circuit
is introduced. Properties of the corresponding Birkhoffian such as its regularity
and its conservativeness are also discussed in this section. For a nonlinear LC
electric network each Birkhoffian of the family is conservative. If there exists in
the network some loop which contains only capacitors the Birkhoffian is never
regular. For such electrical circuits, we present a systematic procedure to reduce
the original configuration space to a lower dimensional one, thereby regularizing
the Birkhoffian. On the reduced configuration space the reduced Birkhoffian will
still be conservative. In case the LC circuit has loops which contain only linear
inductors, the original configuration space can be further reduced to a lower di-
mensional one. Inductor loops can be regarded as some conservative quantities
of the network. In Section 4 we give a Birkhoffian formulation of a nonlinear LC
circuit with independent sources and discuss in this context the concepts of regu-
larity and conservativeness. For instance, it turns out that voltage sources do not
destroy conservativeness, even in the nonlinear case, while current sources might
do so. Finally, in Section 5 we consider some specific examples. These examples
are supposed to serve our purpose of demonstrating the power of the Birkhoffian
approach. In particular, we can allow capacitor loops as well as inductor cutsets,
as already mentioned before. Also, we investigate the question of conservativeness
of the underlying Birkhoffian in case of a circuit with independent current and
voltage sources.

2. Birkhoffian systems

For a smooth m-dimensional differentiable connected manifold M , we consider the
tangent bundles (TM, πM ,M) and (TTM, πTM , TM). Let q = (q1, q2,..., qm) be
a local coordinate system on M . This induces natural local coordinate systems on
TM and TTM , denoted by (q, q̇), respectively (q, q̇, dq, dq̇). The 2-jets manifold
J2(M) is a 3m-dimensional submanifold of TTM defined by

J2(M) = {z ∈ TTM / TπM (z) = πTM (z)} (2.1)

where TπM : TTM → TM is the tangent map of πM . We write πJ := πTM |J2(M) =
TπM |J2(M). (J2(M), πJ , TM), called the 2-jet bundle (see [8]), is an affine bun-
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dle modelled on the vertical vector bundle (V (M), πTM |V (M), TM), V (M) =⋃
v∈TM Vv(M) , where Vv(M) = {z ∈ TvTM | (TπM )v(z) = 0}. In [1], [11] this

bundle is denoted by T 2(M) and named second-order tangent bundle. In natural
local coordinates, the equality in (2.1) yields (q, q̇, q̇, dq̇|J2(M)) as a local coordi-
nate system on J2(M). We set q̈ := dq̇|J2(M). Thus, a local coordinate system q
on M induces the natural local coordinate system (q, q̇, q̈) on J2(M). For further
details on this affine bundle see [1], [8], [11].

A Birkhoffian corresponding to the configuration manifold M is a smooth
1-form ω on J2(M) such that, for any x ∈ M , we have

i∗xω = 0 (2.2)

where ix : β−1(x) → J2(M) is the embedding of the submanifold β−1(x) into
J2(M), β = πM ◦ πJ . From this definition it follows that, in the natural local
coordinate system (q, q̇, q̈) of J2(M), a Birkhoffian ω is given by

ω =

m∑

j=1

Qj(q, q̇, q̈)dqj (2.3)

with certain functions Qj : J2(M) → R.
The pair (M, ω) is said to be a Birkhoff system (see [8]).
The differential system associated to a Birkhoffian ω (see [8] ) is the set

(maybe empty) D(ω), given by

D(ω) :=
{
z ∈ J2(M) |ω(z) = 0

}
. (2.4)

The manifold M is the space of configurations of D(ω), and D(ω) is said to have
m ’degrees of freedom’. The Qi are the ’generalized external forces’ associated to
the local coordinate system (q). In the natural local coordinate system, D(ω) is
characterized by the following implicit system of second order ODE’s

Qj(q, q̇, q̈) = 0 for all j = 1,m. (2.5)

We conclude that the Birkhoffian formalism is a global formalism for the dynamics
of implicit systems of second order differential equations on a manifold.

Let us now associate a vector field to a Birkhoffian ω.
A vector field Y on the manifold TM is a smooth function Y : TM → TTM such
that πTM ◦ Y =id. Any vector field Y on TM is called a second order vector field
on TM if and only if TπM (Yv) = v for all v ∈ TM .

A cross section X of the affine bundle (J2(M), πJ , TM), that is, a smooth
function X : TM → J2(M) such that πJ ◦ X=id, can be identified with a special
vector field on TM , namely, the second order vector field on TM associated to
X. Indeed, because (J2(M), πJ , TM) is a sub-bundle of (TTM, πTM , TM) as
well as of (TTM,TπM , TM), its sections can be regarded as sections of these two
tangent bundles. Thus, using the canonical embedding i : J2(M) → TTM , X can
be identified with Y , that is, Y = i ◦ X.
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In natural local coordinates a second order vector field can be represented as

Y =

m∑

j=1

[
q̇i ∂

∂qi
+ q̈i(q, q̇)

∂

∂q̇i

]
. (2.6)

A Birkhoffian vector field associated to a Birkhoffian ω of M (see [8]) is a
smooth second order vector field on TM , Y = i◦X, with X : TM → J2(M), such
that ImX ⊂ D(ω), that is

X∗ω = 0. (2.7)

In the natural local coordinate system, a Birkhoffian vector field is given by
(2.6), such that Qj(q, q̇, q̈(q, q̇)) = 0.

A Birkhoffian ω is regular if and only if

det

[
∂Qj

∂q̈i
(q, q̇, q̈)

]

i,j=1,...,m

6= 0 (2.8)

for all (q, q̇, q̈), and for each (q, q̇), there exists q̈ such that Qj(q, q̇, q̈) = 0, j =
1, ...,m.

If a Birkhoffian ω of M is regular, then it satisfies the principle of determinism,
that is, there exists an unique Birkhoffian vector field Y = i ◦ X associated to ω
such that ImX = D(ω) (see [8]).

A Birkhoffian ω of M is called conservative if and only if there exists a smooth
function Eω : TM → R such that

(X∗ω)Y = dEω(Y ) (2.9)

for all second order vector fields Y = i ◦ X (see [8]).
Equation (2.9) is equivalent, in the natural local coordinate system, to the

identity (see [3], p. 16, eq. 4)
m∑

j=1

Qj(q q̇, q̈)q̇j =

m∑

j=1

[
∂Eω

∂qj
q̇j +

∂Eω

∂q̇j
q̈j

]
. (2.10)

Eω is constant on TM if and only if dEω(Y ) = 0 for all second order vector
fields Y on TM (see [8]).

If ω is conservative and Y is a Birkhoffian vector field, then (2.9) becomes

dEω(Y ) = 0. (2.11)

This means that Eω is constant along the trajectories of Y .
It is also possible to introduce, in a natural manner, the notion of constrained

Birkhoff system (see [8], §4).
Let (M , ω) be a Birkhoff system and S a smooth constant rank affine sub-

bundle of the affine bundle πJ : J2(M) −→ TM. Locally, the submanifold S of
codimension n, is described by the vanishing of n independent affine functions

φν(q, q̇, q̈) =

m∑

i=1

bν
i (q, q̇)q̈i + aν(q, q̇), ν = 1,n. (2.12)
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A triple (M , ω, S) is called constrained Birkhoff system .
The constrained differential system associated to the constrained Birk-

hoff system (M , ω, S) is the set

D(ω,S) = {z ∈ S|ω(z) = 0}. (2.13)

Let us now generalize these concepts to time-dependent dynamical systems.
For the usual formulation of Lagrangian and Hamiltonian time-dependent me-

chanics (see for example [1], §5.1, [11] §4.1, §4.6 ), the configuration space has
the form R × M , the phase space has the form R × T ∗M , and the velocity space
has the form R × TM , with some manifold M. If (t, q) is a coordinate system on
R × M , then (t, q, q̇) is a coordinate system on R × TM . Thus, R × TM can be
interpreted as a submanifold of T (R × M) given by

ṫ = 1. (2.14)

From the physical point of view, this means that a reference frame has been
chosen. This is not the case for relativistic mechanics. The reference system
provides a splitting between the time and the state coordinates of a mechanical
system. Within the Birkhoffian framework, we follow the usual non-relativistic
lines. Thus, for the time-dependent system, we have in addition the equation

ẗ = 0. (2.15)

In view of (2.14), (2.15), we choose in the study of time-dependent dynamical
systems the extended bundle R × J2(M).

A time-dependent Birkhoffian is a smooth family of 1-forms ωt on J2(M)
defined by

ωt =

m∑

j=1

Qj(t, q, q̇, q̈)dqj . (2.16)

where (t, q, q̇, q̈) is the natural local coordinate system on R × J2(M). Thus, our
time-dependent Birkhoffian is obtained by merely freezing t and constructing the
Birkhoffian for any fixed value of t as before.

A time-dependent second order vector field (see [11]) on R × TM has the
following representation in the natural local coordinate system

Yt =
∂

∂t
+

m∑

j=1

[
q̇j ∂

∂qj
+ q̈j(t, q, q̇)

∂

∂q̇j

]
. (2.17)

Thus, for a time-dependent system, a time-dependent Birkhoffian vector

field on R × T (M) has the representation (2.17), where Qj(t, q, q̇, q̈(t, q, q̇)) = 0.
A time-dependent Birkhoffian ωt is regular if and only if

det

[
∂Qj

∂q̈i
(t, q, q̇, q̈)

]

i,j=1,...,m

6= 0 (2.18)

for all (t, q, q̇, q̈), and for each (t, q, q̇), there exists q̈ such that Qj(t, q, q̇, q̈) =
0, j = 1, ...,m.
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A time-dependent Birkhoffian ωt is called conservative if and only if there
exists a smooth family of functions Eωt

: TM −→ R such that, everywhere,
m∑

j=1

Qj(t, q q̇, q̈)q̇j =

m∑

j=1

[
∂Eωt

∂qj
q̇j +

∂Eωt

∂q̇j
q̈j

]
. (2.19)

If ωt is conservative and Yt is a time-dependent Birkhoffian vector field then,
from (2.19), we obtain the generalized balance law

dEωt

dt
=

∂Eωt

∂t
(2.20)

along trajectories of Yt.

3. LC circuit dynamics

A simple electrical circuit provides us with an oriented connected graph, that is,
a collection of points, called nodes, and a set of connecting lines or arcs, called
branches, such that in each branch is given a direction and there is at least one
path between any two nodes. A path is a sequence of branches such that the
origin of the next branch coincides with the end of the previous one. The graph
will be assumed to be planar, that is, it can be drawn in a plane without branches
crossing. For the graph theoretic terminology, see, for example [7].

Let b be the total number of branches in the graph, n be one less than the
number of nodes and m be the cardinality of a selection of loops that cover the
whole graph. Here, a loop is a path such that the first and last node coincide
and that does not use the same branch more than once. By Euler’s polyhedron
formula, b = m + n.

A cutset in a connected graph, is a minimal set of branches whose removal from
the graph, renders the graph disconnected. For example, the set branches tied to
a node is a cutset.

We choose a reference node and a current direction in each l-branch of the
graph, l = 1, ..., b. We also consider a covering of the graph with m loops, and
a current direction in each j-loop, j = 1, ...,m. We assume that the associated
graph has at least one loop, meaning that m > 0.

A graph can be described by matrices: a (bn)-matrix B ∈ Mbn(R), rank(B) =
n, called incidence matrix and a (bm)-matrix A ∈ Mbm(R), rank(A) = m, called
loop matrix. These matrices contain only 0,1, −1. An element of the matrix B
is 0 if a branch b is not incident with a node n, 1 if branch b enters node n and
−1 if branch b leaves node n, respectively. An element of the matrix A is 0 if a
branch b does not belong to a loop m, 1 if branch b belongs to loop m and their
directions agree and −1 if branch b belongs to loop m and their directions oppose,
respectively. For the fundamentals of electrical circuit theory, see, for example [6].

The states of the circuit have two components, the currents through the bran-
ches, denoted by i ∈ Rb, and the voltages across the branches, denoted by v ∈ Rb.
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Using the matrices A and B, Kirchhoff’s current law and Kirchhoff’s voltage law
can be expressed by the equations

BT i = 0 (KCL) (3.1)

AT v = 0 (KV L) (3.2)

Tellegen’s theorem establishes a relation between the matrices AT and BT : the
kernel of the matrix BT is orthogonal to the kernel of the matrix AT (see e.g., [5]
page 5).

The next step is to introduce the branch elements in a simple electrical cir-
cuit. The branches of the graph associated to an LC electrical circuit, can be
classified into two categories: inductor branches and capacitor branches. A capac-
itor loop will contain only capacitor branches and an inductor cutset will contain
only inductor branches. Let k denote the number of inductor branches and p the
number of capacitor branches, respectively. We assume that just one electrical
device is associated to each branch, then, we have b = k + p. Thus, we can write
(ia, iα) ∈ Rr × Rp ≃ Rb, where ia, iα are the currents through the inductors, the
capacitors, respectively, and v = (va, vα) ∈ Rk × Rp ≃ Rb, where va, vα describe
the voltage drops across the the inductors, the capacitors, respectively.

To exemplify, let us now write the matrices B and A, for a circuit which contains
four inductors, three capacitors and which has the following oriented connected
graph

I
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I
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1

C

C

C

V

V

VV

1

2

3

4

1

2

3

1

2

3

4

L

L

L

L

=0

Figure 1

We have k = 4, p = 3, n = 3, m = 4 , b = 7. We choose the reference node
to be V4 and the current directions as indicated in Figure 1. We cover the graph
with the loops I1, I2, I3, I4. Let V = (V1, V2, V3) ∈ R3 be the vector of node
voltage values, i = (ia, iα) ∈ R4 × R3 be the vector of branch current values and
v = (va, vα) ∈ R4 × R3 be the vector of branch voltage values.

The branches in Figure 1 are labelled as follows: the first, the second, the third
and the fourth branch are the inductor branches L1, L2, L3, L4 and the last three
branches are the capacitor branches C1, C2, C3. The incidence and loop matrices,
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B ∈ M73(R) and A ∈ M74(R), write as

B =




0 0 1
0 1 0
0 1 −1
1 0 −1
−1 0 0
0 −1 0
1 −1 0




, A =




0 0 1 −1
0 1 −1 0
0 0 1 0
0 0 0 −1
1 0 0 −1
−1 1 0 0
1 0 0 0




. (3.3)

For another choice of the covering loops and of the current directions in the loops
we obtain a different matrix A and for another choice of the reference node and of
the current directions in the branches we obtain a different matrix B.

Each capacitor is supposed to be charge-controlled. For the nonlinear capaci-
tors we assume

vα = Cα(qα), α = 1, ..., p (3.4)

where the functions Cα : R −→ R\{0} are smooth and invertible, and the qα’s
denote the charges of the capacitors. The current through a capacitor is given by
the time-derivative of the corresponding charge

iα =
dqα

dt
, α = 1, ..., p (3.5)

t being the time variable.
Each inductor is supposed to be current-controlled. For the nonlinear inductors

we assume

va = La(ia)
dia
dt

, a = 1, ..., k (3.6)

where La : R −→ R\{0} are smooth invertible functions.
If the capacitors and the inductors are linear then the relations (3.4) and (3.6)

become, respectively,

vα =
qα

Cα

, va = La

dia
dt

(3.7)

where Cα 6= 0 and La 6= 0 are distinct constants.
Taking into account (3.4), (3.5), (3.6), the equations (3.1), (3.2), become





BT

(
ia

dqα

dt

)
= 0

AT

(
La(ia) dia

dt

Cα(qα)

)
= 0

. (3.8)

In the following we give a Birkhoffian formulation for the network described by
the system of equations (3.8). Using the first set of equations (3.8), we are going
to define a family of m-dimensional affine-linear configuration spaces Mc ⊂ Rb

parameterized by a constant vector c in Rn. This vector is related to the initial
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values of the q-variables at some instant of time. At this point we notice that
actually already the initial values corresponding to the q-variables associated to
capacitors, together with those of m distinguished branch currents denoted by q̇j

below, parameterize the whole solution set of the equations in (3.8). A Birkhoffian
ωc of the configuration space Mc arises from a linear combination of the second
set of equations (3.8). Thus, (Mc, ωc) will be a family of Birkhoff systems that
describe the LC circuit considered.

We notice that the first set of equations (3.8) remains exactly the same for linear
and nonlinear electrical devices. Thus, for obtaining the configuration space, it
is not important whether the devices are linear or nonlinear. We shall see below
that the only difference is that one ends up with a nonlinear configuration space
or rather configuration manifold when one regularizes the resulting Birkhoffian
system in the case of nonlinear networks.

Let H : Rb −→ Rn be a linear map that, with respect to a coordinate system
(x1, ..., xb) on Rb, is given by

H(x1, ..., xb) = BT




x1

...
xb


 . (3.9)

Then, H−1(c), with c a constant vector in Rn, is an affine-linear subspace in Rb.
Its dimension is m = b − n, because rank(B) = n.

We define Mc as

Mc := H−1(c). (3.10)

We denote a coordinate system on Mc by q = (q1, ..., qm). Then, the natural
coordinate system on the 2-jet bundle J2(Mc) is (q, q̇, q̈).

Let us now represent the Birkhoffian in a specific coordinate system on Mc:
In the vector space Rk, we identify points and vectors

ia :=
dq(a)

dt
, (3.11)

where (q(a))a=1,...,k is a coordinate system on Rk. Taking into account (3.11) and

the fact that the matrix BT is a constant matrix, we integrate the first set of
equations (3.8) to arrive at

BT

(
q(a)

qα

)
= c (3.12)

with c a constant vector in Rn.
Likewise consider coordinates on Rb ≃ Rk × Rp defined by

x1 := q(1), ..., xk := q(k), xk+1 := q1, ..., xb := qp. (3.13)

From (3.9), (3.10), we see that we can define coordinates on Mc by solving the
equations in (3.12) in terms of an appropriate set of m of the q-variables, say
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q = (q1, ..., qm). In other words, we express any of the x-variables as a function of
q = (q1, ..., qm), namely,

xa =
m∑

j=1

N a
j qj + const, a = 1, ..., k,

xα =
m∑

j=1

Nα
j qj + const, α = k + 1, ..., b (3.14)

with certain constants N a
j , and Nα

j . Here we can think of the constants const as
being initial values of the x-variables at some instant of time.

From (3.5), (3.11), (3.13) and differentiating (3.14) we get

i = N q̇ (3.15)

with the matrix of constants N ∈ Mbm(R), for some q̇ ∈ Rm.
Using Tellegen’s theorem and a fundamental theorem of linear algebra, we now

find a relation between the matrices N and A. By a fundamental theorem of linear
algebra we have

(Ker(AT ))⊥ = Im(A) (3.16)

where A ∈ Mbm(R), Ker(AT ) := {x ∈ Rb |AT x = 0} is the kernel of AT ,
Im(A) := {x ∈ Rb |Ay = x, for some y ∈ Rm} is the image of A and ⊥ denotes
the orthogonal complement in Rb of the respective vector subspace.

For the incidence matrix B ∈ Mbn(R) and the loop matrix A ∈ Mbm(R),
which satisfy Kirchhoff’s law (3.1), (3.2), Tellegen’s theorem writes as

Ker(BT ) = (Ker(AT ))⊥. (3.17)

From the first set of equations in (3.8), and by constraction of the matrix N in
(3.15), we have

Ker(BT ) = Im(N ). (3.18)

Therefore, using (3.16), (3.17), (3.18), we obtain Im(A) = Im(N ). Then, another
application of (3.16) yields

Ker(AT ) = Ker(N T ). (3.19)

Taking into account (3.19), we see that there exists a nonsingular matrix C ∈
Mmm(R) satisfing

CAT = N T . (3.20)

The matrix C provides a relation between the vector of the m independent loop
currents and the coordinate vector q introduced on Mc.

Taking into account (3.19), we define the Birkhoffian ωc of Mc such that the
differential system (2.5) is the linear combination of the second set of equations
in (3.8) obtained by replacing AT with the matrix N T . Thus, in terms of q-
coordinates as chosen before, the expressions of the components Qj(q, q̇, q̈) from
(2.3) are

Qj(q, q̇, q̈) = Fj(q̇)q̈ + Gj(q), j = 1, ...,m (3.21)
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where

Fj(q̇)q̈ =

k∑

a=1

N a
j La

(
m∑

l=1

N a
l q̇l

)
m∑

i=1

N a
i q̈i =

m∑

i=1

(
k∑

a=1

N a
j N a

i L̃a (q̇)

)
q̈i (3.22)

Gj(q) =

b∑

α=k+1

N α
j Cα−k

(
m∑

l=1

Nα
l ql + const

)
=

b∑

α=k+1

N α
j C̃α−k (q) . (3.23)

We claim that the Birkhoffian (3.21) is a conservative one.
Indeed, for our problem, the relation (2.10) becomes

m∑

j=1

[(
m∑

i=1

k∑

a=1

N a
j N a

i L̃a(q̇)q̈i

)
q̇j + Gj(q)q̇

j

]
=

m∑

j=1

[
∂Eωc

∂qj
q̇j +

∂Eωc

∂q̇j
q̈j

]
(3.24)

or (changing the indices of summation)

m∑

j=1

[(
m∑

i=1

k∑

a=1

N a
i N a

j L̃a (q̇) q̇i

)
q̈j + Gj(q)q̇

j

]
=

m∑

j=1

[
∂Eωc

∂qj
q̇j +

∂Eωc

∂q̇j
q̈j

]
.

(3.25)
Because of the special form of the terms on the left hand side of (3.25), we

can look for the required function Eωc
(q, q̇) as a sum of a function depending only

on q, and a function depending only on q̇. From the theory of total differentials,
a necessary condition for the existence of such functions is the fulfilment of the
following relations 




∂Gj(q)
∂ql − ∂Gl(q)

∂qj = 0

∂Fj(q̇)
∂q̇l − ∂Fl(q̇)

∂q̇j = 0

. (3.26)

for any j, l = 1, ...,m, where

Fj(q̇) :=

m∑

i=1

k∑

a=1

N a
i N a

j L̃a (q̇) q̇i. (3.27)

In view of (3.23), (3.27) we get:

∂Gj(q)

∂ql
=

b∑

α=k+1

Nα
j Nα

l C̃ ′
α−k(q) (3.28)

∂Fj(q̇)

∂q̇l
=

k∑

a=1

N a
l N

a
j L̃a(q̇) +

m∑

i=1

k∑

a=1

N a
i N

a
j N

a
l L̃′

a(q̇)q̇i (3.29)

where C̃ ′
α := dC̃α(η)

dη
, L̃′

a := dL̃a(η)
dη

. Therefore, the left hand side of (3.26) become

b∑

α=k+1

(Nα
j Nα

l −Nα
l Nα

j )C̃ ′
α−k(q) (3.30)
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k∑

a=1

(
N a

l N
a
j −N a

j N
a
l

)
(

L̃a(q̇) − L̃′
a(q̇)(

m∑

i=1

N a
i q̇i)

)
. (3.31)

We now easily see that the expressions in (3.30), (3.31) are zero and (3.26) are
satisfied. Thus, we proved the existence of a function Eωc

(q, q̇) such that (3.25) is
fulfilled.

Let us now look for the expression of this function. For linear devices, taking
into account (3.7), we have

L̃a(q̇) = La, C̃α−k(q) =

∑m
i=1 N

α
i qi

Cα−k

+ const (3.32)

with La, Cα being real constants. Therefore, the functions Fj(q̇) and Gj(q) from
(3.27), (3.23) become

Fj(q̇) :=

m∑

i=1

k∑

a=1

LaN
a

i N a
j q̇i (3.33)

Gj(q) :=

b∑

α=k+1

m∑

i=1

N α
j Nα

i

Cα−k

qi + (const)j . (3.34)

Thus, in the linear case, it is not difficult to find the function Eωc
(q, q̇) such that

(3.25) is satisfied. This is

Eωc
(q, q̇) =

1

2

k∑

a=1

m∑

i,j=1

LaN
a
i N

a
j q̇iq̇j +

1

2

b∑

α=k+1

m∑

i,j=1

Nα
i Nα

j

Cα−k

qiqj +

m∑

j=1

(const)jq
j .

(3.35)
In order to derive such a function for nonlinear devices, we start with the equations





∂Eωc

∂q̇1 = F1(q̇) =
∑m

i=1

∑k
a=1 N

a
i N a

1 L̃a (q̇) q̇i

∂Eωc

∂q1 = G1(q) =
∑b

α=k+1 N
α

1 C̃α−k (q)

. (3.36)

Integrating with respect to q1 and q̇1, respectively, we get

Eωc
(q1, ..., qm, q̇1, ..., q̇m) =

k∑

a=1

∫
L̃a (q̇)N a

i q̇iN a
1 dq̇1 + f1(q̇

2, ..., q̇m) +

b∑

α=k+1

∫
C̃α−k (q)N α

1 dq1 + g1(q
2, ..., qm) (3.37)

f1 depends only on q̇2, ..., q̇m and g1 depends only on q2, ..., qm. For j = 2, we
have 




∂Eω

∂q̇2 = F2(q̇) =
∑m

i=1

∑k
a=1 N

a
i N a

2 L̃a (q̇) q̇i

∂Eω

∂q1 = G2(q) =
∑b

α=k+1 N
α

2 C̃α−k (q)

(3.38)
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and taking into account (3.37), we obtain

Eω(q1, ..., qm, q̇1, ..., q̇m) =
k∑

a=1

[∫
L̃a (q̇)N a

i q̇iN a
1 dq̇1 +

∫
L̃a (q̇)N a

i q̇iN a
2 dq̇2

−

∫ ∫
L̃′

a (q̇)N a
i q̇iN a

1 N
a
2 dq̇1dq̇2

−

∫ ∫
L̃a (q̇)N a

1 N
a
2 dq̇1dq̇2

]
+ f2(q̇

3, ..., q̇m)

+
b∑

α=k+1

[∫
C̃α−k (q)N α

1 dq1 +

∫
C̃α−k (q)N α

2 dq2

−

∫ ∫
C̃ ′

α−k (q)N α
1 N α

2 dq1dq2

]
+ g2(q

3, ..., qm) (3.39)

which can be written in the form

Eω(q, q̇)

=
k∑

a=1

2∑

l=1

2∑

i1<...<il=1

(−1)l+1

∫

...

∫

︸ ︷︷ ︸
l

[
L̃(l−1)

a (q̇)N a
i q̇i + (l − 1)L̃(l−2)

a (q̇)
]
N a

i1
...N a

il
dq̇i1 ...dq̇il

+

b∑

α=k+1

2∑

l=1

2∑

i1<...<il=1

(−1)l+1

∫

...

∫

︸ ︷︷ ︸
l

C̃
(l−1)
α−k (q)Nα

i1
...Nα

il
dqi1 ...dqil

+f2(q̇
3, ..., q̇m) + g2(q

3, ..., qm) (3.40)

where C̃
(l)
α := dlC̃α(η)

dηl , L̃
(l)
a := dlL̃a(η)

dηl .
Repeating this procedure for j = 3, ... m, finally in the m − th and last step,

we obtain

Eω(q, q̇)

=

k∑

a=1

m∑

l=1

m∑

i1<...<il=1

(−1)l+1

∫

...

∫

︸ ︷︷ ︸
l

[
L̃(l−1)

a (q̇)N a
i q̇i + (l − 1)L̃(l−2)

a (q̇)
]
N a

i1
...N a

il
dq̇i1 ...dq̇il

+

b∑

α=k+1

m∑

l=1

m∑

i1<...<il=1

(−1)l+1

∫

...

∫

︸ ︷︷ ︸
l

C̃
(l−1)
α−k (q)Nα

i1
...Nα

il
dqi1 ...dqil . ¤ (3.41)

Let us now discuss the question, what to do when the Birkhoffian given by
(3.21) is not regular in the sense of definition (2.8).
If there exists at least one loop in an LC circuit that contains only capacitors, then
the Birkhoffian associated to the network is never regular.
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Indeed, for the l-loop which contains only capacitors, on the column l of the
matrix A we have Aa

l = 0 for any a = 1, ..., k. Without loss of generality, we will
assume that l = 1, that is

Aa
1 = 0, for any a = 1, ..., k. (3.42)

For the Birkhoffian (3.21), the determinant in (2.8) becomes

det

[
∂Qj

∂q̈i
(q, q̇, q̈)

]

i,j=1,...,m

= det

[
k∑

a=1

N a
j N a

i L̃a (q̇)

]

i,j=1,...,m

. (3.43)

From (3.20), we get N a
j =

∑m
i1=1 C

i1
j Aa

i1
for any a = 1, ..., k, j = 1, ...,m. Then,

taking into account (3.42), we have, for example, in the case m = 2

k∑

a=1

N a
j N a

i L̃a (q̇) = C2
j C

2
i

[
(A1

2)
2L̃1 (q̇) + (A2

2)
2L̃2 (q̇) + ... + (Ak

2)2L̃k (q̇)
]
. (3.44)

Then,

det

[
k∑

a=1

N a
j N a

i L̃a (q̇)

]

j,i=1,2

=

[
k∑

a=1

(Aa
2)2L̃a (q̇)

]2
∣∣∣∣∣∣

C2
1C

2
1 C2

1C
2
2

C2
1C

2
2 C2

2C
2
2

∣∣∣∣∣∣
= 0 (3.45)

since the second factor obviously vanishes. In the case m = 3, we obtain

k∑

a=1

N a
j N a

i L̃a (q̇) = C2
j C

2
i

[
k∑

a=1

(Aa
2)2L̃a (q̇)

]
+

(
C2

j C
3
i + C2

i C
3
j

)
[

k∑

a=1

Aa
2Aa

3L̃a (q̇)

]

+C3
j C

3
i

[
k∑

a=1

(Aa
3)2L̃a (q̇)

]
. (3.46)

Using basic calculus, the determinant of the matrix with elements (3.46) can be
rearranged as a linear combination of determinants having the columns of the

form




Ci1
1 Cj1

1

Ci1
1 Cj1

2

Ci1
1 Cj1

3


,




Ci1
2 Cj1

1

Ci1
2 Cj1

2

Ci1
2 Cj1

3


,




Ci1
3 Cj1

1

Ci1
3 Cj1

2

Ci1
3 Cj1

3


, respectively, with i1, j1 = 2 or 3 in each

case. Hence, each of those determinants contain at least two linearly dependent
columns, that is, they vanish, and this shows that the determinant is zero in the
case m = 3 as well. Similarly, for an arbitrary m, the determinant of the matrix
with the elements

k∑

a=1

N a
j N a

i L̃a (q̇) =

m∑

i1=2

Ci1
j Ci1

i

[
k∑

a=1

(Aa
i1

)2L̃a (q̇)

]
+

m∑

2<i1<j1

(
Ci1

j Cj1
i + Ci1

i Cj1
j

)[
k∑

a=1

Aa
i1

Aa
j1

L̃a (q̇)

]
(3.47)
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is zero.

If there exists in the network m′ < m loops which contain only capacitors, all
the other loops containing at least an inductor, we can regularize the Birkhoffian
(3.21) via reduction of the configuration space. The reduced configuration
space M̄c of dimension m−m′, is a linear subspace of Mc or a manifold, depending
on whether the capacitors are linear or nonlinear. We claim that the Birkhoffian
ω̄c of the reduced configuration space M̄c is still a conservative Birkhoffian.
Under certain conditions on the functions La, a = 1, ..., k, which characterize the
inductors, the reduced Birkhoffian ω̄c will be a regular Birkhoffian.

Without loss of generality, we can assume that there is one loop in the network
that contains only capacitors and in the coordinate system we have chosen

N a
1 = 0, a = 1..., k. (3.48)

Thus, the Birkhoffian components (3.21), with (3.22), (3.23), are given by, j =
2, ...,m,

Q1(q, q̇, q̈) =

b∑

α=k+1

Nα
1 C̃α−k(q)

Qj(q, q̇, q̈) =
m∑

i=2

k∑

a=1

N a
j N

a
i L̃a (q̇) q̈i +

b∑

α=k+1

Nα
j C̃α−k(q). (3.49)

We note that, according to (3.48), q̇1 does not appear in any function L̃a(q̇) and the

terms L̃a(q̇)q̈1 do not appear in any of the Birkhoffian components Q2(q, q̇, q̈), ...,
Qm(q, q̇, q̈).

If the capacitors in this loop are linear devices, Q1 is a linear combination of
q’s and we can use this relation to reduce the configuration space Mc, to an affine-
linear subspace M̄c of dimension m−1. If the capacitors in this loop are nonlinear
devices, Q1 depends nonlinearly on the q’s. We define the (m − 1)-dimensional
manifold M̄c ⊂ Mc by

M̄c =

{
q ∈ Mc |

b∑

α=k+1

Nα
1 C̃α−k(q) = 0

}
. (3.50)

By the implicit function theorem, we obtain a local coordinate system on the
reduced configuration space M̄c. Taking q̄1 := q2,..., q̄m−1 := qm, the Birkhoffian
has the form ω̄c =

∑m−1
j=1 Q̄jdq̄j ,

Q̄j(q̄, ˙̄q, ¨̄q) = F̄j( ˙̄q)¨̄q + Ḡj(q̄), where (3.51)

F̄j( ˙̄q)¨̄q :=

m−1∑

i=1

k∑

a=1

N a
(j+1)N

a
(i+1)La

(
m−1∑

l=1

N a
(l+1)

˙̄ql

)
¨̄qi (3.52)
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Ḡj(q̄) :=
b∑

α=k+1

Nα
(j+1)Cα−k

(
Nα

1 f(q̄1, ..., q̄m−1) +
m−1∑

l=1

Nα
(l+1)q̄

l + const

)
.

(3.53)
f : U ⊂ Rm−1 −→ R being the unique function such that f(q̄0) = q1

0 , q1
0 ∈ R, and

b∑

α=k+1

Nα
1 Cα−k

(
Nα

1 f(q̄1, ..., q̄m−1) +

m−1∑

l=1

Nα
(l+1)q̄

l + const

)
= 0 (3.54)

for all q̄ = (q̄1, ..., q̄m−1) ∈ U , with U a neighborhood of q̄0 = (q̄1
0 , ..., q̄m−1

0 ).
We will now prove that the Birkhoffian (3.51) is conservative. In order to do

so, we will show that there exists a function Ēω(q̄, ˙̄q) satisfying

m−1∑

j=1

Q̄j(q̄ ˙̄q, ¨̄q) ˙̄qj =
m−1∑

j=1

[
∂Ēω

∂q̄j
˙̄qj +

∂Ēω

∂ ˙̄qj
¨̄qj

]
. (3.55)

Because of the special form of the terms on the left side of (3.55), we may assume
that Ēω(q̄, ˙̄q) is a sum of a function depending only on q̄, and a function depending
only on ˙̄q. From the theory of total differentials, a necessary condition for the
existence of such functions is the fulfillment of the following relations





∂F̄j( ˙̄q)

∂ ˙̄ql − ∂F̄l( ˙̄q)
∂ ˙̄qj = 0

∂Ḡj(q̄)
∂q̄l − ∂Ḡl(q̄)

∂q̄j = 0

. (3.56)

for any j, l = 1, ...,m − 1, where

F̄j( ˙̄q) :=
m−1∑

i=1

k∑

a=r+1

N a
(j+1)N

a
(i+1)La

(
m−1∑

l=1

N a
(l+1)

˙̄ql

)
˙̄qi. (3.57)

We check in the same way as for the functions Fj(q̇) in (3.27), that the first relation
in (3.56) is fulfilled. From (3.53), the second relation in (3.56) reads as

b∑

α=k+1

{
Nα

(j+1)C̃
′
α−k(q̄)

[
Nα

1

∂f(q̄)

∂q̄l
+ Nα

(l+1)

]

−Nα
(l+1)C̃

′
α−k(q̄)

[
Nα

1

∂f(q̄)

∂q̄j
+ Nα

(j+1)

]}
= 0 (3.58)

where C̃ ′
α−k := dC̃α−k(η)

dη
. The relation (3.58) reduces to

b∑

α=k+1

Nα
(j+1)C̃

′
α−k(q̄)Nα

1

∂f(q̄)

∂q̄l
−Nα

(l+1)C̃
′
α−k(q̄)Nα

1

∂f(q̄)

∂q̄j
= 0. (3.59)

Taking into account (3.54), the above relation is fulfilled, for any j, l = 1, ...,m−1.
Indeed, taking the derivatives with respect to q̄j and also to q̄l, in the equation
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(3.54), we obtain, respectively,

b∑

α=k+1

Nα
1 C̃ ′

α−k(q̄)

[
Nα

1

∂f(q̄)

∂q̄j
+ Nα

(j+1)

]
= 0

b∑

α=k+1

Nα
1 C̃ ′

α−k(q̄)

[
Nα

1

∂f(q̄)

∂q̄l
+ Nα

(l+1)

]
= 0. (3.60)

Now we multiply in (3.60) the first equation with ∂f(q̄)
∂q̄l , the second equation with

−∂f(q̄)
∂q̄j and we add the resulting equations to obtain the equation (3.59).

Thus, we proved the existence of a function Ēω(q̄, ˙̄q) such that (3.55) is fulfilled.
For any other loop which contains only capacitors, we just repeat this proce-

dure. Thus, we finally arrive at a configuration space M̄c of dimension m − m′,
where m′ denotes the total number of loops of that type.

In case the network has loops which contain only inductors the Birkhoffian can
be a regular one but we can further reduce the configuration space. Inductor loops
can be considered as some conserved quantities of the network.

If there exists in the network m′′ < m loops which contain only linear induc-
tors, all the other loops containing at least a capacitor, we can further reduce the
configuration space. The reduced configuration space M̂c of dimension m − m′′,
is a linear subspace of Mc. We claim that the Birkhoffian ω̂c of the reduced con-
figuration space M̂c is a conservative Birkhoffian. Under certain conditions
on the functions La, a = 1, ..., k, which characterize the inductors, the reduced
Birkhoffian ω̂c will be a regular Birkhoffian.

Without loss of generality, we can assume that there is one loop in the network
that contains only inductors and in the coordinate system we have chosen

Nα
1 = 0, α = 1..., p. (3.61)

Thus, the Birkhoffian components (3.21), with (3.22), (3.23), are given by, j =
2, ...,m,

Q1(q, q̇, q̈) =

m∑

i=1

k∑

a=1

N a
1 N

a
i L̃a (q̇) q̈i

Qj(q, q̇, q̈) =

m∑

i=1

k∑

a=1

N a
j N

a
i L̃a (q̇) q̈i +

b∑

α=k+1

Nα
j C̃α−k(q). (3.62)

We note that, according to (3.61), q1 does not appear in any function C̃α−k(q).
If the inductors in this loop are linear devices, Q1 is a linear combination of q̈’s.

We can integrate this relation to obtain an affine-linear relation between q’s (see
the first example in Section 5). We can use this relation to reduce the configuration
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space Mc, to an affine-linear subspace M̂c of dimension m− 1. Taking q̂1 := q2,...,
q̂m−1 := qm, one can write the Birkhoffian components of ω̂c and one can prove,
using the same ideas as in the previous reduction case, the existence of the function
Êω such that this Birkhoffian is conservative.

For any other loop which contains only linear inductors, we just repeat this
procedure. Thus, we finally arrive at a configuration space M̂c of dimension m −
m′′, where m′′ denotes the total number of loops of that type.

If the devices in the m′′ < m inductor loops are nonlinear devices, then,
Q1(q, q̇, q̈),..., Qm′′(q, q̇, q̈), are nonlinear functions depending on q̇’s and q̈’s. Us-
ing these relations we can define a smooth constant rank affine sub-bundle Sc

of the affine bundle πJ : J2(Mc) −→ TMc, on which we define the constrained
Birkhoffian system (Mc, ωc,Sc). The submanifold Sc has codimension m′′.

4. LC electric circuits with independent current/voltage sources

Let us now consider an electric circuit containing SI independent current sources
and SV independent voltage sources, in addition to k inductors and p capacitors.
Then b= k+p+SI+SV =m+n, where b, m, n have the same meaning as in Section
3. We suppose that m − SI > 0, n − SV > 0. The branches of the oriented
connected graph associated to this circuit are labelled as follows: la, a = 1, ..., k,
the inductor branches, cα, α = 1, ..., p, the capacitor branches, SIi

, i = 1, ...,SI ,
the current source branches, and SVj

, j = 1, ...,SV , the voltage source branches.
Let the basic equations governing the circuit be now written in the form





BT
1

(
ia

dqα

dt

)
+ BT

2

(
isI

(t)
)

= 0

AT
1

(
La(ia) dia

dt

Cα(qα)

)
+ AT

2

(
vsV

(t)
)

= 0

(4.1)

where AT
1 ∈ M(m−SI)(k+p)(R), AT

2 ∈ M(m−SI)SV
(R), BT

1 ∈ M(n−SV )(k+p)(R),
BT

2 ∈ M(n−SV )SI
(R). We also assume that rank(AT

1 ) = m−SI , rank(BT
1 ) = n−SV .

The functions isI
(t) and vsV

(t) are given vector functions of time. They describe
the independent current sources and independent voltage sources, respectively.
The other quantities in (4.1) are defined as in Section 3.

In the following we give a Birkhoffian formulation for the network described by
the system of equations (4.1), using the same procedure as in Section 3. That is,
using the first set of equations (4.1), we are going to define a family of (m − SI)-
dimensional affine-linear configuration spaces Mc ⊂ Rb parameterized by a con-
stant vector c in Rn−SV . A Birkhoffian ωtc

on the configuration space Mc arises
from a linear combination of the second set of equations (4.1). Thus, (Mc, ωtc

)
will be a family of Birkhoff systems that describe the LC circuit with independent
current/voltage sources considered.
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Let H : Rk+p −→ Rn−SV be the linear map that, with respect to a coordinate
system (x1, ..., xk+p) on Rk+p, is given by

H(x1, ..., xk+p) = BT
1




x1

...
xk+p


 + BT

2

(
isI

(t)
)
. (4.2)

We define

Mc := H−1(c) (4.3)

c being a constant vector in Rn−SV . Mc is a time-dependent affine linear subspace
in Rk+p. From rank(BT

1 ) = n − SV , its dimension is k + p + SV − n = m − SI .
Let us figure out the relation between ia, dqα

dt
, and coordinates on Mc. As in

the case without sources, taking into account (3.11) and the fact that the matrix
BT

1 is a constant matrix, we integrate the first set of equations (4.1) to arrive at

BT
1

(
q(a)

qα

)
+ I(t) = c (4.4)

with c a constant vector in Rn−SV and I(t) a primitive of BT
2

(
isI

(t)
)
.

Likewise consider coordinates in Rk+p

x1 := q(1), .., xk := q(k), xk+1 := q1, .., xk+p := qp. (4.5)

We can define coordinates on Mc by solving the equations (4.4) in terms of an
appropriate set of (m − SI) of the q-variables, say q = (q1, ..., qm−SI ). In other
words, we express any of the x-variables as a function of q = (q1, ..., qm−SI ),
namely,

xa =

m−SI∑

j=1

Na
j qj + fa(t) + const, a = 1, ..., k,

xα =

m−SI∑

j=1

Nα
j qj + fα(t) + const, α = k + 1, ..., k + p (4.6)

with certain constants Na
j , Nα

j and certain functions of t, fa(t), fα(t).

The constant matrix N =

(
Na

j

Nα
j

)

a=1,...,k, α=k+1,...,k+p

j=1,...,m−SI

has rank m − SI , and there

exists a nonsingular matrix C ∈ M(m−SI)(m−SI)(R) such that

CAT
1 = NT . (4.7)

We define the Birkhoffian ωtc
of Mc such that the differential system (2.5) is

a linear combination of the second set of equations in (4.1), which is obtained
multiplying the second set of equations in (4.1) by the matrix C. Taking into



Vol. 58 (2007) Birkhoffian formulation of the dynamics of LC circuits 195

account (4.7), in terms of q-coordinates as chosen before, the expressions of the
components Qj(t, q, q̇, q̈), j = 1, ...,m − SI are

Qj(t, q, q̇, q̈) = Fj(t, q̇)q̈ + Gj(t, q) + Vj(t) (4.8)

where

Fj(t, q̇)q̈ =

k∑

a=1

Na
j L̃a (t, q̇)

(
m−SI∑

i=1

Na
i q̈i +

d2fa(t)

dt2

)

=

m−SI∑

i=1

(
k∑

a=1

Na
j Na

i L̃a (t, q̇)

)
q̈i +

k∑

a=1

Na
j L̃a (t, q̇)

d2fa(t)

dt2
(4.9)

Gj(t, q) =

k+p∑

α=k+1

Nα
j Cα−k




m−SI∑

j=1

Nα
j qj + fα(t) + const




=

k+p∑

α=k+1

Nα
j C̃α−k (t, q) (4.10)

Vj(t) =

b∑

sV =k+p+SI+1

(CTAT
2 )jsV

vsV −k−p−SI
(t). (4.11)

If there exist in the network m′ < m − SI loops which contain only capacitors
or capacitors and independent voltage sources, then the Birkhoffian associated to
the network is never regular.

Indeed, in this case the functions Qj corresponding to such loops depend only
on q’s and t. Using the same procedure as in Section 3, the reduced configuration
space M̄c of dimension (m − SI) − m′, is a linear subspace of Mc or a manifold,
depending on whether the devices in the loops are linear or nonlinear.

Let us finally discuss the question whether the Birkhoffian (4.8) is conservative
or not.

For a linear LC circuit with independent current/voltage sources we claim that
the Birkhoffian (4.8) is conservative. A nonlinear LC circuit with independent
current/voltage sources is conservative if and only if it does not contain cutsets of
inductors and independent current sources.

In order to show that the Birkhoffian (4.8) is conservative, we are looking for
a smooth function Eωt

(t, q, q̇) such that the relation (2.19) is fulfilled. For the
Birkhoffian (4.8), this relation becomes
(

m−SI∑

i=1

k∑

a=1

Na
i Na

j L̃a (t, q̇) q̇i

)
q̈j +

(
k∑

a=1

Na
j L̃a (t, q̇)

d2fa(t)

dt2
+ Gj(t, q) + Vj(t)

)
q̇j
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=
∂Eωt

∂qj
q̇j +

∂Eωt

∂q̇j
q̈j . (4.12)

If the inductors and the capacitors in the network are linear devices, taking
into account (3.7), we easily find the function

Eωt
(t, q, q̇) =

1

2

k∑

a=1

m−SI∑

i,j=1

LaN
a
i N

a
j q̇iq̇j +

1

2

B∑

α=k+1

m−SI∑

i,j=1

Nα
i Nα

j

Cα−k

qiqj

+

m−SI∑

j=1

[Na
j La

d2fa(t)

dt2
+ Vj(t) + constj ]q

j (4.13)

which satisfies (4.12).
If the inductors and the capacitors in the network are nonlinear devices, the

existence of the function Eωt
(t, q, q̇) which satisfies (4.12), depends on the appear-

ance of the term
∑k

a=1 Na
j L̃a (t, q̇) d2fa(t)

dt2
in (4.12). For the networks which do not

contain cutsets of inductors and independent current sources, this term does not
appear at all in (4.12). In this case the proof of the existence of the function Eωt

is the same as in the case without sources. If the term
∑k

a=1 Na
j L̃a (t, q̇) d2fa(t)

dt2

is different from zero in (4.12), then,
∂2Eωt

∂qj∂q̇j 6=
∂2Eωt

∂q̇j∂qj . Therefore, the Birkhoffian

(4.8) is not conservative in the sense of definition (2.19).

5. Examples

The first example that we present is the example from the paper ([9]), in which
we have interchanged the capacitor C3 and the inductor L1 to emphasize that
networks which contain capacitor loops and inductor cutsets fit into the formalism
presented in Section 3. The directed connected graph associated to this circuit is
presented in Figure 1, page 182.

We first suppose that all devices are linear, that is, they are described by the
relations (3.7). Then, taking into account the values of the matrices A, B given
by (3.3), the equations (3.8) which govern the network have the form





i4 −
dq1

dt
+ dq3

dt
= 0

i2 + i3 −
dq2

dt
− dq3

dt
= 0

i1 − i3 − i4 = 0

q1

C1
− q2

C2
+ q3

C3
= 0

L2
di2
dt

+ q2

C2
= 0

L1
di1
dt

− L2
di2
dt

+ L3
di3
dt

= 0

−L1
di1
dt

− L4
di4
dt

− q1

C1
= 0

(5.1)

where Cα 6= 0, α = 1, 2, 3 and La 6= 0, a = 1, 2, 3, 4, are distinct constants. The
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relations (3.11), (3.13) read as follows for this example

ia :=
dq(a)

dt
, a = 1, 2, 3, 4 (5.2)

x1 := q(1), ..., x4 := q(4), x5 := q1, ..., x7 := q3. (5.3)

Using the first set of equations (5.1), we define the 4-dimensional affine-linear
configuration space Mc. We solve the corresponding equations (3.12) in terms of
4 variables. In view of the notations (5.2), (5.3), we obtain, for example,

x1 = x3 + x4 + const

x5 = x4 + x7 + const

x6 = x2 + x3 − x7 + const. (5.4)

Thus, a coordinate system on Mc is given by

q1 := x7, q2 := x2, q3 := x3, q4 := x4. (5.5)

The matrices of constants N =

(
N a

j

Nα
j

)

a=1,2,3,4, α=5,6,7

j=1,2,3,4

and C in (3.14), (3.20) attain

the form

N =




0 0 1 1
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 1
−1 1 1 0
1 0 0 0




, C =




1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 −1


 . (5.6)

Note that, if we define the Birkhoffian ωc of Mc using the second set of equations
(5.1) and not a linear combination of them, that is, the matrix AT instead of
CAT = N T , then, in terms of the q-coordinates introduced in (5.5), we obtain

ωc =
∑4

j=1 Qj(q, q̇, q̈)dqj , with

Q1(q, q̇, q̈) =

(
1

C1
+

1

C2
+

1

C3

)
q1 −

q2

C2
−

q3

C2
+

q4

C1
+ const

Q2(q, q̇, q̈) = L2q̈
2 −

q1

C2
+

q2

C2
+

q3

C2
+ const

Q3(q, q̇, q̈) = −L2q̈
2 + (L1 + L3)q̈

3 + L1q̈
4

Q4(q, q̇, q̈) = −L1q̈
3 − (L1 + L4)q̈

4 −
q1

C1
−

q4

C1
+ const. (5.7)

The Birkhoffian (5.7) is not conservative. Indeed, for the Birkhoffian (5.7) two
of the necessary conditions for the existence of the function Eω : TM → R such
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that (2.10) is fulfilled, are





∂Eω

∂q̇2 = L2q̇
2 − L2q̇

3

∂Eω

∂q̇3 = (L1 + L3)q̇
3 + L1q̇

4

. (5.8)

Because L2 6= 0, we see that ∂2Eω

∂q̇3q̇2 6= ∂2Eω

∂q̇2q̇3 . Therefore, there does not exist a

function Eω such that (2.10) is fulfilled.
However, proceeding as suggested in Section 3, the functions Qj(q, q̇, q̈), j =

1, 2, 3, 4 are given by (3.21), (3.22), and (3.23), that is,

Q1(q, q̇, q̈) =

(
1

C1
+

1

C2
+

1

C3

)
q1 −

q2

C2
−

q3

C2
+

q4

C1
+ const

Q2(q, q̇, q̈) = L2q̈
2 −

q1

C2
+

q2

C2
+

q3

C2
+ const

Q3(q, q̇, q̈) = (L1 + L3)q̈
3 + L1q̈

4 −
q1

C2
+

q2

C2
+

q3

C2
+ const

Q4(q, q̇, q̈) = L1q̈
3 + (L1 + L4)q̈

4 +
q1

C1
+

q4

C1
+ const. (5.9)

The Birkhoffian (5.9) is conservative. The function Eω(q, q̇) is given by (3.35),
that is,

Eω(q, q̇) =
1

2
L1(q̇

3 + q̇4)2 +
1

2
L2(q̇

2)2 +
1

2
L3(q̇

3)2 +
1

2
L4(q̇

4)2 +
1

2C1
(q1 + q4)2 +

1

2C2
(−q1 + q2 + q3)2 +

1

2C3
(q1)2 +

4∑

j=1

(const)jq
j . (5.10)

Because we are in a situation where the network has one loop which con-
tains only capacitors, the Birkhoffian corresponding to (5.9) is not regular. In-

deed, the first row of the matrix
[

∂Qj

∂q̈i

]

i,j=1,2,3,4
contains only zeros, therefore

det
[

∂Qj

∂q̈i

]

i,j=1,2,3,4
= 0.

As we have stated in Section 3, we can reduce the configuration space from
dimension 4 to dimension 3. Using the first equation in (5.9) we define M̄c ⊂ Mc

by

M̄c =

{
q = (q1, q2, q3, q4) ∈ Mc/

(
1

C1
+

1

C2
+

1

C3

)
q1

−
q2

C2
−

q3

C2
+

q4

C1
+ const = 0.

}
(5.11)

On the reduced configuration space M̄c, in the coordinate system q̄1 := q2, q̄2 :=



Vol. 58 (2007) Birkhoffian formulation of the dynamics of LC circuits 199

q3, q̄3 := q4, the Birkhoffian has the form ω̄c =
∑3

j=1 Q̄jdq̄j ,

Q̄1(q̄, ˙̄q, ¨̄q) = L2 ¨̄q1 + C1q̄
1 + C1q̄

2 + C2q̄
3 + const

Q̄2(q̄, ˙̄q, ¨̄q) = (L1 + L3)¨̄q
2 + L1 ¨̄q3 + C1q̄

1 + C1q̄
2 + C2q̄

3 + const

Q̄3(q̄, ˙̄q, ¨̄q) = L1 ¨̄q2 + (L1 + L4)¨̄q
3 + C2q̄

1 + C2q̄
2 + C3q̄

3 + const. (5.12)

where we have introduced the notation C1 := 1
C2

(
1 − 1

C2

(
1

C1
+ 1

C2
+ 1

C3

)−1
)

,

C2 := 1
C2C1

(
1

C1
+ 1

C2
+ 1

C3

)−1

, C3 := 1
C1

(
1 − 1

C1

(
1

C1
+ 1

C2
+ 1

C3

)−1
)

.

Let us now see whether the Birkhoffian (5.12) is regular and/or conservative.
We calculate

det

[
∂Q̄j

∂ ¨̄qi

]

i,j=1,2,3

=

∣∣∣∣∣∣

L2 0 0
0 L1 + L3 L1

0 L1 L1 + L4

∣∣∣∣∣∣
. (5.13)

Thus, if L2 [L1L4 + L3(L1 + L4)] 6= 0, then the Birkhoffian (5.12) is regular.
The corresponding Birkhoffian vector field (see Section 2), is given by:

Y = ˙̄q1 ∂

∂q̄1
+ ˙̄q2 ∂

∂q̄2
+ ˙̄q3 ∂

∂q̄3
−

1

L2

[
C1q̄

1 + C1q̄
2 + C2q̄

3
] ∂

∂ ˙̄q1

+
1

(L1 + L3)L4 + L1L3

[
(−C1(L1 + L4) + C2L1) q̄1 + (−C1(L1 + L4) + C2L1) q̄2

+(−C2(L1 + L4) + C3L1) q̄3 + const
] ∂

∂q̇2

+
1

(L1 + L4)L3 + L1L4

[
(−C2(L1 + L3) + C1L1) q̄1 + (−C2(L1 + L3) + C1L1) q̄2

+(−C3(L1 + L3) + C2L1) q̄3 + const
] ∂

∂q̇3
. (5.14)

Also, the Birkhoffian (5.12) is conservative with the function Ēω̄(q̄, ˙̄q) given by

Ēω̄(q̄, ˙̄q) =
1

2
L1( ˙̄q2 + ˙̄q3)2 +

1

2
L2( ˙̄q1)2 +

1

2
L3( ˙̄q2)2 +

1

2
L4( ˙̄q3)2 +

1

2
C1(q̄

1 + q̄2)2

+C2(q̄
1q̄3 + q̄2q̄3) +

1

2
C3(q̄

3)2 +

3∑

j=1

(const)j q̄
j . (5.15)

As we have pointed out in Section 3, because the network has one loop which
contains only inductors, this is the loop I3, we can further reduce the dimension
of the configuration space by one. The equation that we use for doing this is
Kirchhoff’s voltage law equation for this loop, that is, the sixth equation in (5.1).
For the chosen q-coordinate system (5.5) and after the transformation CAT , the
sixth equation in (5.1) added with the fifth equation in (5.1) and it appeared in
(5.9) by the function Q3(q, q̇, q̈). The Birkhoffian formulation was presented in a
coordinate free fashion. In order to have a coordinate system in which the sixth
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equation in (5.1) appears in the initial form, we change the q̄-coordinate system
by the following relations

q̄1 = q̌1 − q̌2

q̄2 = q̌2

q̄3 = q̌3. (5.16)

In terms of q̌-coordinates on M̄c, the Birkhoffian ω̄c =
∑3

j=1 Q̌jdq̌j , where

Q̌1(q̌, ˙̌q, ¨̌q) = L2 ¨̌q1 − L2 ¨̌q2 + C1q̌
1 + C2q̌

3 + const

Q̌2(q̌, ˙̌q, ¨̌q) = −L2 ¨̌q1 + (L1 + L2 + L3)¨̌q
2 + L1 ¨̌q3

Q̌3(q̌, ˙̌q, ¨̌q) = L1 ¨̌q2 + (L1 + L4)¨̌q
3 + C2q̌

1 + C3q̌
3 + const. (5.17)

Using the second equation (5.17), we define M̂c ⊂ M̄c by

M̂c = {q̌ = (q̌1, q̌2, q̌3) ∈ M̄c/ − L2q̌
1 + (L1 + L2 + L3)q̌

2 + L1q̌
3 + g(t) + const = 0}

(5.18)
with a certain function g(t) depending on t.

On the reduced configuration space M̂c, in the coordinate system q̂1 := q̌1, q̂2 :=
q̌3, the Birkhoffian has the form ω̂ = Q̂1dq̂1 + Q̂2dq̂2 with

Q̂1(q̂, ˙̂q, ¨̂q) =
L2(L1 + L3)

L1 + L2 + L3

¨̂q1 +
L1L2

L1 + L2 + L3

¨̂q2 + C1q̂
1 + C2q̂

2 + const

Q̂2(q̂, ˙̂q, ¨̂q) =
L1L2

L1 + L2 + L3

¨̂q1 +
(L1 + L4)(L2 + L3) + L1L4

L1 + L2 + L3

¨̂q2 + C2q̂
1 + C3q̂

2 + const.

(5.19)

Because Li 6= 0, i = 1, ..., 4, the determinant

L2

(L1+L2+L3)2

∣∣∣∣
L1 + L3 L1

L1L2 (L1 + L4)(L2 + L3) + L1L4

∣∣∣∣ 6= 0, then, the Birkhoffian (5.19)

is regular.
Moreover, the Birkhoffian (5.19) is conservative, and

Êω(q̂, ˙̂q) =
L2(L1 + L3)

2(L1 + L2 + L3)
( ˙̂q1)2 +

L1L2

L1 + L2 + L3

˙̂q1 ˙̂q2

+
(L1 + L4)(L2 + L3) + L1L4

2(L1 + L2 + L3)
( ˙̂q2)2

+
1

2
C1(q̂

1)2 + C2q̂
1q̂2 +

1

2
C3(q̂

2)2 +

2∑

j=1

(const)j q̂
j . (5.20)

Let us now suppose that the inductors and the capacitors in the network are
nonlinear devices, their constitutive relations being of the form (3.4), (3.6). The
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equations (3.8) which govern the network have now the form




i4 −
dq1

dt
+ dq3

dt
= 0

i2 + i3 −
dq2

dt
− dq3

dt
= 0

i1 − i3 − i4 = 0

C1(q1) − C2(q2) + C3(q3) = 0

L2(i2)
di2
dt

+ C2(q2) = 0

L1(i1)
di1
dt

− L2(i2)
di2
dt

+ L3(i3)
di3
dt

= 0

−L1(i1)
di1
dt

− L4(i4)
di4
dt

− C1(q1) = 0

(5.21)

where La : R −→ R\{0}, Cα : R −→ R\{0} are smooth invertible functions.
As we have pointed out in Section 3, the first set of equations in (5.21) is the

same as in the linear case, therefore the configuration space Mc is the same, too.
For the coordinate system on Mc given by (5.5), the matrices N , C have the same
expressions (5.6) as before. Thus, in the nonlinear case, the Birkhoffian becomes

ωc =
∑4

j=1 Qj(q, q̇, q̈)dqj with the functions Qj given by (3.21), (3.22), (3.23),
that is,

Q1(q, q̇, q̈) = C3(q
1) + C1(q

1 + q4 + const) − C2(−q1 + q2 + q3 + const)

Q2(q, q̇, q̈) = L2(q̇
2)q̈2 + C2(−q1 + q2 + q3 + const)

Q3(q, q̇, q̈) =
(
L3(q̇

3) + L1(q̇
3 + q̇4)

)
q̈3 + L1(q̇

3 + q̇4)q̈4

+C2(−q1 + q2 + q3 + const)

Q4(q, q̇, q̈) = L1(q̇
3 + q̇4)q̈3 +

(
L4(q̇

4) + L1(q̇
3 + q̇4)

)
q̈4 + C1(q

1 + q4 + const).

(5.22)

The Birkhoffian (5.22) is conservative with the function Eω(q, q̇) given by (3.41),
that is,

Eω(q, q̇) =

∫
L̃1(q̇)(q̇

3 + q̇4)(dq̇3 + dq̇4) +

∫
L2(q̇

2)q̇2dq̇2 +

∫
L3(q̇

3)q̇3dq̇3

+

∫
L4(q̇

4)q̇4dq̇4 −

∫ ∫
L̃′

1(q̇)(q̇
3 + q̇4)dq̇3dq̇4 −

∫ ∫
L̃1(q̇)dq̇3dq̇4

+

∫
C̃1(q)(dq1 + dq4) +

∫
C̃2(q)(−dq1 + dq2 + dq3) +

∫
C3(q

1)dq1

−

∫ ∫
C̃ ′

1(q)dq1dq4 −

∫ ∫
C̃ ′

2(q)(−dq1dq2 − dq1dq3 + dq2dq3)

−

∫ ∫ ∫
C̃ ′′

2 (q)dq1dq2dq3. (5.23)

The Birkhoffian (5.22) is not regular, since the first row of the matrix[
∂Qj

∂q̈i

]

i,j=1,2,3,4
contains only zeros. But just as in the linear case, we can re-

duce the configuration space from dimension 4 to dimension 3. Different from the
linear case, the reduced configuration space will not be a linear subspace of Mc.
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If the functions C1, C2, C3 are such that the Jacobian matrix for the first
equation in (5.22) has rank one, we define the 3-dimensional manifold M̄c ⊂ Mc

by

M̄c = {q = (q1, q2, q3, q4) ∈ Mc/C3(q
1) + C1(q

1 + q4 + const)

−C2(−q1 + q2 + q3 + const) = 0}. (5.24)

By the implicit function theorem, we obtain a local coordinate system on the re-
duced configuration space M̄c. Taking q̄1 := q2, q̄2 := q3, q̄3 := q4, the Birkhoffian
has the form ω̄c =

∑3
j=1 Q̄jdq̄j , with

Q̄1(q̄, ˙̄q, ¨̄q) = L2( ˙̄q1)¨̄q1 + C2(−f(q̄1, q̄2, q̄3) + q̄1 + q̄2 + const)

Q̄2(q̄, ˙̄q, ¨̄q) =
(
L3( ˙̄q2) + L1( ˙̄q2 + ˙̄q3)

)
¨̄q2 + L1( ˙̄q2 + ˙̄q3)¨̄q3

+C2(−f(q̄1, q̄2, q̄3) + q̄1 + q̄2 + const)

Q̄3(q̄, ˙̄q, ¨̄q) = L1( ˙̄q2 + ˙̄q3)¨̄q2 +
(
L4( ˙̄q3) + L1( ˙̄q2 + ˙̄q3)

)
¨̄q3

+C1(f(q̄1, q̄2, q̄3) + q̄3 + const) (5.25)

f : U ⊂ R3 −→ R1 being an unique function such that f(q̄0) = q1
0 , q1

0 ∈ R, and
C3(f(q̄))+C1(f(q̄)+q̄3+const)−C2(−f(q̄)+q̄1+q̄2+const) = 0, ∀q̄ = (q̄1, q̄2, q̄3) ∈
U , with U a neighborhood of q̄0 = (q̄1

0 , q̄2
0 , q̄3

0). On account of L1, L2, L3, L4 : R −→
R\{0}, we have

∣∣∣∣∣∣

L2( ˙̄q1) 0 0
0 L3( ˙̄q2) + L1( ˙̄q2 + ˙̄q3) L1( ˙̄q2 + ˙̄q3)
0 L1( ˙̄q2 + ˙̄q3) L4( ˙̄q3) + L1( ˙̄q2 + ˙̄q3)

∣∣∣∣∣∣
6= 0 (5.26)

then, the Birkhoffian (5.25) is regular.
Because the network has one loop which contains only inductors, let us perform

a further reduction of the dimension of the configuration space by one, just as we
have done in the linear case. In the coordinate system q̌ defined in (5.16), the

Birkoffian ω̄c =
∑3

j=1 Q̌jdq̌j , where

Q̌1(q̌, ˙̌q, ¨̌q) = L2( ˙̌q1 − ˙̌q2)¨̌q1 − L2( ˙̌q1 − ˙̌q2)¨̌q2 + C2(q̌
1, q̌2, q̌3)

Q̌2(q̌, ˙̌q, ¨̌q) = −L2( ˙̌q1 − ˙̌q2)¨̌q1 +
[
L1( ˙̌q2 + ˙̌q3) + L2( ˙̌q1 − ˙̌q2) + L3( ˙̌q2)

]
¨̌q2

+L1( ˙̌q2 + ˙̌q3)¨̌q3

Q̌3(q̌, ˙̌q, ¨̌q) = L1( ˙̌q2 + ˙̌q3)¨̌q2 +
[
L1( ˙̌q2 + ˙̌q3) + L4( ˙̌q3)

]
¨̌q3 + C1(q̌

1, q̌2, q̌3)

(5.27)

Using the second equation in (5.27), we can define a smooth constant rank affine
sub-bundle Sc of the affine bundle πJ : J2(M̄c) −→ TM̄c via

Sc = {(q̌, ˙̌q, ¨̌q) ∈ J2(M̄c)/ − L2( ˙̌q1 − ˙̌q2)¨̌q1 +
[
L1( ˙̌q2 + ˙̌q3) + L2( ˙̌q1 − ˙̌q2)

+L3( ˙̌q2)
]
¨̌q2 + L1( ˙̌q2 + ˙̌q3)¨̌q3 = 0}. (5.28)

The constraint Sc is integrable, in the sense that we have the foliation

Fconst := {(q̌, ˙̌q) ∈ T (M̄c)/ −L2( ˙̌q1 − ˙̌q2)+L1( ˙̌q2 + ˙̌q3)+L3( ˙̌q2) = const}. (5.29)
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Thus, in the nonlinear case, we draw the conclusion that we can further reduce
the configuration space only if it is possible to find from (5.29) new configuration
coordinates q̂1, q̂2, that is, when the constraint (5.29) is holonomic.

In order to underline that, depending on the topology of the networks with
independent sources, the associated Birkhoffian is conservative or not, we consider
the circuit shown in Figure 2 above. This circuit contains a loop formed by ca-
pacitors and independent voltage sources and a cutset formed by inductors and
independent current sources. We shall see that the Birkhoffian associated to such
a circuit is not regular and not even conservative for nonlinear inductors and
capacitors.

We have k = 3, p = 2, SI = 2, SV = 1, n = 4, m = 4 , b = 8. We choose the
reference node to be V5 and the current directions as indicated in Figure 2. We
cover the associated graph with the loops I1, I2, I3, I4. Let V = (V1, V2, V3, V4) ∈
R4 be the vector of node voltage values, i = (ia, iα, iSI

, iSV
) ∈ R3×R2×R2×R1 be

the vector of branch current values and v = (va, vα, vSI
, SV ) ∈ R3 ×R2 ×R2 ×R1

be the vector of branch voltage values.
The branches in Figure 2 are labelled as follows: the first, the second, and

the third branch are the inductor branches L1, L2, L3, the forth and the fifth
branch are the capacitor branches C1, C2, the next two branches are the current
source branches SI1 , SI2 , and the last branch is the voltage source branch SV1

.
The incidence and loop matrices, B ∈ M84(R) and A ∈ M84(R), write as

B =




−1 1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0
0 −1 0 0
1 0 0 −1
1 0 0 0
0 −1 1 0




, A =




0 0 1 0
1 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 −1
1 0 0 0
0 −1 1 0
0 0 0 1




. (5.30)
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For linear inductors and capacitors, the governing equations have the form:




−i1 − i2 + isI1
(t) + isI2

(t) = 0

i1 −
dq2

dt
− isV1

= 0

−dq1

dt
+ isV1

= 0
−i3 − isI1

(t) = 0

L2
di2
dt

− L3
di3
dt

+ vsI1
= 0

−L2
di2
dt

− vsI2
= 0

L1
di1
dt

+ q2

C2
+ vsI2

= 0
q1

C1
− q2

C2
+ vsV1

(t) = 0

(5.31)

where Cα 6= 0, α = 1, 2 and La 6= 0, a = 1, 2, 3, are distinct constants.
Note that isI1

, isI2
, vsV1

are given functions of time which describe the currents
associated to the independent current sources SI1

, SI2
and the voltage associated

to the independent voltage source SV1
, respectively.

Once we know the unknowns i1, i2, i3, q1, q2, we can determine all the other
circuit variables.

From the first set of equations (5.31), we have

isV1
=

dq1

dt
(5.32)

and from the second set of equations (5.31), we conclude

vsI1
= −L2

di2
dt

+ L3
di3
dt

vsI2
= −L2

di2
dt

. (5.33)

Therefore, the system (4.1) has now the form




−i1 − i2 + isI1
(t) + isI2

(t) = 0

i1 −
dq2

dt
− dq1

dt
= 0

−i3 − isI1
(t) = 0

L1
di1
dt

+ q2

C2
− L2

di2
dt

= 0
q1

C1
− q2

C2
+ vsV1

(t) = 0

(5.34)

with

BT
1 =




−1 −1 0 0 0
1 0 0 −1 −1
0 0 −1 0 0


 BT

2 =




1 1
0 0
−1 0


 (5.35)

AT
1 =

(
1 −1 0 0 1
0 0 0 1 −1

)
AT

2 =

(
0
1

)
. (5.36)
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The relations (3.11), (4.5), read as follows for this example

ia :=
dq(a)

dt
, a = 1, 2, 3 (5.37)

x1 := q(1), x2 := q(2), x3 := q(3), , x4 := q1, x5 := q2. (5.38)

Using the first set of equations (5.34), we define the 2-dimensional affine-linear
configuration space Mc. We solve the corresponding equations (4.4) in terms of 2
variables. In view of the notations (5.37), (5.38), we obtain, for example,

x2 = −x1 + f2(t) + const

x3 = f3(t) + const

x5 = x1 − x4 + const (5.39)

with f2(t) =
∫

(is1
(t) + is2

(t)) dt, f3(t) = −
∫

is1
(t)dt and the other components

of f in (4.6) being zero. Thus a coordinate system on Mc is given by

q1 := x1, q2 := x4. (5.40)

and the matrices of constants N =

(
Na

j

Nα
j

)

a=1,2, α=3,4,5

j=1,2

and C are

N =




1 0
−1 0
0 0
0 1
1 −1




, C =

(
1 0
0 1

)
. (5.41)

In terms of the coordinates (5.40), we define the Birkhoffian ωtc
= Q1dq1 +Q2dq2,

as in (4.8)-(4.11), that is,

Q1(t, q, q̇, q̈) = (L1 + L2)q̈
1 − L2

d2f2(t)

dt2
+

q1

C2
−

q2

C2
+ const

Q2(t, q, q̇, q̈) = −
q1

C2
+

(
1

C1
+

1

C2

)
q2 + vsV1

(t) + const.

(5.42)

Because there exists a loop which contains only capacitors and independent voltage
sources, the Birkhoffian (5.42) is not regular. Indeed, the second row of the

matrix
[

∂Qj

∂q̈i

]

i,j=1,2
contains only zeros, therefore, det

[
∂Qj

∂q̈i

]

i,j=1,2
= 0.

Though there exists in the network a cutset formed by inductors and inde-
pendent current sources, the Birkhoffian (5.42) is conservative in the sense of
definition (2.19). The function Eωt

(t, q, q̇) is given by (4.13), that is,

Eωt
(t, q, q̇) =

1

2
L1(q̇

1)2 +
1

2
L2(q̇

1)2 +
1

2C1
(q2)2 +

1

2C2
(q1 − q2)2

+

(
−L2

d2f2(t)

dt2
+ const1

)
q1 +

(
vsV1

(t) + const2
)
q2. (5.43)
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In order to obtain a regular Birkhoffian we could use the second equation from
(5.42) and reduce the configuration space Mc to a vector space M̄c of dimension 1.
The procedure is the same as in the first example with linear devices.

For nonlinear inductors and capacitors, in the coordinate system (5.40) on the
configuration space Mc of dimension 2, the Birkhoffian ωtc

= Q1dq1 + Q2dq2,
where

Q1(t, q, q̇, q̈) =

[
L1(q̇

1) + L2

(
−q̇1 +

df2(t)

dt

)]
q̈1 − L2

(
−q̇1 +

df2(t)

dt

)
d2f2(t)

dt2

+C2(q
1 − q2 + const)

Q2(t, q, q̇, q̈) = C1(q
2) − C2(q

1 − q2 + const) + vsV1
(t). (5.44)

The Birkhoffian (5.44) is not regular and not conservative. Indeed, two
of the necessary conditions for the existence of the function Eωt

: TM → R such

that
∑2

j=1 Qj(t, q, q̇, q̈)dqj =
∑2

j=1
∂Eωt

∂qj q̇j +
∂Eωt

∂q̇j q̈j , are




∂Eωt

∂q̇1 = L1(q̇
1) + L2

(
−q̇1 + df2(t)

dt2

)

∂Eωt

∂q1 = −L2

(
−q̇1 + df2(t)

dt2

)
d2f2(t)

dt2
+ C2(q

1 − q2 + const)

. (5.45)

We easily see that for almost all values of the parameters,
∂2Eωt

∂q̇1q1 6=
∂2Eωt

∂q1q̇1 = 0.
Let us now consider a network that has the oriented connected graph as in

Figure 2 in which we interchanged the inductor branch L3 with the capacitor
branch C1 and the inductor branch L2 with the capacitor branch C2. We will
see that the Birkhoffian associated to this network is conservative even if the
inductors and the capacitors in the network are nonlinear devices.

The system (4.1) has now the form




−i1 −
dq2

dt
+ isI1

(t) + isI2
(t) = 0

i1 − i2 − i3 = 0

−dq1

dt
− isI1

(t) = 0

L1(i1)
di1
dt

+ L2(i2)
di2
dt

− C2(q2) = 0

−L2(i2)
di2
dt

+ L3(i3)
di3
dt

+ vsV1
(t) = 0

(5.46)

and

isV1
= i3 (5.47)

vsI1
= C1(q1) − C2(q2)

vsI2
= −C2(q2). (5.48)

Using the same procedure as above we get the configuration space Mc of di-
mension 2. In view of the notations (5.37), (5.38), a coordinate system on Mc is
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given by
q1 := x1, q2 := x3. (5.49)

and the Birkhoffian ωtc
= Q1dq1 + Q2dq2, where

Q1(t, q, q̇, q̈) =
[
L1(q̇

1) + L2

(
q̇1 − q̇2

)]
q̈1 − L2

(
q̇1 − q̇2

)
q̈2

−C2(−q1 + f5(t) + const)

Q2(t, q, q̇, q̈) = −L2

(
q̇1 − q̇2

)
q̈1 +

[
L2

(
q̇1 − q̇2

)
+ L3(q̇

2)q̈2
]
q̈2 + vsV1

(t) (5.50)

with f5(t) =
∫

(is1
(t) + is2

(t)) dt and the other components of f in (4.6) being
zero. The Birkhoffian (5.50) is conservative in the sense of definition (2.19), with
the function Eωt

(t, q, q̇) given by

Eωt
(t, q, q̇) =

∫
L1(q̇

1)q̇1dq̇1 +

∫
L̃2(q̇)(q̇

1 − q̇2)(dq̇1 − dq̇2) +

∫
L3(q̇

2)q̇2dq̇2

+

∫ ∫
L̃′

2(q̇)(q̇
1 − q̇2)dq̇1dq̇2 +

∫ ∫
L̃2(q̇)dq̇1dq̇2

−

∫
C2(−q1 + f5(t) + const)dq1 + vsV1

(t)q2 (5.51)

where L̃
′

2 := dL̃2(η)
dηl .
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