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Abstract

In this paper, the concepts and the direct theorems of stability in the sense of Liapunov, within the framework of Birkhoffian
dynamical systems on manifolds, are considered. The Liapunov-type functions are constructed for linear and nonlinear LC and
RLC electrical networks, to prove stability under certain conditions.
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1. Introduction

During the last few years, a far reaching generalization of the Hamiltonian framework has been developed in
a series of papers. This generalization, which is based on the geometric notion of generalized Dirac structure (see
Courant [5] and Dorfman [6]), gives rise to implicit Hamiltonian systems (see, for example, the papers by Maschke
and van der Schaft [12,14]). Applications to nonholonomic systems and electrical circuits (see Bloch and Crouch [2],
Maschke and van der Schaft [12]) illustrate this theory. Recently, the notion of the implicit Lagrangian system has been
developed by Yoshimura and Marsden [16]. Nonholonomic mechanical systems and degenerate Lagrangian systems
such as LC circuits can be systematically formulated in the implicit Lagrangian context in which Dirac structures are
also used.

An alternative approach to the study of dynamical systems is using the Birkhoffian formalism. This is a global
formalism of implicit systems of second-order ordinary differential equations on a manifold. It applies to a wide class
of systems, among them, nonholonomic systems, degenerate systems as well as dissipative systems. Kobayashi and
Oliva developed in [9] the framework of Birkhoffian dynamical systems on manifolds, following Birkhoff’s ideas
presented locally in [1]. The space of configurations is a smooth m-dimensional differentiable connected manifold
and the covariant character of the Birkhoff generalized forces is obtained by defining the notion of elementary work,
called Birkhoffian, a special Pfaffian form defined on the 2-jet manifold. The dynamical system associated to this
Pfaffian form is a subset of the 2-jet manifold which defines an implicit second-order ordinary differential system.
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The notion of Birkhoffian allows the introduction of the intrinsic concepts of reciprocity, regularity, affine structure in
the accelerations, conservativeness [9], dissipativeness [7].

The Birkhoffian formalism in the context of electrical circuits was discussed by Ionescu and Scheurle [8] for the
case of LC circuits, and Ionescu [7] for the case of RLC circuits. An LC/RLC circuit, with no assumptions placed on
its topology, will be described by a family of Birkhoffian systems, parameterized by a finite number of real constants
which correspond to initial values of certain state variables of the circuit. It is shown that the Birkhoffian system
associated with an LC circuit is conservative. Under certain assumptions on the voltage–current characteristic for
resistors, it is shown that a Birkhoffian system associated with an RLC circuit is dissipative. For LC/RLC networks
which contain a number of loops formed only from capacitors, the Birkhoffian associated is never regular. A procedure
for reducing the original configuration space to a lower dimensional one, thereby regularizing the Birkhoffian, is
presented as well.

For RLC electrical networks, Brayton and Moser [3] proved, under a special hypothesis, that there exists a mixed
potential function which can be used to put the system of differential equations describing the dynamics of such a
network, into a special form (see Section 4 in [3]). The hypothesis they made is that the currents through the inductors
and the voltages across the capacitors determine all currents and voltages in the circuit via Kirchhoff’s law. The mixed
potential function is constructed explicitly only for the networks whose graph possesses a tree containing all the
capacitor branches and none of the inductive branches, that is, the network does not contain any loops of capacitors
or cutsets of inductors, each resistor tree branch corresponds to a current-controlled resistor, each resistor co-tree
branch corresponds to a voltage-controlled resistor (see Section 13 in [3]). Making different assumptions on the type
of admissible nonlinearities in the circuit, this mixed potential function is used in [3] to construct Liapunov-type
functions to prove stability.

Smale [15] also develops the differential equations for nonlinear RLC electrical circuits and illustrates these
equations through a series of examples. He builds on the work of Brayton and Moser [3] but he is able to treat
more general equations. A large part of the paper illustrates these equations by means of examples and discusses
stability properties of the examples.

This paper is organized as follows. At the beginning of Section 2 we present the basics of Birkhoffian systems,
from the viewpoint of differential geometry using the formalism of jets. Then, we introduce the concepts and the
direct theorems of stability in the sense of Liapunov, within the framework of Birkhoffian systems. In Section 3 we
consider, in turn, the linear and the nonlinear LC networks, as well as the linear and the nonlinear RLC networks. For
each of them we construct Liapunov-type functions to prove stability or asymptotic stability under certain conditions.
Finally, we discuss an example in Section 4.

2. Liapunov’s direct method for Birkhoffian systems

In order to present the ideas in a coordinate free fashion, we consider the formalism of 2-jets. Let M be a m-
dimensional differentiable connected manifold. We consider the tangent bundles (T M , πM , M) and (T T M , πT M ,
T M).

The 2-jet bundle (J 2(M), πJ , T M) is defined by

J 2(M) := {z ∈ T T M/T πM (z) = πT M (z)} (2.1)

where (T πM )v : TvT M → TπM (v)M is the tangent map and

πJ := πT M |J 2(M) = T πM |J 2(M) . (2.2)

A local system of coordinates (q) = (q j ) j=1,...,m on M induces natural local coordinates on J 2(M), denoted by
(q, q̇, q̈) = (q j , q̇ j , q̈ j ) j=1,...,m (see for example [9,13]).

A Birkhoffian corresponding to the configuration manifold M is a smooth 1-form ω on J 2(M) such that, for any
x ∈ M , we have

ι∗xω = 0 (2.3)

where ιx : β−1(x) → J 2(M) is the embedding of the submanifold β−1(x) into J 2(M), β = πM ◦ πJ . From this
definition it follows that, in the natural local coordinate system (q, q̇, q̈) of J 2(M), a Birkhoffian ω is given by
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ω =

m∑
j=1

Q j (q, q̇, q̈)dq j (2.4)

with certain functions Q j : J 2(M) → R. The pair (M, ω) is said to be a Birkhoffian system (see [9]).
The differential system associated with a Birkhoffian ω is the set (maybe empty) D(ω), given by

D(ω) := {z ∈ J 2(M) | ω(z) = 0}. (2.5)

The manifold M is the space of configurations of D(ω), and D(ω) is said to have m ‘degrees of freedom’. The Qi are
the ‘generalized external forces’ associated with the local coordinate system. In the natural local coordinate system,
D(ω) is characterized by the following implicit system of second-order ODE’s:

Q j (q, q̇, q̈) = 0 for all j = 1, m. (2.6)

The Birkhoffian formalism is a global formalism for the dynamics of implicit systems of second-order differential
equations on a manifold.

A cross section X of the affine bundle (J 2(M), πJ , T M), that is, a smooth function X : T M → J 2(M) such that
πJ ◦ X = id, can be identified with a special vector field on T M , namely, the second-order vector field Y on T M , that
is, a smooth function Y : T M → T T M such that πT M ◦ Y = id and T πM ◦ Y = id. Using the canonical embedding
i : J 2(M) → T T M , we write Y = i ◦ X .

In natural local coordinates, a second-order vector field can be represented as

Y =

m∑
j=1

[
q̇ j ∂

∂q j + q̈ j (q, q̇)
∂

∂ q̇ j

]
. (2.7)

A Birkhoffian vector field associated with a Birkhoffian ω of M (see [9]) is a smooth second-order vector field on
T M , Y = i ◦ X , with X : T M → J 2(M), such that Im X ⊂ D(ω), that is,

X∗ω = 0. (2.8)

In the natural local coordinate system, a Birkhoffian vector field is given by the expression (2.7), such that
Q j (q, q̇, q̈(q, q̇)) = 0.

A Birkhoffian ω is regular if and only if

det
[
∂Q j

∂ q̈ i (q, q̇, q̈)

]
j,i=1,...,m

6= 0 (2.9)

for all (q, q̇, q̈), and for each (q, q̇), there exists (q, q̇, q̈) ∈ J 2(M) such that Q j (q, q̇, q̈) = 0, j = 1, . . . , m.

If ω is a regular Birkhoffian corresponding to the configuration manifold M , then, the principle of determinism is
satisfied, that is, there exists an unique Birkhoffian vector field Y = i ◦ X associated with ω such that Im X = D(ω)

(see [9]).
A Birkhoffian ω of M is called conservative (see [9]) if and only if there exists a smooth function Eω : T M → R

such that

(X∗ω)Y = dEω(Y ) (2.10)

for all second-order vector fields Y = i ◦ X , which is equivalent, in the natural local coordinate system, to the identity

m∑
j=1

Q j (q q̇, q̈)q̇ j
=

m∑
j=1

[
∂ Eω

∂q j q̇ j
+

∂ Eω

∂ q̇ j q̈ j
]

. (2.11)

If ω is conservative and Y is a Birkhoffian vector field, then (2.10) becomes

dEω(Y ) = 0. (2.12)

This means that Eω is constant along the trajectories of Y .
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A Birkhoffian ω of the configuration space M is called dissipative (see [7]) if and only if there exists a smooth
function E0ω : T M → R such that

(X∗ω)Y = dE0ω (Y ) + D(Y ) (2.13)

for all second-order vector fields Y = i ◦ X on T M , D being a dissipative 1-form on T M , that is, D =∑m
j=1 D j (q, q̇)dq j and

m∑
j=1

D j (q, q̇)q̇ j > 0. (2.14)

Eq. (2.13) is equivalent, in a local coordinate system, to the identity

m∑
j=1

Q j (q q̇, q̈)q̇ j
=

m∑
j=1

[
∂ E0ω

∂q j q̇ j
+

∂ E0ω

∂q̇ j q̈ j
+ D j (q, q̇)q̇ j

]
. (2.15)

In view of (2.14), we obtain from (2.13),

(X∗ω)Y > dE0ω (Y ) (2.16)

for all second-order vector fields Y = i ◦ X . That is equivalent, in local coordinates, to the dissipation inequality

m∑
j=1

Q j (q q̇, q̈)q̇ j >

m∑
j=1

[
∂ E0ω

∂q j q̇ j
+

∂ E0ω

∂ q̇ j q̈ j
]

. (2.17)

If ω is a dissipative Birkhoffian and Y is the Birkhoffian vector field, then (2.16) becomes

dE0ω (Y ) < 0. (2.18)

This means that E0ω is nonincreasing along the trajectories of Y .
Let us introduce now the concepts of stability for a Birkhoffian system.
The equilibrium points of the system, that is, the points in which the system can remain permanently at rest, are to

be found as the solutions of the system

Q j (q, 0, 0) = 0, j = 1, . . . , m. (2.19)

Let us denote an equilibrium point by (qe, 0) ∈ Ω ⊂ T M , and an initial state of the system by (q0, q̇0), with
q(0) = q0, q̇(0) = q̇0.

For regular Birkhoffians, we can define the equilibrium points using the notion of Birkhoffian vector field, that is,
a point (qe, 0) is an equilibrium point of the Birkhoffian vector field Y if and only if

Y (qe, 0) = 0. (2.20)

An equilibrium point (qe, 0) is said to be stable (or Liapunov stable) if for every open neighborhood Ω of (qe, 0),
there is a neighborhood Ω1 ⊂ Ω such that a motion (q(t), q̇(t)) starting at (q0, q̇0) ∈ Ω1, remains in Ω . If in addition,
Ω1 can be chosen such that, for any (q0, q̇0) ∈ Ω1, (q(t), q̇(t)) converges to (qe, 0) as t → ∞, then (qe, 0) is said to
be asymptotically stable.

In the memoir [11], Liapunov presents geometric theorems, generally referred to as the direct method of Liapunov
(see, for example, [10]), for deciding the stability or instability of an equilibrium point of a differential equation.

In what follows we consider Liapunov’s direct method for Birkhoffian systems. This is based on finding a function
V ∈ C1(T M, R) such that

(i) V (qe, 0) = 0
(ii) V (q, q̇) > 0 for (q, q̇) 6= (qe, 0) in Ω
(iii) dV (Y ) ≤ 0 for all second-order vector fields Y defined on Ω

(2.21)

with Ω an open neighborhood of (qe, 0). The function V is called Liapunov function.
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One can prove the following theorems (completely analogous to the theorems proved in [10] for a Liapunov
function defined on U ⊂ M):

Stability Theorem. If there exists in a neighborhood Ω of (qe, 0) a Liapunov function V (q, q̇), then (qe, 0) is stable.

Asymptotic Stability Theorem. If there exists in a neighborhood Ω of (qe, 0) a Liapunov function V (q, q̇) such that
dV (Y ) < 0 for all second-order vector fields Y defined on Ω , then (qe, 0) is asymptotically stable.

From the condition (ii) in (2.21) we get that there exists c0 > 0 such that the level curve

{(q, q̇) ∈ Ω , V (q, q̇) = c} (2.22)

is a closed curve for every constant 0 ≤ c ≤ c0. Sketching in the m-plane (q, q̇) these level curves of the function V ,
we obtain surfaces like “ellipsoids” centered at the equilibrium point.

If dV = 0, then the equilibrium point (qe, 0) is a center and the motion of the system is periodic.
If dV < 0, then each trajectory keeps moving to lower c and hence penetrates smaller and smaller “ellipsoids” as

t → ∞. Thus, the equilibrium point is asymptotically stable. This exclude the existence of periodic motions of the
system.

3. Stability of the equilibrium points of LC and RLC networks

A simple electrical circuit provides us with an oriented connected graph. The graph will be assumed to be planar.
Let b be the total number of branches in the graph, n be one less than the number of nodes and m be the cardinality of
a selection of loops that cover the whole graph. By Euler’s polyhedron formula, b = m + n. We choose a reference
node and a current direction in each l-branch of the graph, l = 1, . . . , b. We also consider a covering of the graph
with m loops, and a current direction in each j-loop, j = 1, . . . , m. We assume that the associated graph has at least
one loop, meaning that m > 0. An oriented connected graph can be described by matrices which contain only 0, ±1;
these are: the incidence matrix B ∈ Mbn(R), rank(B) = n, and the loop matrix A ∈ Mbm(R), rank(A) = m. For the
fundamentals of electrical circuit theory, see, for example, [4].

Let us now consider an RLC electrical circuit consisting of r resistors, k inductors and p capacitors, such that
to each branch of the associated graph there corresponds just one electrical device, that is, b = r + k + p. For LC
electrical circuits r = 0. Using the matrices A and B, Kirchhoff’s current law and Kirchhoff’s voltage law can be
expressed by the equations

BTI = 0 (K C L), ATv = 0 (K V L) (3.1)

where I = (I[Γ ], I(a), Iα) ∈ Rr
× Rk

× Rp
' Rb is the current vector and v = (v[Γ ], v(a), vα) ∈ Rr

× Rk
× Rp

' Rb

is the voltage drop vector. Tellegen’s theorem establishes a relation between the matrices AT and BT: the kernel of the
matrix BT is orthogonal to the kernel of the matrix AT (see, for example, page 5 of [3]).

We consider the voltage–current laws for nonlinear devices given by

v[Γ ] = RΓ (I[Γ ]), v(a) = La(I(a))
dI(a)

dt
, vα = Cα(Qα), (3.2)

RΓ , La, Cα : R −→ R \ {0} being smooth functions, Qα denote the charges of the capacitors, with Iα =
dQα

dt . If the
capacitors and the inductors are linear then the relations above become, respectively,

v[Γ ] = RΓ I[Γ ], v(a) = La
dI(a)

dt
vα =

Qα

Cα

, (3.3)

where RΓ 6= 0, Cα 6= 0 and La 6= 0 are distinct constants.
Summing up, the equations governing the network are

BT

 I[Γ ]

I(a)

dQα

dt

 = 0, AT

 RΓ (I[Γ ])

La(I(a))
dI(a)

dt
Cα(Qα)

 = 0. (3.4)

Using the first set of equations (3.4), one defines (see [7,8]) a family of m-dimensional affine–linear configuration
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spaces Mc ⊂ Rb, parameterized by a constant vector c in Rn which corresponds to initial values of certain state
variables of the circuit. Since the matrix B is constant, integrating the first set of equations (3.4), one gets BTx = c,
with I = ẋ , c a constant vector in Rn . Thus, one defines

Mc := {x ∈ Rb
|BTx = c}. (3.5)

Its dimension is m = b − n, because rank(B) = n. Local coordinates on Mc are denoted by q = (q1, . . . , qm).
Solving the system in (3.5), one expresses any of the x-variables in terms of qs, namely, as

x = Nq +K (3.6)

where N =

NΓ
j

N a
j

N α
j


Γ=1,r ,a=r+1,r+k,α=r+k+1,b,

j=1,m

is a matrix of constants and K =

(
KΓ

Ka

Kα

)
, a constant vector in Rb.

By Tellegen’s theorem and a fundamental theorem of linear algebra, one obtains that Ker(AT) = Ker(N T) (see [7,
8]).

A Birkhoffian ωc on the configuration space Mc arises from a linear combination of the second set of equations
(3.4), by replacing the matrix AT with the matrix of constants N T.

(I) For a linear LC network (r = 0) we have the following expression for the Birkhoffian (see [8]):

Q j (q, q̇, q̈) =

k∑
a=1

m∑
i=1

LaN a
j N

a
i q̈ i

+

b∑
α=k+1

m∑
i=1

N α
j N

α
i

Cα−k
q i

+ (const) j (3.7)

with const ∈ Rm a constant vector.
A linear LC network is conservative (see [8]). The function Eω : T Mc → R satisfying (2.11) has the following

expression:

Eω(q, q̇) =
1
2

k∑
a=1

m∑
j,i=1

LaN a
j N

a
i q̇ j q̇ i

+
1
2

b∑
α=k+1

m∑
j,i=1

N α
j N

α
i

Cα−k
q j q i

+

m∑
j=1

(const) j q j . (3.8)

In what follows we assume that

det

[
k∑

a=1

LaN a
j N

a
i

]
j,i=1,...,m

6= 0, det

[
b∑

α=k+1

N α
j N

α
i

Cα−k

]
j,i=1,...,m

6= 0, (3.9)

that is, the network does not contain loops formed only by capacitors and respectively, loops formed only by inductors
(see [8]). If the network contains capacitor loops and inductor loops, we will first reduce the configuration space to
a lower dimensional configuration space. On the reduced configuration space the corresponding Birkhoffian is still
conservative (see [8]) and the corresponding determinants (3.9) will be different from zero. The inductor loops can be
considered as some conserved quantities of the network.

Theorem 1. Let (qe, 0) be an equilibrium point of a linear LC network with the Birkhoffian components given by
(3.7). Then qe satisfies the system

b∑
α=k+1

m∑
i=1

N α
j N

α
i

Cα−k
q i

+ (const) j = 0, j = 1, . . . , m. (3.10)

For each const which is related to the initial data for the considered network, we get a unique equilibrium point.
If

La > 0, ∀a = 1, . . . , k, Cα > 0, ∀α = 1, . . . , p (3.11)

the equilibrium point is a stable center, and the motion of the system is periodic.
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Indeed, the equilibrium points of a linear LC network are obtained as solutions of the system Q j (q, 0, 0) = 0,
j = 1, . . . , m, where Q j (q, q̇, q̈) is given by (3.7). Thus, we get that qe has to fulfill the system (3.10). Under the
second condition in (3.9), this system has for each const ∈ Rm a unique solution.

The stability of this equilibrium point is obtained by the Stability Theorem presented in Section 2. We define a
Liapunov function V ∈ C1(T Mc, R) by

V (q, q̇) = Eω(q, q̇) − Eω(qe, 0)

=
1
2

k∑
a=1

m∑
j,i=1

LaN a
j N

a
i q̇ j q̇ i

+
1
2

b∑
α=k+1

m∑
j,i=1

N α
j N

α
i

Cα−k
(q j

− q j
e )(q i

− q i
e) (3.12)

where qe satisfies the system (3.10). Indeed, this function satisfies the conditions (2.21). Taking into account (3.11),

the matrices
(∑k

a=1 LaN a
j N

a
i

)
j,i

and
(∑b

α=k+1
N α

j N
α
i

Cα−k

)
j,i

are positive definite. Thus, the condition (ii) in (2.21) is

fulfilled. The first determinant in (3.9) being different from zero implies that the corresponding Birkhoffian is regular.
Therefore, along the trajectories of the unique (principle of determinism) Birkhoffian vector field, the function Eω

defined in (3.8) satisfies (2.12). Thus, the function (3.12) satisfies the condition (iii) in (2.21). In this case, sketching
in the m-plane (q, q̇) the level curves of the function (3.12), we obtain ellipsoids centered at the equilibrium point.
The equilibrium point is a center and the motion of the system is periodic. �

(II) For a nonlinear LC network we have the following expression for the Birkhoffian (see [8]):

Q j (q, q̇, q̈) =

k∑
a=1

N a
j La

(
m∑

l=1

N a
l q̇l

)
m∑

i=1

N a
i q̈ i

+

b∑
α=k+1

N α
j Cα−k

(
m∑

l=1

N α
l ql

+Kα

)

=

m∑
i=1

(
k∑

a=1

N a
j N

a
i L̃a(q̇)

)
q̈ i

+

b∑
α=k+1

N α
j C̃α−k(q). (3.13)

A nonlinear LC network is conservative (see [8]). In this case, the function Eω : T Mc → R is given by

Eω(q, q̇) = E(q̇) + E(q) (3.14)

with

E(q̇) =

k∑
a=1

m∑
l=1

m∑
i1<···<il=1

(−1)l+1
∫
...

∫
︸ ︷︷ ︸

l

[
L̃(l−1)

a (q̇)N a
i q̇ i

+ (l − 1)L̃(l−2)
a (q̇)

]
N a

i1
. . .N a

il dq̇ i1 . . . dq̇ il

E(q) =

b∑
α=k+1

m∑
l=1

m∑
i1<···<il=1

(−1)l+1
∫
...

∫
︸ ︷︷ ︸

l

C̃ (l−1)
α−k (q)N α

i1
. . .N α

il dq i1 . . . dq il (3.15)

where we defined the derivatives C̃ (l)
α−k :=

dl C̃α(x)

dx l , L̃(l)
a :=

dl L̃a(x)

dx l .
In what follows we assume that

det

[
k∑

a=1

N a
j N

a
i L̃a(q̇)

]
j,i=1,...,m

6= 0, (3.16)

that is, the network does not contain capacitor loops. In the case where the network contains capacitor loops, we first
reduce the configuration space to a lower dimensional one. On the reduced configuration space the corresponding
Birkhoffian is still conservative (see [8]) and the corresponding determinant above will be different from zero.
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Theorem 2. Let (qe, 0) be an equilibrium point of a nonlinear LC network with the Birkhoffian components given by
(3.13). Then qe satisfies the system

b∑
α=k+1

N α
j Cα−k

(
m∑

l=1

N α
l ql

+Kα

)
= 0, j = 1, . . . , m. (3.17)

A nonlinear LC network can have several equilibrium points. If

La(0) > 0, ∀a = 1, . . . , k, C ′
α(qe) > 0, ∀α = 1, . . . , p (3.18)

then the equilibrium points are locally stable centers.

Indeed, the equilibrium points of a nonlinear LC network are obtained as solutions of the system Q j (q, 0, 0) = 0,
j = 1, . . . , m, where Q j (q, q̇, q̈) is given by (3.13). Thus, we see that qe has to fulfill the system (3.17).

The local stability of the equilibrium points is obtained using the Stability Theorem presented in Section 2. We
define a Liapunov function V ∈ C1(T Mc, R) by

V (q, q̇) = Eω(q, q̇) − Eω(qe, 0) (3.19)

with Eω given by (3.14) and qe satisfying the system (3.17).
Let us now evaluate the Hessian matrix of the function V in (3.19) at an equilibrium point (qe, 0). We get

HV (qe, 0) =


∂2E(q̇)

∂ q̇ i∂q̇ j |(qe,0) 0

0
∂2E(q)

∂q i∂q j |(qe,0)

 . (3.20)

For the Birkhoffian (3.13), the function Eω in (3.14) satisfies the identity (2.11) (see [8]), that is,

∂E(q̇)

∂ q̇ i =

k∑
a=1

m∑
l=1

L̃a(q̇)N a
i N

a
l q̇l (3.21)

∂2E(q)

∂q i =

b∑
α=k+1

C̃α−k(q)N α
i . (3.22)

Therefore, we get

∂2E(q̇)

∂ q̇ i∂q̇ j =

k∑
a=1

[
m∑

l=1

L̃ ′
a(q̇)N a

j N
a
i N

a
l q̇l

+ L̃a(q̇)N a
i N

a
j

]
(3.23)

∂2E(q)

∂q i∂q j =

b∑
α=k+1

C̃ ′

α−k(q)N α
i N

α
j . (3.24)

From (3.23) and (3.24), the matrix (3.20) is written as

HV (qe, 0) =


k∑

a=1

La(0)N a
i N

a
j 0

0
b∑

α=k+1

C̃ ′

α−k(qe)N α
i N

α
j

 . (3.25)

In view of the conditions (3.18), the matrices
(∑k

a=1 La(0)N a
i N

a
j

)
i, j

and
(∑b

α=k+1 C̃ ′

α−k(qe)N α
i N

α
j

)
i, j

are

positive definite. Therefore, the Hessian matrix (3.25) is positive definite. The centers of the level curves of the function
(3.19) have the coordinates (qe, 0), where qe satisfies the system (3.17). Thus, in a neighborhood of an equilibrium
point, the condition (ii) in (2.21) is fulfilled by the function V in (3.19). The determinant (3.16) being different from
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zero implies that the corresponding Birkhoffian is regular. Therefore, along the trajectories of the unique (principle of
determinism) Birkhoffian vector field, the function Eω satisfies (2.12). Thus, the function (3.19) satisfies the condition
(iii) in (2.21). By the Stability Theorem, the equilibrium points are locally stable centers. �

(III) For a linear RLC network we have the following expression for the Birkhoffian (see [7]):

Q j (q, q̇, q̈) =

r+k∑
a=r+1

m∑
i=1

La−rN a
j N

a
i q̈ i

+

r∑
Γ=1

m∑
i=1

RΓNΓ
j N

Γ
i q̇ i

+

b∑
α=r+k+1

m∑
i=1

N α
j N

α
i

Cα−r−k
q i

+ (const) j , (3.26)

with const ∈ Rm a constant vector.
A linear RLC network with

RΓ > 0, Γ = 1, . . . , r, (3.27)

is dissipative (see [7]). The function E0ω : T Mc → R and the dissipative 1-form satisfying (2.15) are given by

E0ω (q, q̇) =
1
2

r+k∑
a=r+1

m∑
j,i=1

La−rN a
j N

a
i q̇ j q̇ i

+
1
2

b∑
α=r+k+1

m∑
j,i=1

N α
j N

α
i

Cα−r−k
q j q i

+

m∑
j=1

(const) j q j (3.28)

D =

m∑
j,i=1

r∑
Γ=1

RΓNΓ
j N

Γ
i q̇ i dq j . (3.29)

In what follows we assume that

det

[
r+k∑

a=r+1

La−rN a
j N

a
i

]
j,i=1,...,m

6= 0, det

[
b∑

α=r+k+1

N α
j N

α
i

Cα−r−k

]
j,i=1,...,m

6= 0, (3.30)

that is, the network does not contain capacitor loops and inductor loops, respectively. If the network contains capacitor
loops and inductor loops, we will first reduce the configuration space to a lower dimensional configuration space. On
the reduced configuration space the corresponding Birkhoffian is still dissipative (see [7]) and the corresponding
determinants above will be different from zero.

Theorem 3. Let (qe, 0) be an equilibrium point of a linear RLC network with the Birkhoffian given by (3.26). Then
qe satisfies the system

b∑
α=r+k+1

m∑
i=1

N α
j N

α
i

Cα−r−k
q i

+ (const) j = 0, j = 1, . . . , m. (3.31)

For each const which is related to the initial data for the considered network, we get a unique equilibrium point.
If

La > 0, ∀a = 1, . . . , k, Cα > 0, ∀α = 1, . . . , p, (3.32)

the equilibrium point is asymptotically stable.

Indeed, the equilibrium points of a linear RLC network are obtained as solutions of the system Q j (q, 0, 0) =

0, j = 1, . . . , m, where Q j (q, q̇, q̈) is given by (3.26). Thus, we see that qe has to fulfill the system (3.31). Under the
second condition in (3.30), this system has for each const ∈ Rm a unique solution.

The asymptotic stability of this equilibrium point is obtained using the Asymptotic Stability Theorem presented in
Section 2. We define a Liapunov function V ∈ C1(T Mc, R) by

V (q, q̇) = E0ω (q, q̇) − E0ω (qe, 0) =
1
2

r+k∑
a=r+1

m∑
j,i=1

La−rN a
j N

a
i q̇ j q̇ i

+
1
2

b∑
α=r+k+1

m∑
j,i=1

N α
j N

α
i

Cα−r−k
(q j

− q j
e )(q i

− q i
e) (3.33)
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where qe satisfies the system (3.31). Indeed, this function satisfies the conditions (2.21). Taking into account (3.32),

the matrices
(∑r+k

a=r+1 La−rN a
j N

a
i

)
j,i

and
(∑b

α=r+k+1
N α

j N
α
i

Cα−r−k

)
j,i

are positive definite. Thus, the condition (ii) in

(2.21) is fulfilled. The first determinant in (3.30) being different from zero implies that the corresponding Birkhoffian
is regular. Therefore, along the trajectories of the unique (principle of determinism) Birkhoffian vector field, the
function E0ω satisfies (2.18). Thus, the function (3.33) also satisfies (2.18). In this case, sketching the level curves of
the function (3.33) in the m-plane (q, q̇), we obtain ellipsoids centered at the equilibrium point. From the Asymptotic
Stability Theorem we conclude that the equilibrium point is asymptotically stable. This excludes the existence of
periodic motions of the system. �

(IV) For a nonlinear RLC network we have the following expression for the Birkhoffian (see [7]):

Q j (q, q̇, q̈) =

r+k∑
a=r+1

N a
j La−r

(
m∑

l=1

N a
l q̇l

)(
m∑

i=1

N a
i q̈ i

)

+

r∑
Γ=1

NΓ
j RΓ

(
m∑

l=1

NΓ
l q̇l

)
+

b∑
α=r+k+1

N α
j Cα−r−k

(
m∑

l=1

N α
l ql

+Kα

)

=

m∑
i=1

r+k∑
a=r+1

N a
j N

a
i L̃a−r (q̇) q̈ i

+

r∑
Γ=1

NΓ
j R̃Γ (q̇) +

b∑
α=r+k+1

N α
j C̃α−r−k (q) . (3.34)

In order to obtain a dissipative Birkhoffian (see [7]), we assume that, for all x 6= 0,

x RΓ (x) > 0, ∀Γ = 1, . . . , r (3.35)

that is, for each nonlinear resistor, the graph of the function RΓ lies in the first and third quadrants. The function
E0ω : T Mc → R and the dissipative 1-form satisfying (2.15) are given by

E0ω (q, q̇) = E0(q̇) + E0(q) (3.36)

with

E0(q̇) =

r+k∑
a=r+1

m∑
l=1

m∑
i1<···<il=1

(−1)l+1
∫
...

∫
︸ ︷︷ ︸

l

[
L̃(l−1)

a−r (q̇)N a
i q̇ i

+ (l − 1)L̃(l−2)
a−r (q̇)

]
N a

i1
· · ·N a

il dq̇ i1 · · · dq̇ il

E0(q) =

b∑
α=r+k+1

m∑
l=1

m∑
i1<···<il=1

(−1)l+1
∫
...

∫
︸ ︷︷ ︸

l

C̃ (l−1)
α−r−k(q)N α

i1
. . .N α

il dq i1 . . . dq il (3.37)

and

D =

m∑
j=1

r∑
Γ=1

NΓ
j R̃Γ (q̇) dq j (3.38)

In what follows we assume that

det

[
r+k∑

a=r+1

L̃a−r (q̇)N a
j N

a
i

]
j,i=1,...,m

6= 0, (3.39)

that is, the network does not contain capacitor loops. In the case where the network contains capacitor loops, first, we
reduce the configuration space to a lower dimensional configuration space on which the corresponding Birkhoffian is
still dissipative (see [7]) and on which the corresponding determinant above will be different from zero.
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Theorem 4. Let (qe, 0) be an equilibrium point of a nonlinear RLC network with the Birkhoffian given by (3.34).
Then qe satisfies the system

r∑
Γ=1

NΓ
j RΓ (0) +

b∑
α=r+k+1

N α
j Cα−r−k

(
m∑

l=1

N α
l ql

+Kα

)
= 0, j = 1, . . . , m. (3.40)

A nonlinear RLC network can have several equilibrium points.
(1) If

RΓ (0) = 0, ∀Γ = 1, . . . , r (3.41)
La(0) > 0, ∀a = 1, . . . , k, C ′

α(qe) > 0, ∀α = 1, . . . , p, (3.42)

the equilibrium points are locally asymptotically stable.
(2) If there exists Γ = 1, . . . , r such that RΓ (0) 6= 0, but, for all x 6= 0,

x (RΓ (x) − RΓ (0)) > 0, ∀Γ = 1, . . . , r (3.43)

and the conditions (3.42) are fulfilled, then the equilibrium points are locally asymptotically stable.

Indeed, the equilibrium points of a nonlinear RLC network are obtained as solutions of the system Q j (q, 0, 0) = 0,
j = 1, . . . , m, where Q j (q, q̇, q̈) is given by (3.34). Thus, we see that qe has to fulfill the system (3.40). The
local asymptotic stability of the equilibrium points now follows from the Asymptotic Stability Theorem presented in
Section 2.

First we assume condition (3.41) to be satisfied. Then the system (3.40) is written as

b∑
α=r+k+1

N α
j Cα−r−k

(
m∑

l=1

N α
l ql

+Kα

)
= 0, j = 1, . . . , m. (3.44)

In order to show (1), we define a Liapunov function V ∈ C1(T Mc, R) by

V (q, q̇) = E0ω (q, q̇) − E0ω (qe, 0) (3.45)

with E0ω given by (3.36) and qe satisfying the system (3.44). In the neighborhood of any equilibrium point, this
function satisfies the conditions (2.21). Taking into account the conditions (3.42), the Hessian matrix of the function
V in (3.45), at the equilibrium point (qe, 0),

HV (qe, 0) =


r+k∑

a=r+1

La−r (0)N a
i N

a
j 0

0
b∑

α=r+k+1

C̃ ′

α−r−k(qe)N α
i N

α
j

 (3.46)

is positive definite. The centers of the level curves of the function (3.45) have the coordinates (qe, 0), where qe satisfies
the system (3.44). Thus, in a neighborhood of an equilibrium point the condition (ii) in (2.21) is fulfilled by the function
V in (3.45). The determinant (3.39) being different from zero implies that the corresponding Birkhoffian is regular.
Therefore, along the trajectories of the unique (principle of determinism) Birkhoffian vector field, the function E0ω

satisfies (2.18). Thus, the function (3.45) also satisfies (2.18). By the Asymptotic Stability Theorem, the equilibrium
points are locally asymptotically stable.

We assume now that there exists Γ = 1, . . . , r such that RΓ (0) 6= 0. In order to show (2), we consider instead of
the function E0ω the following function E0ω : T Mc → R:

E0ω (q, q̇) = E0(q̇) + E0(q) +

r∑
Γ=1

NΓ
j RΓ (0)q j (3.47)
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Fig. 1. An RLC circuit.

where E0(q̇), E0(q) is given by (3.37), and instead of D the following dissipative 1-form:

D =

m∑
j=1

r∑
Γ=1

NΓ
j
[
R̃Γ (q̇) − RΓ (0)

]
dq j . (3.48)

In view of assumption (3.43), the vertical 1-form (3.48) is indeed dissipative, that is,

m∑
j=1

r∑
Γ=1

(
NΓ

j q̇ j
)[

RΓ

(
m∑

l=1

NΓ
l q̇l

)
− RΓ (0)

]
> 0. (3.49)

One can easily check that for the function E0ω (q, q̇) given by (3.47) and the dissipative 1-form (3.48), the Birkhoffian
(3.34) is dissipative, that is, the identity

m∑
j=1

Q j (q q̇, q̈)q̇ j
=

m∑
j=1

[
∂E0ω

∂q j q̇ j
+

∂E0ω

∂ q̇ j q̈ j
+ D j (q, q̇)q̇ j

]
(3.50)

is fulfilled.
We define now a Liapunov function V ∈ C1(T Mc, R) by

V(q, q̇) = E0ω (q, q̇) − E0ω (qe, 0). (3.51)

If ω is a dissipative Birkhoffian and Y is the Birkhoffian vector field, then (2.18) becomes

dE0ω (Y ) < 0. (3.52)

The function V in (3.51) satisfies (3.52) as well.
The centers of the level curves of the function (3.51) have the coordinates (qe, 0), where qe satisfies the system

(3.40). The Hessian matrix of the function V in (3.51) has at the equilibrium point the same expression (3.46). By the
Asymptotic Stability Theorem, the equilibrium points are locally asymptotically stable. �

4. Example

We consider an electrical circuit with an associated oriented connected graph as in Fig. 1.
We have r = 1, k = 2, p = 3, n = 4, m = 2, b = 6. We choose the reference node to be V5 and the current

directions as indicated in Fig. 1. We cover the associated graph with the loops I1, I2. The branches in Fig. 1 are
labelled as follows: the first branch is the resistive branch R1, the second and the third branches are the inductive
branches L1, L2 and the last three branches are the capacitor branches C1, C2, C3. The incidence and loop matrices,
B ∈ M64(R) and A ∈ M62(R), are written as

B =


1 −1 0 0
0 0 0 1
0 1 −1 0
0 1 0 −1

−1 0 0 0
0 0 1 −1

 , A =


1 0
1 0
0 1
1 −1
1 0
0 1

 . (4.1)
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One has rank(B) = 4, rank(A) = 2. Kirchhoff’s current law and Kirchhoff’s voltage law can be expressed by the
equations

BTI = 0 (K C L), ATv = 0 (K V L) (4.2)

where I = (I[Γ ], I(a), Iα) ∈ R × R2
× R3 and v = (v[Γ ], v(a), vα) ∈ R × R2

× R3 is the voltage drop vector.
We define the configuration space by

Mc := {x ∈ R6
|BTx = c} (4.3)

with c a constant vector in R4. Mc is an affine–linear subspace in R6; its dimension is 2. The system in (4.3) is written
as

x1
− x5

= c1

−x1
+ x3

+ x4
= c2

−x3
+ x6

= c3

x2
− x4

− x6
= c4.

(4.4)

We denote local coordinates on Mc by q = (q1, q2). If we take, for example,

q1
:= x5, q2

:= x6 (4.5)

we get

x1
= q1

+ c1

x2
= q1

+ c1 + c2 + c3 + c4

x3
= q2

− c3

x4
= q1

− q2
+ c1 + c2 + c3.

(4.6)

Thus, the matrix of constants N in (3.6) is exactly the matrix A and the constant

K =


c1

c1 + c2 + c3 + c4
−c3

c1 + c2 + c3
0
0

 .

First we consider the case where all the electrical devices in the circuit are linear; they are described by the relations
(3.3). In this case, in terms of the q-coordinates (4.5), the Birkhoffian ωc on Mc is written as

Q1(q, q̇, q̈) = L1q̈1
+ R1q̇1

+

(
1
C 1

+
1

C2

)
q1

−
1

C1
q2

+
c1 + c2 + c3

C1

Q2(q, q̇, q̈) = L2q̈2
−

1
C1

q1
+

(
1
C 1

+
1
C 3

)
q2

−
c1 + c2 + c3

C1
. (4.7)

Let us see now how the constants are related to the initial conditions that may be specified for the considered
network.

The differential system associated with the Birkhoffian (4.7) is written

Q1(q, q̇, q̈) = 0, Q2(q, q̇, q̈) = 0. (4.8)

For each capacitor we are able to specify the initial charge, that is, Q1(0), Q2(0), Q3(0), and for each inductor the
initial current, that is, I(1)(0), I(2)(0). Taking into account (4.5), the relation I = ẋ and the second and third relations
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in (4.6), we have the following initial conditions for the differential system (4.8):

q1(0) = Q2(0)

q2(0) = Q3(0)

q̇1(0) = I(1)(0)

q̇2(0) = I(2)(0). (4.9)

Besides, taking into account the (4.5) and the last relation in (4.6), we find

c1 + c2 + c3 = Q1(0) − Q2(0) + Q3(0). (4.10)

Thus, the Birkhoffian (4.7) becomes

Q1(q, q̇, q̈) = L1q̈1
+ R1q̇1

+

(
1

C1
+

1
C2

)
q1

−
1

C1
q2

+
Q1(0) − Q2(0) + Q3(0)

C1

Q2(q, q̇, q̈) = L2q̈2
−

1
C1

q1
+

(
1

C1
+

1
C3

)
q2

−
Q1(0) − Q2(0) + Q3(0)

C1
. (4.11)

If the constant R1 > 0, the Birkhoffian (4.11) is dissipative. The function E0ω : T Mc → R and the dissipative
1-form satisfying (2.15) have the expressions

E0ω (q, q̇) =
1
2

L1(q̇1)2
+

1
2

L2(q̇2)2
+

1
2C1

(q1
− q2)2

+
1

2C2
(q1)2

+
1

2C3
(q2)2

+
Q1(0) − Q2(0) + Q3(0)

C1
q1

−
Q1(0) − Q2(0) + Q3(0)

C1
q2 (4.12)

D = R1dq1. (4.13)

The equilibrium point of the considered linear network is the solution of the system(
1

C1
+

1
C2

)
q1

−
1

C1
q2

+
Q1(0) − Q2(0) + Q3(0)

C1
= 0

−
1

C1
q1

+

(
1

C1
+

1
C3

)
q2

−
Q1(0) − Q2(0) + Q3(0)

C1
= 0. (4.14)

If the constants L1, L2, C1, C2, C3 satisfy the conditions (3.32), this equilibrium point is asymptotically stable. We
define a Liapunov function V by

V (q, q̇) = E0ω (q, q̇) − E0ω (qe, 0) =
1
2

L1(q̇1)2
+

1
2

L2(q̇2)2

+
1

2C1

[
(q1

− q2) − (q1
e − q2

e )
]2

+
1

2C2
(q1

− q1
e )2

+
1

2C3
(q2

− q2
e )2 (4.15)

where qe satisfies the system (4.14). The level curves of the function (4.14) represent a set of ellipsoids surrounding
the equilibrium point. Because the Birkhoffian (4.11) is dissipative, it follows that dE0ω < 0, and therefore dV < 0.

Let us consider now the case where all the devices are nonlinear; they are described by the relations (3.2). For the
coordinate system on Mc given by (4.5), the Birkhoffian becomes

Q1(q, q̇, q̈) = L1(q̇1)q̈1
+ R1(q̇1) + C1(q1

− q2
+K3) + C2(q1)

Q2(q, q̇, q̈) = L2(q̇2)q̈2
− C1(q1

− q2
+K3) + C3(q2)

(4.16)

with K3
= c1 + c2 + c3 = Q1(0) − Q2(0) + Q3(0).
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If R1 satisfies the condition (3.35), the Birkhoffian (4.16) is dissipative. The function E0ω : T Mc → R and the
dissipative 1-form satisfying (2.15) are given by

E0ω (q, q̇) =

∫
L1(q̇1)q̇1dq̇1

+

∫
L2(q̇2)q̇2dq̇2

+

∫
C1(q1

− q2
+K3)(dq1

− dq2)

+

∫
C2(q1)dq1

+

∫
C3(q2)dq2

−

∫ ∫
C ′

1(q
1
− q2

+K3)dq1dq2 (4.17)

D = R1(q̇1)dq1. (4.18)

The equilibrium points of the considered nonlinear network are the solutions of the system

R1(0) + C1(q1
− q2

+K3) + C2(q1) = 0

−C1(q1
− q2

+K3) + C3(q2) = 0. (4.19)

(1) If R1(0) = 0, and L1, L2, C1, C2, C3 satisfies (3.42), then the equilibrium points are locally asymptotically
stable. We define a Liapunov function V by

V (q, q̇) = E0ω (q, q̇) − E0ω (qe, 0) (4.20)

with E0ω given by (4.17) and qe satisfying (4.19). The Hessian matrix of V at a equilibrium point (qe, 0) has the
expression

HV (qe, 0) =


L1(0) 0 0 0

0 L2(0) 0 0
0 0 C̃ ′

1(q
1
e , q2

e ) + C ′

2(q
2
e ) −C̃ ′

1(q
1
e , q2

e )

0 0 −C̃ ′

1(q
1
e , q2

e ) C̃ ′

1(q
1
e , q2

e ) + C ′

3(q
2
e )

 . (4.21)

Under the assumptions we made, this matrix is positive definite. The centers of the level curves of the function (4.20)
have the coordinates (qe, 0), where qe satisfies the system (4.19) with R1(0) = 0. Because the Birkhoffian (4.16) is
dissipative, it follows that dE0ω < 0, and therefore dV < 0.

(2) If R1(0) 6= 0, but for all x 6= 0

x (R1(x) − R1(0)) > 0 (4.22)

and L1, L2, C1, C2, C3 satisfies (3.42), then the equilibrium points are locally asymptotically stable. We define now
a Liapunov function V by

V(q, q̇) = E0ω (q, q̇) − E0ω (qe, 0) (4.23)

with E0ω : T Mc → R given by

E0ω (q, q̇) = E0ω (q, q̇) + R1(0)q1. (4.24)

E0ω (q, q̇) has the expression (4.17). The centers of the level curves of the function (4.23) have the coordinates (qe, 0),
where qe satisfies the system (4.19). The Hessian matrix of the function V in (4.23) has at the equilibrium point the
same expression (4.21). It remains to prove that dV < 0. This is yielded from the dissipativeness of the Birkhoffian
(4.16). We consider the following dissipative 1-form:

D =

[
R1

(
q̇1
)

− R1(0)
]

dq1. (4.25)

In view of assumption (4.22), this vertical 1-form is indeed dissipative. One can easily check that for the function
E0ω (q, q̇) in (4.24) and the dissipative 1-form in (4.25), the following identity is fulfilled:

2∑
j=1

Q j (q q̇, q̈)q̇ j
=

2∑
j=1

[
∂E0ω

∂q j q̇ j
+

∂E0ω

∂q̇ j q̈ j
+ D j (q, q̇)q̇ j

]
. (4.26)

The Birkhoffian (4.16) being dissipative we have dE0ω < 0; therefore dV < 0.
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